aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/IR/Metadata.h
blob: 03e70fe2671fbdd53ca88f78e0ba9479a55f71f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for metadata subclasses.
/// They represent the different flavors of metadata that live in LLVM.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_METADATA_H
#define LLVM_IR_METADATA_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/MetadataTracking.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/ErrorHandling.h"
#include <type_traits>

namespace llvm {
class LLVMContext;
class Module;
template<typename ValueSubClass, typename ItemParentClass>
  class SymbolTableListTraits;

enum LLVMConstants : uint32_t {
  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
};

/// \brief Root of the metadata hierarchy.
///
/// This is a root class for typeless data in the IR.
class Metadata {
  friend class ReplaceableMetadataImpl;

  /// \brief RTTI.
  const unsigned char SubclassID;

protected:
  /// \brief Active type of storage.
  enum StorageType { Uniqued, Distinct, Temporary };

  /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
  unsigned Storage : 2;
  // TODO: expose remaining bits to subclasses.

  unsigned short SubclassData16;
  unsigned SubclassData32;

public:
  enum MetadataKind {
    MDTupleKind,
    MDLocationKind,
    GenericDebugNodeKind,
    MDSubrangeKind,
    MDEnumeratorKind,
    MDBasicTypeKind,
    MDDerivedTypeKind,
    MDCompositeTypeKind,
    MDSubroutineTypeKind,
    MDFileKind,
    MDCompileUnitKind,
    MDSubprogramKind,
    MDLexicalBlockKind,
    MDLexicalBlockFileKind,
    MDNamespaceKind,
    MDTemplateTypeParameterKind,
    MDTemplateValueParameterKind,
    MDGlobalVariableKind,
    MDLocalVariableKind,
    MDExpressionKind,
    MDObjCPropertyKind,
    MDImportedEntityKind,
    ConstantAsMetadataKind,
    LocalAsMetadataKind,
    MDStringKind
  };

protected:
  Metadata(unsigned ID, StorageType Storage)
      : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
  }
  ~Metadata() = default;

  /// \brief Default handling of a changed operand, which asserts.
  ///
  /// If subclasses pass themselves in as owners to a tracking node reference,
  /// they must provide an implementation of this method.
  void handleChangedOperand(void *, Metadata *) {
    llvm_unreachable("Unimplemented in Metadata subclass");
  }

public:
  unsigned getMetadataID() const { return SubclassID; }

  /// \brief User-friendly dump.
  ///
  /// If \c M is provided, metadata nodes will be numbered canonically;
  /// otherwise, pointer addresses are substituted.
  ///
  /// Note: this uses an explicit overload instead of default arguments so that
  /// the nullptr version is easy to call from a debugger.
  ///
  /// @{
  void dump() const;
  void dump(const Module *M) const;
  /// @}

  /// \brief Print.
  ///
  /// Prints definition of \c this.
  ///
  /// If \c M is provided, metadata nodes will be numbered canonically;
  /// otherwise, pointer addresses are substituted.
  void print(raw_ostream &OS, const Module *M = nullptr) const;

  /// \brief Print as operand.
  ///
  /// Prints reference of \c this.
  ///
  /// If \c M is provided, metadata nodes will be numbered canonically;
  /// otherwise, pointer addresses are substituted.
  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
};

#define HANDLE_METADATA(CLASS) class CLASS;
#include "llvm/IR/Metadata.def"

// Provide specializations of isa so that we don't need definitions of
// subclasses to see if the metadata is a subclass.
#define HANDLE_METADATA_LEAF(CLASS)                                            \
  template <> struct isa_impl<CLASS, Metadata> {                               \
    static inline bool doit(const Metadata &MD) {                              \
      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
    }                                                                          \
  };
#include "llvm/IR/Metadata.def"

inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
  MD.print(OS);
  return OS;
}

/// \brief Metadata wrapper in the Value hierarchy.
///
/// A member of the \a Value hierarchy to represent a reference to metadata.
/// This allows, e.g., instrinsics to have metadata as operands.
///
/// Notably, this is the only thing in either hierarchy that is allowed to
/// reference \a LocalAsMetadata.
class MetadataAsValue : public Value {
  friend class ReplaceableMetadataImpl;
  friend class LLVMContextImpl;

  Metadata *MD;

  MetadataAsValue(Type *Ty, Metadata *MD);
  ~MetadataAsValue() override;

  /// \brief Drop use of metadata (during teardown).
  void dropUse() { MD = nullptr; }

public:
  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
  Metadata *getMetadata() const { return MD; }

  static bool classof(const Value *V) {
    return V->getValueID() == MetadataAsValueVal;
  }

private:
  void handleChangedMetadata(Metadata *MD);
  void track();
  void untrack();
};

/// \brief Shared implementation of use-lists for replaceable metadata.
///
/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
/// and \a TempMDNode).
class ReplaceableMetadataImpl {
  friend class MetadataTracking;

public:
  typedef MetadataTracking::OwnerTy OwnerTy;

private:
  LLVMContext &Context;
  uint64_t NextIndex;
  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;

public:
  ReplaceableMetadataImpl(LLVMContext &Context)
      : Context(Context), NextIndex(0) {}
  ~ReplaceableMetadataImpl() {
    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
  }

  LLVMContext &getContext() const { return Context; }

  /// \brief Replace all uses of this with MD.
  ///
  /// Replace all uses of this with \c MD, which is allowed to be null.
  void replaceAllUsesWith(Metadata *MD);

  /// \brief Resolve all uses of this.
  ///
  /// Resolve all uses of this, turning off RAUW permanently.  If \c
  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
  /// is resolved.
  void resolveAllUses(bool ResolveUsers = true);

private:
  void addRef(void *Ref, OwnerTy Owner);
  void dropRef(void *Ref);
  void moveRef(void *Ref, void *New, const Metadata &MD);

  static ReplaceableMetadataImpl *get(Metadata &MD);
};

/// \brief Value wrapper in the Metadata hierarchy.
///
/// This is a custom value handle that allows other metadata to refer to
/// classes in the Value hierarchy.
///
/// Because of full uniquing support, each value is only wrapped by a single \a
/// ValueAsMetadata object, so the lookup maps are far more efficient than
/// those using ValueHandleBase.
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
  friend class ReplaceableMetadataImpl;
  friend class LLVMContextImpl;

  Value *V;

  /// \brief Drop users without RAUW (during teardown).
  void dropUsers() {
    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
  }

protected:
  ValueAsMetadata(unsigned ID, Value *V)
      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
    assert(V && "Expected valid value");
  }
  ~ValueAsMetadata() = default;

public:
  static ValueAsMetadata *get(Value *V);
  static ConstantAsMetadata *getConstant(Value *C) {
    return cast<ConstantAsMetadata>(get(C));
  }
  static LocalAsMetadata *getLocal(Value *Local) {
    return cast<LocalAsMetadata>(get(Local));
  }

  static ValueAsMetadata *getIfExists(Value *V);
  static ConstantAsMetadata *getConstantIfExists(Value *C) {
    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
  }
  static LocalAsMetadata *getLocalIfExists(Value *Local) {
    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
  }

  Value *getValue() const { return V; }
  Type *getType() const { return V->getType(); }
  LLVMContext &getContext() const { return V->getContext(); }

  static void handleDeletion(Value *V);
  static void handleRAUW(Value *From, Value *To);

protected:
  /// \brief Handle collisions after \a Value::replaceAllUsesWith().
  ///
  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
  /// \a Value gets RAUW'ed and the target already exists, this is used to
  /// merge the two metadata nodes.
  void replaceAllUsesWith(Metadata *MD) {
    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
  }

public:
  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == LocalAsMetadataKind ||
           MD->getMetadataID() == ConstantAsMetadataKind;
  }
};

class ConstantAsMetadata : public ValueAsMetadata {
  friend class ValueAsMetadata;

  ConstantAsMetadata(Constant *C)
      : ValueAsMetadata(ConstantAsMetadataKind, C) {}

public:
  static ConstantAsMetadata *get(Constant *C) {
    return ValueAsMetadata::getConstant(C);
  }
  static ConstantAsMetadata *getIfExists(Constant *C) {
    return ValueAsMetadata::getConstantIfExists(C);
  }

  Constant *getValue() const {
    return cast<Constant>(ValueAsMetadata::getValue());
  }

  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == ConstantAsMetadataKind;
  }
};

class LocalAsMetadata : public ValueAsMetadata {
  friend class ValueAsMetadata;

  LocalAsMetadata(Value *Local)
      : ValueAsMetadata(LocalAsMetadataKind, Local) {
    assert(!isa<Constant>(Local) && "Expected local value");
  }

public:
  static LocalAsMetadata *get(Value *Local) {
    return ValueAsMetadata::getLocal(Local);
  }
  static LocalAsMetadata *getIfExists(Value *Local) {
    return ValueAsMetadata::getLocalIfExists(Local);
  }

  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == LocalAsMetadataKind;
  }
};

/// \brief Transitional API for extracting constants from Metadata.
///
/// This namespace contains transitional functions for metadata that points to
/// \a Constants.
///
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
/// operands could refer to any \a Value.  There's was a lot of code like this:
///
/// \code
///     MDNode *N = ...;
///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
/// \endcode
///
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
/// requires subtle control flow changes.
///
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
/// so that metadata can refer to numbers without traversing a bridge to the \a
/// Value hierarchy.  In this final state, the code above would look like this:
///
/// \code
///     MDNode *N = ...;
///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
/// \endcode
///
/// The API in this namespace supports the transition.  \a MDInt doesn't exist
/// yet, and even once it does, changing each metadata schema to use it is its
/// own mini-project.  In the meantime this API prevents us from introducing
/// complex and bug-prone control flow that will disappear in the end.  In
/// particular, the above code looks like this:
///
/// \code
///     MDNode *N = ...;
///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
/// \endcode
///
/// The full set of provided functions includes:
///
///   mdconst::hasa                <=> isa
///   mdconst::extract             <=> cast
///   mdconst::extract_or_null     <=> cast_or_null
///   mdconst::dyn_extract         <=> dyn_cast
///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
///
/// The target of the cast must be a subclass of \a Constant.
namespace mdconst {

namespace detail {
template <class T> T &make();
template <class T, class Result> struct HasDereference {
  typedef char Yes[1];
  typedef char No[2];
  template <size_t N> struct SFINAE {};

  template <class U, class V>
  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
  template <class U, class V> static No &hasDereference(...);

  static const bool value =
      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
};
template <class V, class M> struct IsValidPointer {
  static const bool value = std::is_base_of<Constant, V>::value &&
                            HasDereference<M, const Metadata &>::value;
};
template <class V, class M> struct IsValidReference {
  static const bool value = std::is_base_of<Constant, V>::value &&
                            std::is_convertible<M, const Metadata &>::value;
};
} // end namespace detail

/// \brief Check whether Metadata has a Value.
///
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
/// type \c X.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y &&MD) {
  assert(MD && "Null pointer sent into hasa");
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    return isa<X>(V->getValue());
  return false;
}
template <class X, class Y>
inline
    typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
    hasa(Y &MD) {
  return hasa(&MD);
}

/// \brief Extract a Value from Metadata.
///
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y &&MD) {
  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
}
template <class X, class Y>
inline
    typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
    extract(Y &MD) {
  return extract(&MD);
}

/// \brief Extract a Value from Metadata, allowing null.
///
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, allowing \c MD to be null.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y &&MD) {
  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
    return cast<X>(V->getValue());
  return nullptr;
}

/// \brief Extract a Value from Metadata, if any.
///
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y &&MD) {
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    return dyn_cast<X>(V->getValue());
  return nullptr;
}

/// \brief Extract a Value from Metadata, if any, allowing null.
///
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y &&MD) {
  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
    return dyn_cast<X>(V->getValue());
  return nullptr;
}

} // end namespace mdconst

//===----------------------------------------------------------------------===//
/// \brief A single uniqued string.
///
/// These are used to efficiently contain a byte sequence for metadata.
/// MDString is always unnamed.
class MDString : public Metadata {
  friend class StringMapEntry<MDString>;

  MDString(const MDString &) = delete;
  MDString &operator=(MDString &&) = delete;
  MDString &operator=(const MDString &) = delete;

  StringMapEntry<MDString> *Entry;
  MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
  MDString(MDString &&) : Metadata(MDStringKind, Uniqued) {}

public:
  static MDString *get(LLVMContext &Context, StringRef Str);
  static MDString *get(LLVMContext &Context, const char *Str) {
    return get(Context, Str ? StringRef(Str) : StringRef());
  }

  StringRef getString() const;

  unsigned getLength() const { return (unsigned)getString().size(); }

  typedef StringRef::iterator iterator;

  /// \brief Pointer to the first byte of the string.
  iterator begin() const { return getString().begin(); }

  /// \brief Pointer to one byte past the end of the string.
  iterator end() const { return getString().end(); }

  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
  const unsigned char *bytes_end() const { return getString().bytes_end(); }

  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == MDStringKind;
  }
};

/// \brief A collection of metadata nodes that might be associated with a
/// memory access used by the alias-analysis infrastructure.
struct AAMDNodes {
  explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
                     MDNode *N = nullptr)
      : TBAA(T), Scope(S), NoAlias(N) {}

  bool operator==(const AAMDNodes &A) const {
    return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
  }

  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }

  explicit operator bool() const { return TBAA || Scope || NoAlias; }

  /// \brief The tag for type-based alias analysis.
  MDNode *TBAA;

  /// \brief The tag for alias scope specification (used with noalias).
  MDNode *Scope;

  /// \brief The tag specifying the noalias scope.
  MDNode *NoAlias;
};

// Specialize DenseMapInfo for AAMDNodes.
template<>
struct DenseMapInfo<AAMDNodes> {
  static inline AAMDNodes getEmptyKey() {
    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(), 0, 0);
  }
  static inline AAMDNodes getTombstoneKey() {
    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(), 0, 0);
  }
  static unsigned getHashValue(const AAMDNodes &Val) {
    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
  }
  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
    return LHS == RHS;
  }
};

/// \brief Tracking metadata reference owned by Metadata.
///
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
/// of \a Metadata, which has the option of registering itself for callbacks to
/// re-unique itself.
///
/// In particular, this is used by \a MDNode.
class MDOperand {
  MDOperand(MDOperand &&) = delete;
  MDOperand(const MDOperand &) = delete;
  MDOperand &operator=(MDOperand &&) = delete;
  MDOperand &operator=(const MDOperand &) = delete;

  Metadata *MD;

public:
  MDOperand() : MD(nullptr) {}
  ~MDOperand() { untrack(); }

  Metadata *get() const { return MD; }
  operator Metadata *() const { return get(); }
  Metadata *operator->() const { return get(); }
  Metadata &operator*() const { return *get(); }

  void reset() {
    untrack();
    MD = nullptr;
  }
  void reset(Metadata *MD, Metadata *Owner) {
    untrack();
    this->MD = MD;
    track(Owner);
  }

private:
  void track(Metadata *Owner) {
    if (MD) {
      if (Owner)
        MetadataTracking::track(this, *MD, *Owner);
      else
        MetadataTracking::track(MD);
    }
  }
  void untrack() {
    assert(static_cast<void *>(this) == &MD && "Expected same address");
    if (MD)
      MetadataTracking::untrack(MD);
  }
};

template <> struct simplify_type<MDOperand> {
  typedef Metadata *SimpleType;
  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
};

template <> struct simplify_type<const MDOperand> {
  typedef Metadata *SimpleType;
  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
};

/// \brief Pointer to the context, with optional RAUW support.
///
/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
class ContextAndReplaceableUses {
  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;

  ContextAndReplaceableUses() = delete;
  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
  ContextAndReplaceableUses &
  operator=(const ContextAndReplaceableUses &) = delete;

public:
  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
  ContextAndReplaceableUses(
      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
      : Ptr(ReplaceableUses.release()) {
    assert(getReplaceableUses() && "Expected non-null replaceable uses");
  }
  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }

  operator LLVMContext &() { return getContext(); }

  /// \brief Whether this contains RAUW support.
  bool hasReplaceableUses() const {
    return Ptr.is<ReplaceableMetadataImpl *>();
  }
  LLVMContext &getContext() const {
    if (hasReplaceableUses())
      return getReplaceableUses()->getContext();
    return *Ptr.get<LLVMContext *>();
  }
  ReplaceableMetadataImpl *getReplaceableUses() const {
    if (hasReplaceableUses())
      return Ptr.get<ReplaceableMetadataImpl *>();
    return nullptr;
  }

  /// \brief Assign RAUW support to this.
  ///
  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
  /// not be null).
  void
  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
    assert(ReplaceableUses && "Expected non-null replaceable uses");
    assert(&ReplaceableUses->getContext() == &getContext() &&
           "Expected same context");
    delete getReplaceableUses();
    Ptr = ReplaceableUses.release();
  }

  /// \brief Drop RAUW support.
  ///
  /// Cede ownership of RAUW support, returning it.
  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
    assert(hasReplaceableUses() && "Expected to own replaceable uses");
    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
        getReplaceableUses());
    Ptr = &ReplaceableUses->getContext();
    return ReplaceableUses;
  }
};

struct TempMDNodeDeleter {
  inline void operator()(MDNode *Node) const;
};

#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
#include "llvm/IR/Metadata.def"

/// \brief Metadata node.
///
/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
/// metadata nodes (with full support for RAUW) can be used to delay uniquing
/// until forward references are known.  The basic metadata node is an \a
/// MDTuple.
///
/// There is limited support for RAUW at construction time.  At construction
/// time, if any operand is a temporary node (or an unresolved uniqued node,
/// which indicates a transitive temporary operand), the node itself will be
/// unresolved.  As soon as all operands become resolved, it will drop RAUW
/// support permanently.
///
/// If an unresolved node is part of a cycle, \a resolveCycles() needs
/// to be called on some member of the cycle once all temporary nodes have been
/// replaced.
class MDNode : public Metadata {
  friend class ReplaceableMetadataImpl;
  friend class LLVMContextImpl;

  MDNode(const MDNode &) = delete;
  void operator=(const MDNode &) = delete;
  void *operator new(size_t) = delete;

  unsigned NumOperands;
  unsigned NumUnresolved;

protected:
  ContextAndReplaceableUses Context;

  void *operator new(size_t Size, unsigned NumOps);
  void operator delete(void *Mem);

  /// \brief Required by std, but never called.
  void operator delete(void *, unsigned) {
    llvm_unreachable("Constructor throws?");
  }

  /// \brief Required by std, but never called.
  void operator delete(void *, unsigned, bool) {
    llvm_unreachable("Constructor throws?");
  }

  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
  ~MDNode() = default;

  void dropAllReferences();

  MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
  MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }

  typedef iterator_range<MDOperand *> mutable_op_range;
  mutable_op_range mutable_operands() {
    return mutable_op_range(mutable_begin(), mutable_end());
  }

public:
  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
  static inline MDTuple *getIfExists(LLVMContext &Context,
                                     ArrayRef<Metadata *> MDs);
  static inline MDTuple *getDistinct(LLVMContext &Context,
                                     ArrayRef<Metadata *> MDs);
  static inline TempMDTuple getTemporary(LLVMContext &Context,
                                         ArrayRef<Metadata *> MDs);

  /// \brief Create a (temporary) clone of this.
  TempMDNode clone() const;

  /// \brief Deallocate a node created by getTemporary.
  ///
  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
  /// references will be reset.
  static void deleteTemporary(MDNode *N);

  LLVMContext &getContext() const { return Context.getContext(); }

  /// \brief Replace a specific operand.
  void replaceOperandWith(unsigned I, Metadata *New);

  /// \brief Check if node is fully resolved.
  ///
  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
  /// this always returns \c true.
  ///
  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
  /// support (because all operands are resolved).
  ///
  /// As forward declarations are resolved, their containers should get
  /// resolved automatically.  However, if this (or one of its operands) is
  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
  bool isResolved() const { return !Context.hasReplaceableUses(); }

  bool isUniqued() const { return Storage == Uniqued; }
  bool isDistinct() const { return Storage == Distinct; }
  bool isTemporary() const { return Storage == Temporary; }

  /// \brief RAUW a temporary.
  ///
  /// \pre \a isTemporary() must be \c true.
  void replaceAllUsesWith(Metadata *MD) {
    assert(isTemporary() && "Expected temporary node");
    assert(!isResolved() && "Expected RAUW support");
    Context.getReplaceableUses()->replaceAllUsesWith(MD);
  }

  /// \brief Resolve cycles.
  ///
  /// Once all forward declarations have been resolved, force cycles to be
  /// resolved.
  ///
  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
  void resolveCycles();

  /// \brief Replace a temporary node with a permanent one.
  ///
  /// Try to create a uniqued version of \c N -- in place, if possible -- and
  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
  template <class T>
  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
    return cast<T>(N.release()->replaceWithPermanentImpl());
  }

  /// \brief Replace a temporary node with a uniqued one.
  ///
  /// Create a uniqued version of \c N -- in place, if possible -- and return
  /// it.  Takes ownership of the temporary node.
  ///
  /// \pre N does not self-reference.
  template <class T>
  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
    return cast<T>(N.release()->replaceWithUniquedImpl());
  }

  /// \brief Replace a temporary node with a distinct one.
  ///
  /// Create a distinct version of \c N -- in place, if possible -- and return
  /// it.  Takes ownership of the temporary node.
  template <class T>
  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
    return cast<T>(N.release()->replaceWithDistinctImpl());
  }

private:
  MDNode *replaceWithPermanentImpl();
  MDNode *replaceWithUniquedImpl();
  MDNode *replaceWithDistinctImpl();

protected:
  /// \brief Set an operand.
  ///
  /// Sets the operand directly, without worrying about uniquing.
  void setOperand(unsigned I, Metadata *New);

  void storeDistinctInContext();
  template <class T, class StoreT>
  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);

private:
  void handleChangedOperand(void *Ref, Metadata *New);

  void resolve();
  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
  void decrementUnresolvedOperandCount();
  unsigned countUnresolvedOperands();

  /// \brief Mutate this to be "uniqued".
  ///
  /// Mutate this so that \a isUniqued().
  /// \pre \a isTemporary().
  /// \pre already added to uniquing set.
  void makeUniqued();

  /// \brief Mutate this to be "distinct".
  ///
  /// Mutate this so that \a isDistinct().
  /// \pre \a isTemporary().
  void makeDistinct();

  void deleteAsSubclass();
  MDNode *uniquify();
  void eraseFromStore();

  template <class NodeTy> struct HasCachedHash;
  template <class NodeTy>
  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
    N->recalculateHash();
  }
  template <class NodeTy>
  static void dispatchRecalculateHash(NodeTy *N, std::false_type) {}
  template <class NodeTy>
  static void dispatchResetHash(NodeTy *N, std::true_type) {
    N->setHash(0);
  }
  template <class NodeTy>
  static void dispatchResetHash(NodeTy *N, std::false_type) {}

public:
  typedef const MDOperand *op_iterator;
  typedef iterator_range<op_iterator> op_range;

  op_iterator op_begin() const {
    return const_cast<MDNode *>(this)->mutable_begin();
  }
  op_iterator op_end() const {
    return const_cast<MDNode *>(this)->mutable_end();
  }
  op_range operands() const { return op_range(op_begin(), op_end()); }

  const MDOperand &getOperand(unsigned I) const {
    assert(I < NumOperands && "Out of range");
    return op_begin()[I];
  }

  /// \brief Return number of MDNode operands.
  unsigned getNumOperands() const { return NumOperands; }

  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Metadata *MD) {
    switch (MD->getMetadataID()) {
    default:
      return false;
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind:                                                            \
    return true;
#include "llvm/IR/Metadata.def"
    }
  }

  /// \brief Check whether MDNode is a vtable access.
  bool isTBAAVtableAccess() const;

  /// \brief Methods for metadata merging.
  static MDNode *concatenate(MDNode *A, MDNode *B);
  static MDNode *intersect(MDNode *A, MDNode *B);
  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
};

/// \brief Tuple of metadata.
///
/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
/// default based on their operands.
class MDTuple : public MDNode {
  friend class LLVMContextImpl;
  friend class MDNode;

  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
          ArrayRef<Metadata *> Vals)
      : MDNode(C, MDTupleKind, Storage, Vals) {
    setHash(Hash);
  }
  ~MDTuple() { dropAllReferences(); }

  void setHash(unsigned Hash) { SubclassData32 = Hash; }
  void recalculateHash();

  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
                          StorageType Storage, bool ShouldCreate = true);

  TempMDTuple cloneImpl() const {
    return getTemporary(getContext(),
                        SmallVector<Metadata *, 4>(op_begin(), op_end()));
  }

public:
  /// \brief Get the hash, if any.
  unsigned getHash() const { return SubclassData32; }

  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    return getImpl(Context, MDs, Uniqued);
  }
  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
  }

  /// \brief Return a distinct node.
  ///
  /// Return a distinct node -- i.e., a node that is not uniqued.
  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    return getImpl(Context, MDs, Distinct);
  }

  /// \brief Return a temporary node.
  ///
  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
  /// not uniqued, may be RAUW'd, and must be manually deleted with
  /// deleteTemporary.
  static TempMDTuple getTemporary(LLVMContext &Context,
                                  ArrayRef<Metadata *> MDs) {
    return TempMDTuple(getImpl(Context, MDs, Temporary));
  }

  /// \brief Return a (temporary) clone of this.
  TempMDTuple clone() const { return cloneImpl(); }

  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == MDTupleKind;
  }
};

MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
  return MDTuple::get(Context, MDs);
}
MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
  return MDTuple::getIfExists(Context, MDs);
}
MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
  return MDTuple::getDistinct(Context, MDs);
}
TempMDTuple MDNode::getTemporary(LLVMContext &Context,
                                 ArrayRef<Metadata *> MDs) {
  return MDTuple::getTemporary(Context, MDs);
}

void TempMDNodeDeleter::operator()(MDNode *Node) const {
  MDNode::deleteTemporary(Node);
}

/// \brief Typed iterator through MDNode operands.
///
/// An iterator that transforms an \a MDNode::iterator into an iterator over a
/// particular Metadata subclass.
template <class T>
class TypedMDOperandIterator
    : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
  MDNode::op_iterator I = nullptr;

public:
  TypedMDOperandIterator() = default;
  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
  T *operator*() const { return cast_or_null<T>(*I); }
  TypedMDOperandIterator &operator++() {
    ++I;
    return *this;
  }
  TypedMDOperandIterator operator++(int) {
    TypedMDOperandIterator Temp(*this);
    ++I;
    return Temp;
  }
  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
};

/// \brief Typed, array-like tuple of metadata.
///
/// This is a wrapper for \a MDTuple that makes it act like an array holding a
/// particular type of metadata.
template <class T> class MDTupleTypedArrayWrapper {
  const MDTuple *N = nullptr;

public:
  MDTupleTypedArrayWrapper() = default;
  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}

  template <class U>
  MDTupleTypedArrayWrapper(
      const MDTupleTypedArrayWrapper<U> &Other,
      typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
          nullptr)
      : N(Other.get()) {}

  template <class U>
  explicit MDTupleTypedArrayWrapper(
      const MDTupleTypedArrayWrapper<U> &Other,
      typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
          nullptr)
      : N(Other.get()) {}

  explicit operator bool() const { return get(); }
  explicit operator MDTuple *() const { return get(); }

  MDTuple *get() const { return const_cast<MDTuple *>(N); }
  MDTuple *operator->() const { return get(); }
  MDTuple &operator*() const { return *get(); }

  // FIXME: Fix callers and remove condition on N.
  unsigned size() const { return N ? N->getNumOperands() : 0u; }
  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }

  // FIXME: Fix callers and remove condition on N.
  typedef TypedMDOperandIterator<T> iterator;
  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
};

#define HANDLE_METADATA(CLASS)                                                 \
  typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
#include "llvm/IR/Metadata.def"

//===----------------------------------------------------------------------===//
/// \brief A tuple of MDNodes.
///
/// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
/// to modules, have names, and contain lists of MDNodes.
///
/// TODO: Inherit from Metadata.
class NamedMDNode : public ilist_node<NamedMDNode> {
  friend class SymbolTableListTraits<NamedMDNode, Module>;
  friend struct ilist_traits<NamedMDNode>;
  friend class LLVMContextImpl;
  friend class Module;
  NamedMDNode(const NamedMDNode &) = delete;

  std::string Name;
  Module *Parent;
  void *Operands; // SmallVector<TrackingMDRef, 4>

  void setParent(Module *M) { Parent = M; }

  explicit NamedMDNode(const Twine &N);

  template<class T1, class T2>
  class op_iterator_impl :
      public std::iterator<std::bidirectional_iterator_tag, T2> {
    const NamedMDNode *Node;
    unsigned Idx;
    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }

    friend class NamedMDNode;

  public:
    op_iterator_impl() : Node(nullptr), Idx(0) { }

    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
    op_iterator_impl &operator++() {
      ++Idx;
      return *this;
    }
    op_iterator_impl operator++(int) {
      op_iterator_impl tmp(*this);
      operator++();
      return tmp;
    }
    op_iterator_impl &operator--() {
      --Idx;
      return *this;
    }
    op_iterator_impl operator--(int) {
      op_iterator_impl tmp(*this);
      operator--();
      return tmp;
    }

    T1 operator*() const { return Node->getOperand(Idx); }
  };

public:
  /// \brief Drop all references and remove the node from parent module.
  void eraseFromParent();

  /// \brief Remove all uses and clear node vector.
  void dropAllReferences();

  ~NamedMDNode();

  /// \brief Get the module that holds this named metadata collection.
  inline Module *getParent() { return Parent; }
  inline const Module *getParent() const { return Parent; }

  MDNode *getOperand(unsigned i) const;
  unsigned getNumOperands() const;
  void addOperand(MDNode *M);
  void setOperand(unsigned I, MDNode *New);
  StringRef getName() const;
  void print(raw_ostream &ROS) const;
  void dump() const;

  // ---------------------------------------------------------------------------
  // Operand Iterator interface...
  //
  typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
  op_iterator op_begin() { return op_iterator(this, 0); }
  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }

  typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }

  inline iterator_range<op_iterator>  operands() {
    return iterator_range<op_iterator>(op_begin(), op_end());
  }
  inline iterator_range<const_op_iterator> operands() const {
    return iterator_range<const_op_iterator>(op_begin(), op_end());
  }
};

} // end llvm namespace

#endif