aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/InlineAsm.h
blob: 4ca012e974646110481b48726158b49484654175 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class represents the inline asm strings, which are Value*'s that are
// used as the callee operand of call instructions.  InlineAsm's are uniqued
// like constants, and created via InlineAsm::get(...).
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INLINEASM_H
#define LLVM_INLINEASM_H

#include "llvm/Value.h"
#include <vector>

namespace llvm {

class PointerType;
class FunctionType;
class Module;
struct InlineAsmKeyType;
template<class ValType, class TypeClass, class ConstantClass, bool HasLargeKey>
class ConstantUniqueMap;
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator;

class InlineAsm : public Value {
  friend struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType>;
  friend class ConstantUniqueMap<InlineAsmKeyType, PointerType, InlineAsm,
                                 false>;

  InlineAsm(const InlineAsm &);             // do not implement
  void operator=(const InlineAsm&);         // do not implement

  std::string AsmString, Constraints;
  bool HasSideEffects;
  bool IsAlignStack;
  
  InlineAsm(const PointerType *Ty, const std::string &AsmString,
            const std::string &Constraints, bool hasSideEffects,
            bool isAlignStack);
  virtual ~InlineAsm();

  /// When the ConstantUniqueMap merges two types and makes two InlineAsms
  /// identical, it destroys one of them with this method.
  void destroyConstant();
public:

  /// InlineAsm::get - Return the specified uniqued inline asm string.
  ///
  static InlineAsm *get(const FunctionType *Ty, StringRef AsmString,
                        StringRef Constraints, bool hasSideEffects,
                        bool isAlignStack = false);
  
  bool hasSideEffects() const { return HasSideEffects; }
  bool isAlignStack() const { return IsAlignStack; }
  
  /// getType - InlineAsm's are always pointers.
  ///
  const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Value::getType());
  }
  
  /// getFunctionType - InlineAsm's are always pointers to functions.
  ///
  const FunctionType *getFunctionType() const;
  
  const std::string &getAsmString() const { return AsmString; }
  const std::string &getConstraintString() const { return Constraints; }

  /// Verify - This static method can be used by the parser to check to see if
  /// the specified constraint string is legal for the type.  This returns true
  /// if legal, false if not.
  ///
  static bool Verify(const FunctionType *Ty, StringRef Constraints);

  // Constraint String Parsing 
  enum ConstraintPrefix {
    isInput,            // 'x'
    isOutput,           // '=x'
    isClobber           // '~x'
  };
  
  typedef std::vector<std::string> ConstraintCodeVector;
  
  struct SubConstraintInfo {
    /// MatchingInput - If this is not -1, this is an output constraint where an
    /// input constraint is required to match it (e.g. "0").  The value is the
    /// constraint number that matches this one (for example, if this is
    /// constraint #0 and constraint #4 has the value "0", this will be 4).
    signed char MatchingInput;
    /// Code - The constraint code, either the register name (in braces) or the
    /// constraint letter/number.
    ConstraintCodeVector Codes;
    /// Default constructor.
    SubConstraintInfo() : MatchingInput(-1) {}
  };

  typedef std::vector<SubConstraintInfo> SubConstraintInfoVector;
  struct ConstraintInfo;
  typedef std::vector<ConstraintInfo> ConstraintInfoVector;
  
  struct ConstraintInfo {
    /// Type - The basic type of the constraint: input/output/clobber
    ///
    ConstraintPrefix Type;
    
    /// isEarlyClobber - "&": output operand writes result before inputs are all
    /// read.  This is only ever set for an output operand.
    bool isEarlyClobber; 
    
    /// MatchingInput - If this is not -1, this is an output constraint where an
    /// input constraint is required to match it (e.g. "0").  The value is the
    /// constraint number that matches this one (for example, if this is
    /// constraint #0 and constraint #4 has the value "0", this will be 4).
    signed char MatchingInput;
    
    /// hasMatchingInput - Return true if this is an output constraint that has
    /// a matching input constraint.
    bool hasMatchingInput() const { return MatchingInput != -1; }
    
    /// isCommutative - This is set to true for a constraint that is commutative
    /// with the next operand.
    bool isCommutative;
    
    /// isIndirect - True if this operand is an indirect operand.  This means
    /// that the address of the source or destination is present in the call
    /// instruction, instead of it being returned or passed in explicitly.  This
    /// is represented with a '*' in the asm string.
    bool isIndirect;
    
    /// Code - The constraint code, either the register name (in braces) or the
    /// constraint letter/number.
    ConstraintCodeVector Codes;
    
    /// isMultipleAlternative - '|': has multiple-alternative constraints.
    bool isMultipleAlternative;
    
    /// multipleAlternatives - If there are multiple alternative constraints,
    /// this array will contain them.  Otherwise it will be empty.
    SubConstraintInfoVector multipleAlternatives;
    
    /// The currently selected alternative constraint index.
    unsigned currentAlternativeIndex;
    
    ///Default constructor.
    ConstraintInfo();
    
    /// Copy constructor.
    ConstraintInfo(const ConstraintInfo &other);
    
    /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
    /// fields in this structure.  If the constraint string is not understood,
    /// return true, otherwise return false.
    bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
               
    /// selectAlternative - Point this constraint to the alternative constraint
    /// indicated by the index.
    void selectAlternative(unsigned index);
  };
  
  /// ParseConstraints - Split up the constraint string into the specific
  /// constraints and their prefixes.  If this returns an empty vector, and if
  /// the constraint string itself isn't empty, there was an error parsing.
  static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
  
  /// ParseConstraints - Parse the constraints of this inlineasm object, 
  /// returning them the same way that ParseConstraints(str) does.
  ConstraintInfoVector ParseConstraints() const {
    return ParseConstraints(Constraints);
  }
  
  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InlineAsm *) { return true; }
  static inline bool classof(const Value *V) {
    return V->getValueID() == Value::InlineAsmVal;
  }

  
  // These are helper methods for dealing with flags in the INLINEASM SDNode
  // in the backend.
  
  enum {
    Op_InputChain = 0,
    Op_AsmString = 1,
    Op_MDNode = 2,
    Op_IsAlignStack = 3,
    Op_FirstOperand = 4,
    
    Kind_RegUse = 1,
    Kind_RegDef = 2,
    Kind_Imm = 3,
    Kind_Mem = 4,
    Kind_RegDefEarlyClobber = 6,
    
    Flag_MatchingOperand = 0x80000000
  };
  
  static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
    assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
    return Kind | (NumOps << 3);
  }
  
  /// getFlagWordForMatchingOp - Augment an existing flag word returned by
  /// getFlagWord with information indicating that this input operand is tied 
  /// to a previous output operand.
  static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
                                           unsigned MatchedOperandNo) {
    return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
  }

  static unsigned getKind(unsigned Flags) {
    return Flags & 7;
  }

  static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
  static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
  static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
  static bool isRegDefEarlyClobberKind(unsigned Flag) {
    return getKind(Flag) == Kind_RegDefEarlyClobber;
  }
  
  /// getNumOperandRegisters - Extract the number of registers field from the
  /// inline asm operand flag.
  static unsigned getNumOperandRegisters(unsigned Flag) {
    return (Flag & 0xffff) >> 3;
  }

  /// isUseOperandTiedToDef - Return true if the flag of the inline asm
  /// operand indicates it is an use operand that's matched to a def operand.
  static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
    if ((Flag & Flag_MatchingOperand) == 0)
      return false;
    Idx = (Flag & ~Flag_MatchingOperand) >> 16;
    return true;
  }


};

} // End llvm namespace

#endif