aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/DerivedTypes.h
blob: c862c2c8bb202e1e6bd683c47376e7dd64fed4cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types".  These are things like "arrays of x" or "structure of x, y, z" or
// "function returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H

#include "llvm/Type.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Compiler.h"

namespace llvm {

class Value;
class APInt;
class LLVMContext;
template<typename T> class ArrayRef;
class StringRef;

/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty.
/// @brief Integer representation type
class IntegerType : public Type {
  friend class LLVMContextImpl;
  
protected:
  explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
    setSubclassData(NumBits);
  }
public:
  /// This enum is just used to hold constants we need for IntegerType.
  enum {
    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
    MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
      ///< Note that bit width is stored in the Type classes SubclassData field
      ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
  };

  /// This static method is the primary way of constructing an IntegerType.
  /// If an IntegerType with the same NumBits value was previously instantiated,
  /// that instance will be returned. Otherwise a new one will be created. Only
  /// one instance with a given NumBits value is ever created.
  /// @brief Get or create an IntegerType instance.
  static IntegerType *get(LLVMContext &C, unsigned NumBits);

  /// @brief Get the number of bits in this IntegerType
  unsigned getBitWidth() const { return getSubclassData(); }

  /// getBitMask - Return a bitmask with ones set for all of the bits
  /// that can be set by an unsigned version of this type.  This is 0xFF for
  /// i8, 0xFFFF for i16, etc.
  uint64_t getBitMask() const {
    return ~uint64_t(0UL) >> (64-getBitWidth());
  }

  /// getSignBit - Return a uint64_t with just the most significant bit set (the
  /// sign bit, if the value is treated as a signed number).
  uint64_t getSignBit() const {
    return 1ULL << (getBitWidth()-1);
  }

  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
  /// @returns a bit mask with ones set for all the bits of this type.
  /// @brief Get a bit mask for this type.
  APInt getMask() const;

  /// This method determines if the width of this IntegerType is a power-of-2
  /// in terms of 8 bit bytes.
  /// @returns true if this is a power-of-2 byte width.
  /// @brief Is this a power-of-2 byte-width IntegerType ?
  bool isPowerOf2ByteWidth() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == IntegerTyID;
  }
};


/// FunctionType - Class to represent function types
///
class FunctionType : public Type {
  FunctionType(const FunctionType &) LLVM_DELETED_FUNCTION;
  const FunctionType &operator=(const FunctionType &) LLVM_DELETED_FUNCTION;
  FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);

public:
  /// FunctionType::get - This static method is the primary way of constructing
  /// a FunctionType.
  ///
  static FunctionType *get(Type *Result,
                           ArrayRef<Type*> Params, bool isVarArg);

  /// FunctionType::get - Create a FunctionType taking no parameters.
  ///
  static FunctionType *get(Type *Result, bool isVarArg);
  
  /// isValidReturnType - Return true if the specified type is valid as a return
  /// type.
  static bool isValidReturnType(Type *RetTy);

  /// isValidArgumentType - Return true if the specified type is valid as an
  /// argument type.
  static bool isValidArgumentType(Type *ArgTy);

  bool isVarArg() const { return getSubclassData(); }
  Type *getReturnType() const { return ContainedTys[0]; }

  typedef Type::subtype_iterator param_iterator;
  param_iterator param_begin() const { return ContainedTys + 1; }
  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }

  // Parameter type accessors.
  Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }

  /// getNumParams - Return the number of fixed parameters this function type
  /// requires.  This does not consider varargs.
  ///
  unsigned getNumParams() const { return NumContainedTys - 1; }

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == FunctionTyID;
  }
};


/// CompositeType - Common super class of ArrayType, StructType, PointerType
/// and VectorType.
class CompositeType : public Type {
protected:
  explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
public:

  /// getTypeAtIndex - Given an index value into the type, return the type of
  /// the element.
  ///
  Type *getTypeAtIndex(const Value *V);
  Type *getTypeAtIndex(unsigned Idx);
  bool indexValid(const Value *V) const;
  bool indexValid(unsigned Idx) const;

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID ||
           T->getTypeID() == StructTyID ||
           T->getTypeID() == PointerTyID ||
           T->getTypeID() == VectorTyID;
  }
};


/// StructType - Class to represent struct types.  There are two different kinds
/// of struct types: Literal structs and Identified structs.
///
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
/// always have a body when created.  You can get one of these by using one of
/// the StructType::get() forms.
///  
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
/// uniqued.  The names for identified structs are managed at the LLVMContext
/// level, so there can only be a single identified struct with a given name in
/// a particular LLVMContext.  Identified structs may also optionally be opaque
/// (have no body specified).  You get one of these by using one of the
/// StructType::create() forms.
///
/// Independent of what kind of struct you have, the body of a struct type are
/// laid out in memory consequtively with the elements directly one after the
/// other (if the struct is packed) or (if not packed) with padding between the
/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
  StructType(const StructType &) LLVM_DELETED_FUNCTION;
  const StructType &operator=(const StructType &) LLVM_DELETED_FUNCTION;
  StructType(LLVMContext &C)
    : CompositeType(C, StructTyID), SymbolTableEntry(0) {}
  enum {
    // This is the contents of the SubClassData field.
    SCDB_HasBody = 1,
    SCDB_Packed = 2,
    SCDB_IsLiteral = 4,
    SCDB_IsSized = 8
  };

  /// SymbolTableEntry - For a named struct that actually has a name, this is a
  /// pointer to the symbol table entry (maintained by LLVMContext) for the
  /// struct.  This is null if the type is an literal struct or if it is
  /// a identified type that has an empty name.
  /// 
  void *SymbolTableEntry;
public:
  ~StructType() {
    delete [] ContainedTys; // Delete the body.
  }

  /// StructType::create - This creates an identified struct.
  static StructType *create(LLVMContext &Context, StringRef Name);
  static StructType *create(LLVMContext &Context);
  
  static StructType *create(ArrayRef<Type*> Elements,
                            StringRef Name,
                            bool isPacked = false);
  static StructType *create(ArrayRef<Type*> Elements);
  static StructType *create(LLVMContext &Context,
                            ArrayRef<Type*> Elements,
                            StringRef Name,
                            bool isPacked = false);
  static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
  static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL;

  /// StructType::get - This static method is the primary way to create a
  /// literal StructType.
  static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
                         bool isPacked = false);

  /// StructType::get - Create an empty structure type.
  ///
  static StructType *get(LLVMContext &Context, bool isPacked = false);
  
  /// StructType::get - This static method is a convenience method for creating
  /// structure types by specifying the elements as arguments.  Note that this
  /// method always returns a non-packed struct, and requires at least one
  /// element type.
  static StructType *get(Type *elt1, ...) END_WITH_NULL;

  bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
  
  /// isLiteral - Return true if this type is uniqued by structural
  /// equivalence, false if it is a struct definition.
  bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
  
  /// isOpaque - Return true if this is a type with an identity that has no body
  /// specified yet.  These prints as 'opaque' in .ll files.
  bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }

  /// isSized - Return true if this is a sized type.
  bool isSized() const;
  
  /// hasName - Return true if this is a named struct that has a non-empty name.
  bool hasName() const { return SymbolTableEntry != 0; }
  
  /// getName - Return the name for this struct type if it has an identity.
  /// This may return an empty string for an unnamed struct type.  Do not call
  /// this on an literal type.
  StringRef getName() const;
  
  /// setName - Change the name of this type to the specified name, or to a name
  /// with a suffix if there is a collision.  Do not call this on an literal
  /// type.
  void setName(StringRef Name);

  /// setBody - Specify a body for an opaque identified type.
  void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
  void setBody(Type *elt1, ...) END_WITH_NULL;
  
  /// isValidElementType - Return true if the specified type is valid as a
  /// element type.
  static bool isValidElementType(Type *ElemTy);
  

  // Iterator access to the elements.
  typedef Type::subtype_iterator element_iterator;
  element_iterator element_begin() const { return ContainedTys; }
  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}

  /// isLayoutIdentical - Return true if this is layout identical to the
  /// specified struct.
  bool isLayoutIdentical(StructType *Other) const;  
  
  // Random access to the elements
  unsigned getNumElements() const { return NumContainedTys; }
  Type *getElementType(unsigned N) const {
    assert(N < NumContainedTys && "Element number out of range!");
    return ContainedTys[N];
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == StructTyID;
  }
};

/// SequentialType - This is the superclass of the array, pointer and vector
/// type classes.  All of these represent "arrays" in memory.  The array type
/// represents a specifically sized array, pointer types are unsized/unknown
/// size arrays, vector types represent specifically sized arrays that
/// allow for use of SIMD instructions.  SequentialType holds the common
/// features of all, which stem from the fact that all three lay their
/// components out in memory identically.
///
class SequentialType : public CompositeType {
  Type *ContainedType;               ///< Storage for the single contained type.
  SequentialType(const SequentialType &) LLVM_DELETED_FUNCTION;
  const SequentialType &operator=(const SequentialType &) LLVM_DELETED_FUNCTION;

protected:
  SequentialType(TypeID TID, Type *ElType)
    : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
    ContainedTys = &ContainedType;
    NumContainedTys = 1;
  }

public:
  Type *getElementType() const { return ContainedTys[0]; }

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID ||
           T->getTypeID() == PointerTyID ||
           T->getTypeID() == VectorTyID;
  }
};


/// ArrayType - Class to represent array types.
///
class ArrayType : public SequentialType {
  uint64_t NumElements;

  ArrayType(const ArrayType &) LLVM_DELETED_FUNCTION;
  const ArrayType &operator=(const ArrayType &) LLVM_DELETED_FUNCTION;
  ArrayType(Type *ElType, uint64_t NumEl);
public:
  /// ArrayType::get - This static method is the primary way to construct an
  /// ArrayType
  ///
  static ArrayType *get(Type *ElementType, uint64_t NumElements);

  /// isValidElementType - Return true if the specified type is valid as a
  /// element type.
  static bool isValidElementType(Type *ElemTy);

  uint64_t getNumElements() const { return NumElements; }

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == ArrayTyID;
  }
};

/// VectorType - Class to represent vector types.
///
class VectorType : public SequentialType {
  unsigned NumElements;

  VectorType(const VectorType &) LLVM_DELETED_FUNCTION;
  const VectorType &operator=(const VectorType &) LLVM_DELETED_FUNCTION;
  VectorType(Type *ElType, unsigned NumEl);
public:
  /// VectorType::get - This static method is the primary way to construct an
  /// VectorType.
  ///
  static VectorType *get(Type *ElementType, unsigned NumElements);

  /// VectorType::getInteger - This static method gets a VectorType with the
  /// same number of elements as the input type, and the element type is an
  /// integer type of the same width as the input element type.
  ///
  static VectorType *getInteger(VectorType *VTy) {
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    assert(EltBits && "Element size must be of a non-zero size");
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
    return VectorType::get(EltTy, VTy->getNumElements());
  }

  /// VectorType::getExtendedElementVectorType - This static method is like
  /// getInteger except that the element types are twice as wide as the
  /// elements in the input type.
  ///
  static VectorType *getExtendedElementVectorType(VectorType *VTy) {
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
    return VectorType::get(EltTy, VTy->getNumElements());
  }

  /// VectorType::getTruncatedElementVectorType - This static method is like
  /// getInteger except that the element types are half as wide as the
  /// elements in the input type.
  ///
  static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    assert((EltBits & 1) == 0 &&
           "Cannot truncate vector element with odd bit-width");
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
    return VectorType::get(EltTy, VTy->getNumElements());
  }

  /// isValidElementType - Return true if the specified type is valid as a
  /// element type.
  static bool isValidElementType(Type *ElemTy);

  /// @brief Return the number of elements in the Vector type.
  unsigned getNumElements() const { return NumElements; }

  /// @brief Return the number of bits in the Vector type.
  /// Returns zero when the vector is a vector of pointers.
  unsigned getBitWidth() const {
    return NumElements * getElementType()->getPrimitiveSizeInBits();
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == VectorTyID;
  }
};


/// PointerType - Class to represent pointers.
///
class PointerType : public SequentialType {
  PointerType(const PointerType &) LLVM_DELETED_FUNCTION;
  const PointerType &operator=(const PointerType &) LLVM_DELETED_FUNCTION;
  explicit PointerType(Type *ElType, unsigned AddrSpace);
public:
  /// PointerType::get - This constructs a pointer to an object of the specified
  /// type in a numbered address space.
  static PointerType *get(Type *ElementType, unsigned AddressSpace);

  /// PointerType::getUnqual - This constructs a pointer to an object of the
  /// specified type in the generic address space (address space zero).
  static PointerType *getUnqual(Type *ElementType) {
    return PointerType::get(ElementType, 0);
  }

  /// isValidElementType - Return true if the specified type is valid as a
  /// element type.
  static bool isValidElementType(Type *ElemTy);

  /// @brief Return the address space of the Pointer type.
  inline unsigned getAddressSpace() const { return getSubclassData(); }

  // Implement support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Type *T) {
    return T->getTypeID() == PointerTyID;
  }
};

} // End llvm namespace

#endif