1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
//===- LazyEmittingLayer.h - Lazily emit IR to lower JIT layers -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains the definition for a lazy-emitting layer for the JIT.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_LAZYEMITTINGLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_LAZYEMITTINGLAYER_H
#include "JITSymbol.h"
#include "LookasideRTDyldMM.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/ADT/StringMap.h"
#include <list>
namespace llvm {
namespace orc {
/// @brief Lazy-emitting IR layer.
///
/// This layer accepts sets of LLVM IR Modules (via addModuleSet), but does
/// not immediately emit them the layer below. Instead, emissing to the base
/// layer is deferred until the first time the client requests the address
/// (via JITSymbol::getAddress) for a symbol contained in this layer.
template <typename BaseLayerT> class LazyEmittingLayer {
public:
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerHandleT;
private:
class EmissionDeferredSet {
public:
EmissionDeferredSet() : EmitState(NotEmitted) {}
virtual ~EmissionDeferredSet() {}
JITSymbol find(StringRef Name, bool ExportedSymbolsOnly, BaseLayerT &B) {
switch (EmitState) {
case NotEmitted:
if (provides(Name, ExportedSymbolsOnly)) {
// Create a std::string version of Name to capture here - the argument
// (a StringRef) may go away before the lambda is executed.
// FIXME: Use capture-init when we move to C++14.
std::string PName = Name;
return JITSymbol(
[this, ExportedSymbolsOnly, PName, &B]() -> TargetAddress {
if (this->EmitState == Emitting)
return 0;
else if (this->EmitState == NotEmitted) {
this->EmitState = Emitting;
Handle = this->emitToBaseLayer(B);
this->EmitState = Emitted;
}
return B.findSymbolIn(Handle, PName, ExportedSymbolsOnly)
.getAddress();
});
} else
return nullptr;
case Emitting:
// Calling "emit" can trigger external symbol lookup (e.g. to check for
// pre-existing definitions of common-symbol), but it will never find in
// this module that it would not have found already, so return null from
// here.
return nullptr;
case Emitted:
return B.findSymbolIn(Handle, Name, ExportedSymbolsOnly);
}
llvm_unreachable("Invalid emit-state.");
}
void removeModulesFromBaseLayer(BaseLayerT &BaseLayer) {
if (EmitState != NotEmitted)
BaseLayer.removeModuleSet(Handle);
}
void emitAndFinalize(BaseLayerT &BaseLayer) {
assert(EmitState != Emitting &&
"Cannot emitAndFinalize while already emitting");
if (EmitState == NotEmitted) {
EmitState = Emitting;
Handle = emitToBaseLayer(BaseLayer);
EmitState = Emitted;
}
BaseLayer.emitAndFinalize(Handle);
}
template <typename ModuleSetT>
static std::unique_ptr<EmissionDeferredSet>
create(BaseLayerT &B, ModuleSetT Ms,
std::unique_ptr<RTDyldMemoryManager> MM);
protected:
virtual bool provides(StringRef Name, bool ExportedSymbolsOnly) const = 0;
virtual BaseLayerHandleT emitToBaseLayer(BaseLayerT &BaseLayer) = 0;
private:
enum { NotEmitted, Emitting, Emitted } EmitState;
BaseLayerHandleT Handle;
};
template <typename ModuleSetT>
class EmissionDeferredSetImpl : public EmissionDeferredSet {
public:
EmissionDeferredSetImpl(ModuleSetT Ms,
std::unique_ptr<RTDyldMemoryManager> MM)
: Ms(std::move(Ms)), MM(std::move(MM)) {}
protected:
BaseLayerHandleT emitToBaseLayer(BaseLayerT &BaseLayer) override {
// We don't need the mangled names set any more: Once we've emitted this
// to the base layer we'll just look for symbols there.
MangledNames.reset();
return BaseLayer.addModuleSet(std::move(Ms), std::move(MM));
}
bool provides(StringRef Name, bool ExportedSymbolsOnly) const override {
// FIXME: We could clean all this up if we had a way to reliably demangle
// names: We could just demangle name and search, rather than
// mangling everything else.
// If we have already built the mangled name set then just search it.
if (MangledNames) {
auto VI = MangledNames->find(Name);
if (VI == MangledNames->end())
return false;
return !ExportedSymbolsOnly || VI->second;
}
// If we haven't built the mangled name set yet, try to build it. As an
// optimization this will leave MangledNames set to nullptr if we find
// Name in the process of building the set.
buildMangledNames(Name, ExportedSymbolsOnly);
if (!MangledNames)
return true;
return false;
}
private:
// If the mangled name of the given GlobalValue matches the given search
// name (and its visibility conforms to the ExportedSymbolsOnly flag) then
// just return 'true'. Otherwise, add the mangled name to the Names map and
// return 'false'.
bool addGlobalValue(StringMap<bool> &Names, const GlobalValue &GV,
const Mangler &Mang, StringRef SearchName,
bool ExportedSymbolsOnly) const {
// Modules don't "provide" decls or common symbols.
if (GV.isDeclaration() || GV.hasCommonLinkage())
return false;
// Mangle the GV name.
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mang.getNameWithPrefix(MangledNameStream, &GV, false);
}
// Check whether this is the name we were searching for, and if it is then
// bail out early.
if (MangledName == SearchName)
if (!ExportedSymbolsOnly || GV.hasDefaultVisibility())
return true;
// Otherwise add this to the map for later.
Names[MangledName] = GV.hasDefaultVisibility();
return false;
}
// Build the MangledNames map. Bails out early (with MangledNames left set
// to nullptr) if the given SearchName is found while building the map.
void buildMangledNames(StringRef SearchName,
bool ExportedSymbolsOnly) const {
assert(!MangledNames && "Mangled names map already exists?");
auto Names = llvm::make_unique<StringMap<bool>>();
for (const auto &M : Ms) {
Mangler Mang(M->getDataLayout());
for (const auto &GV : M->globals())
if (addGlobalValue(*Names, GV, Mang, SearchName, ExportedSymbolsOnly))
return;
for (const auto &F : *M)
if (addGlobalValue(*Names, F, Mang, SearchName, ExportedSymbolsOnly))
return;
}
MangledNames = std::move(Names);
}
ModuleSetT Ms;
std::unique_ptr<RTDyldMemoryManager> MM;
mutable std::unique_ptr<StringMap<bool>> MangledNames;
};
typedef std::list<std::unique_ptr<EmissionDeferredSet>> ModuleSetListT;
BaseLayerT &BaseLayer;
ModuleSetListT ModuleSetList;
public:
/// @brief Handle to a set of loaded modules.
typedef typename ModuleSetListT::iterator ModuleSetHandleT;
/// @brief Construct a lazy emitting layer.
LazyEmittingLayer(BaseLayerT &BaseLayer) : BaseLayer(BaseLayer) {}
/// @brief Add the given set of modules to the lazy emitting layer.
template <typename ModuleSetT>
ModuleSetHandleT addModuleSet(ModuleSetT Ms,
std::unique_ptr<RTDyldMemoryManager> MM) {
return ModuleSetList.insert(
ModuleSetList.end(),
EmissionDeferredSet::create(BaseLayer, std::move(Ms), std::move(MM)));
}
/// @brief Remove the module set represented by the given handle.
///
/// This method will free the memory associated with the given module set,
/// both in this layer, and the base layer.
void removeModuleSet(ModuleSetHandleT H) {
(*H)->removeModulesFromBaseLayer(BaseLayer);
ModuleSetList.erase(H);
}
/// @brief Search for the given named symbol.
/// @param Name The name of the symbol to search for.
/// @param ExportedSymbolsOnly If true, search only for exported symbols.
/// @return A handle for the given named symbol, if it exists.
JITSymbol findSymbol(const std::string &Name, bool ExportedSymbolsOnly) {
// Look for the symbol among existing definitions.
if (auto Symbol = BaseLayer.findSymbol(Name, ExportedSymbolsOnly))
return Symbol;
// If not found then search the deferred sets. If any of these contain a
// definition of 'Name' then they will return a JITSymbol that will emit
// the corresponding module when the symbol address is requested.
for (auto &DeferredSet : ModuleSetList)
if (auto Symbol = DeferredSet->find(Name, ExportedSymbolsOnly, BaseLayer))
return Symbol;
// If no definition found anywhere return a null symbol.
return nullptr;
}
/// @brief Get the address of the given symbol in the context of the set of
/// compiled modules represented by the handle H.
JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name,
bool ExportedSymbolsOnly) {
return (*H)->find(Name, ExportedSymbolsOnly, BaseLayer);
}
/// @brief Immediately emit and finalize the moduleOB set represented by the
/// given handle.
/// @param H Handle for module set to emit/finalize.
void emitAndFinalize(ModuleSetHandleT H) {
(*H)->emitAndFinalize(BaseLayer);
}
};
template <typename BaseLayerT>
template <typename ModuleSetT>
std::unique_ptr<typename LazyEmittingLayer<BaseLayerT>::EmissionDeferredSet>
LazyEmittingLayer<BaseLayerT>::EmissionDeferredSet::create(
BaseLayerT &B, ModuleSetT Ms, std::unique_ptr<RTDyldMemoryManager> MM) {
return llvm::make_unique<EmissionDeferredSetImpl<ModuleSetT>>(std::move(Ms),
std::move(MM));
}
} // End namespace orc.
} // End namespace llvm.
#endif // LLVM_EXECUTIONENGINE_ORC_LAZYEMITTINGLAYER_H
|