aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/ExecutionEngine/ExecutionEngine.h
blob: ff584733eec654fa8003f208741b2dd6389f43c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the abstract interface that implements execution support
// for LLVM.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTION_ENGINE_H
#define LLVM_EXECUTION_ENGINE_H

#include <vector>
#include <map>
#include <cassert>
#include <string>
#include "llvm/System/Mutex.h"
#include "llvm/ADT/SmallVector.h"

namespace llvm {

struct GenericValue;
class Constant;
class Function;
class GlobalVariable;
class GlobalValue;
class Module;
class ModuleProvider;
class TargetData;
class Type;
class MutexGuard;
class JITMemoryManager;

class ExecutionEngineState {
private:
  /// GlobalAddressMap - A mapping between LLVM global values and their
  /// actualized version...
  std::map<const GlobalValue*, void *> GlobalAddressMap;

  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
  /// used to convert raw addresses into the LLVM global value that is emitted
  /// at the address.  This map is not computed unless getGlobalValueAtAddress
  /// is called at some point.
  std::map<void *, const GlobalValue*> GlobalAddressReverseMap;

public:
  std::map<const GlobalValue*, void *> &
  getGlobalAddressMap(const MutexGuard &) {
    return GlobalAddressMap;
  }

  std::map<void*, const GlobalValue*> & 
  getGlobalAddressReverseMap(const MutexGuard &) {
    return GlobalAddressReverseMap;
  }
};


class ExecutionEngine {
  const TargetData *TD;
  ExecutionEngineState state;
  bool LazyCompilationDisabled;

protected:
  /// Modules - This is a list of ModuleProvider's that we are JIT'ing from.  We
  /// use a smallvector to optimize for the case where there is only one module.
  SmallVector<ModuleProvider*, 1> Modules;
  
  void setTargetData(const TargetData *td) {
    TD = td;
  }

  // To avoid having libexecutionengine depend on the JIT and interpreter
  // libraries, the JIT and Interpreter set these functions to ctor pointers
  // at startup time if they are linked in.
  typedef ExecutionEngine *(*EECtorFn)(ModuleProvider*, std::string*);
  static EECtorFn JITCtor, InterpCtor;

  /// LazyFunctionCreator - If an unknown function is needed, this function
  /// pointer is invoked to create it. If this returns null, the JIT will abort.
  void* (*LazyFunctionCreator)(const std::string &);
  
  /// ExceptionTableRegister - If Exception Handling is set, the JIT will 
  /// register dwarf tables with this function
  typedef void (*EERegisterFn)(void*);
  static EERegisterFn ExceptionTableRegister;

public:
  /// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and
  /// JITEmitter classes.  It must be held while changing the internal state of
  /// any of those classes.
  sys::Mutex lock; // Used to make this class and subclasses thread-safe

  //===--------------------------------------------------------------------===//
  //  ExecutionEngine Startup
  //===--------------------------------------------------------------------===//

  virtual ~ExecutionEngine();

  /// create - This is the factory method for creating an execution engine which
  /// is appropriate for the current machine.  This takes ownership of the
  /// module provider.
  static ExecutionEngine *create(ModuleProvider *MP,
                                 bool ForceInterpreter = false,
                                 std::string *ErrorStr = 0);
  
  /// create - This is the factory method for creating an execution engine which
  /// is appropriate for the current machine.  This takes ownership of the
  /// module.
  static ExecutionEngine *create(Module *M);

  /// createJIT - This is the factory method for creating a JIT for the current
  /// machine, it does not fall back to the interpreter.  This takes ownership
  /// of the ModuleProvider and JITMemoryManager if successful.
  static ExecutionEngine *createJIT(ModuleProvider *MP,
                                    std::string *ErrorStr = 0,
                                    JITMemoryManager *JMM = 0);
  
  
  
  /// addModuleProvider - Add a ModuleProvider to the list of modules that we
  /// can JIT from.  Note that this takes ownership of the ModuleProvider: when
  /// the ExecutionEngine is destroyed, it destroys the MP as well.
  void addModuleProvider(ModuleProvider *P) {
    Modules.push_back(P);
  }
  
  //===----------------------------------------------------------------------===//

  const TargetData *getTargetData() const { return TD; }


  /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
  /// Release module from ModuleProvider.
  Module* removeModuleProvider(ModuleProvider *P, std::string *ErrInfo = 0);

  /// FindFunctionNamed - Search all of the active modules to find the one that
  /// defines FnName.  This is very slow operation and shouldn't be used for
  /// general code.
  Function *FindFunctionNamed(const char *FnName);
  
  /// runFunction - Execute the specified function with the specified arguments,
  /// and return the result.
  ///
  virtual GenericValue runFunction(Function *F,
                                const std::vector<GenericValue> &ArgValues) = 0;

  /// runStaticConstructorsDestructors - This method is used to execute all of
  /// the static constructors or destructors for a module, depending on the
  /// value of isDtors.
  void runStaticConstructorsDestructors(bool isDtors);
  
  
  /// runFunctionAsMain - This is a helper function which wraps runFunction to
  /// handle the common task of starting up main with the specified argc, argv,
  /// and envp parameters.
  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
                        const char * const * envp);


  /// addGlobalMapping - Tell the execution engine that the specified global is
  /// at the specified location.  This is used internally as functions are JIT'd
  /// and as global variables are laid out in memory.  It can and should also be
  /// used by clients of the EE that want to have an LLVM global overlay
  /// existing data in memory.
  void addGlobalMapping(const GlobalValue *GV, void *Addr);
  
  /// clearAllGlobalMappings - Clear all global mappings and start over again
  /// use in dynamic compilation scenarios when you want to move globals
  void clearAllGlobalMappings();
  
  /// updateGlobalMapping - Replace an existing mapping for GV with a new
  /// address.  This updates both maps as required.  If "Addr" is null, the
  /// entry for the global is removed from the mappings.  This returns the old
  /// value of the pointer, or null if it was not in the map.
  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
  
  /// getPointerToGlobalIfAvailable - This returns the address of the specified
  /// global value if it is has already been codegen'd, otherwise it returns
  /// null.
  ///
  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);

  /// getPointerToGlobal - This returns the address of the specified global
  /// value.  This may involve code generation if it's a function.
  ///
  void *getPointerToGlobal(const GlobalValue *GV);

  /// getPointerToFunction - The different EE's represent function bodies in
  /// different ways.  They should each implement this to say what a function
  /// pointer should look like.
  ///
  virtual void *getPointerToFunction(Function *F) = 0;

  /// getPointerToFunctionOrStub - If the specified function has been
  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
  /// a stub to implement lazy compilation if available.
  ///
  virtual void *getPointerToFunctionOrStub(Function *F) {
    // Default implementation, just codegen the function.
    return getPointerToFunction(F);
  }

  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
  /// at the specified address.
  ///
  const GlobalValue *getGlobalValueAtAddress(void *Addr);


  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
                          const Type *Ty);
  void InitializeMemory(const Constant *Init, void *Addr);

  /// recompileAndRelinkFunction - This method is used to force a function
  /// which has already been compiled to be compiled again, possibly
  /// after it has been modified. Then the entry to the old copy is overwritten
  /// with a branch to the new copy. If there was no old copy, this acts
  /// just like VM::getPointerToFunction().
  ///
  virtual void *recompileAndRelinkFunction(Function *F) = 0;

  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
  /// corresponding to the machine code emitted to execute this function, useful
  /// for garbage-collecting generated code.
  ///
  virtual void freeMachineCodeForFunction(Function *F) = 0;

  /// getOrEmitGlobalVariable - Return the address of the specified global
  /// variable, possibly emitting it to memory if needed.  This is used by the
  /// Emitter.
  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    return getPointerToGlobal((GlobalValue*)GV);
  }
  
  /// DisableLazyCompilation - If called, the JIT will abort if lazy compilation
  // is ever attempted.
  void DisableLazyCompilation() {
    LazyCompilationDisabled = true;
  }
  bool isLazyCompilationDisabled() const {
    return LazyCompilationDisabled;
  }
  
  
  /// InstallLazyFunctionCreator - If an unknown function is needed, the
  /// specified function pointer is invoked to create it.  If it returns null,
  /// the JIT will abort.
  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
    LazyFunctionCreator = P;
  }
  
  /// InstallExceptionTableRegister - The JIT will use the given function
  /// to register the exception tables it generates.
  static void InstallExceptionTableRegister(void (*F)(void*)) {
    ExceptionTableRegister = F;
  }
  
  /// RegisterTable - Registers the given pointer as an exception table. It uses
  /// the ExceptionTableRegister function.
  static void RegisterTable(void* res) {
    if (ExceptionTableRegister)
      ExceptionTableRegister(res);
  }

protected:
  explicit ExecutionEngine(ModuleProvider *P);

  void emitGlobals();

  // EmitGlobalVariable - This method emits the specified global variable to the
  // address specified in GlobalAddresses, or allocates new memory if it's not
  // already in the map.
  void EmitGlobalVariable(const GlobalVariable *GV);

  GenericValue getConstantValue(const Constant *C);
  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, 
                           const Type *Ty);
};

} // End llvm namespace

#endif