aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/InstrTypes.h
blob: 3a774d45e92c8f1028b34aa7946af9fefac52e7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INSTRUCTION_TYPES_H
#define LLVM_INSTRUCTION_TYPES_H

#include "llvm/Instruction.h"
#include "llvm/OperandTraits.h"
#include "llvm/DerivedTypes.h"

namespace llvm {

//===----------------------------------------------------------------------===//
//                            TerminatorInst Class
//===----------------------------------------------------------------------===//

/// TerminatorInst - Subclasses of this class are all able to terminate a basic
/// block.  Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
  TerminatorInst(const Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps,
                 Instruction *InsertBefore = 0)
    : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}

  TerminatorInst(const Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
    : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}

  // Out of line virtual method, so the vtable, etc has a home.
  ~TerminatorInst();

  /// Virtual methods - Terminators should overload these and provide inline
  /// overrides of non-V methods.
  virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
  virtual unsigned getNumSuccessorsV() const = 0;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
public:

  virtual Instruction *clone() const = 0;

  /// getNumSuccessors - Return the number of successors that this terminator
  /// has.
  unsigned getNumSuccessors() const {
    return getNumSuccessorsV();
  }

  /// getSuccessor - Return the specified successor.
  ///
  BasicBlock *getSuccessor(unsigned idx) const {
    return getSuccessorV(idx);
  }

  /// setSuccessor - Update the specified successor to point at the provided
  /// block.
  void setSuccessor(unsigned idx, BasicBlock *B) {
    setSuccessorV(idx, B);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const TerminatorInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->isTerminator();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
  void *operator new(size_t, unsigned);      // Do not implement
  UnaryInstruction(const UnaryInstruction&); // Do not implement

protected:
  UnaryInstruction(const Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = 0)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(const Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }
public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  // Out of line virtual method, so the vtable, etc has a home.
  ~UnaryInstruction();

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnaryInstruction *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Malloc ||
           I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Free ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> : FixedNumOperandTraits<1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void *operator new(size_t, unsigned); // Do not implement
protected:
  void init(BinaryOps iType);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
                 const std::string &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
                 const std::string &Name, BasicBlock *InsertAtEnd);
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Create() - Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const std::string &Name = "",
                                Instruction *InsertBefore = 0);

  /// Create() - Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const std::string &Name,
                                BasicBlock *InsertAtEnd);

  /// Create* - These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const std::string &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const std::string &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const std::string &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/Instruction.def"


  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// CreateNeg, CreateNot - Create the NEG and NOT
  ///     instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const std::string &Name = "",
                                   Instruction *InsertBefore = 0);
  static BinaryOperator *CreateNeg(Value *Op, const std::string &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const std::string &Name = "",
                                   Instruction *InsertBefore = 0);
  static BinaryOperator *CreateNot(Value *Op, const std::string &Name,
                                   BasicBlock *InsertAtEnd);

  /// isNeg, isNot - Check if the given Value is a NEG or NOT instruction.
  ///
  static bool isNeg(const Value *V);
  static bool isNot(const Value *V);

  /// getNegArgument, getNotArgument - Helper functions to extract the
  ///     unary argument of a NEG or NOT operation implemented via Sub or Xor.
  ///
  static const Value *getNegArgument(const Value *BinOp);
  static       Value *getNegArgument(      Value *BinOp);
  static const Value *getNotArgument(const Value *BinOp);
  static       Value *getNotArgument(      Value *BinOp);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  virtual BinaryOperator *clone() const;

  /// swapOperands - Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BinaryOperator *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> : FixedNumOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// CastInst - This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// @brief Base class of casting instructions.
class CastInst : public UnaryInstruction {
  /// @brief Copy constructor
  CastInst(const CastInst &CI)
    : UnaryInstruction(CI.getType(), CI.getOpcode(), CI.getOperand(0)) {
  }
  /// @brief Do not allow default construction
  CastInst();
protected:
  /// @brief Constructor with insert-before-instruction semantics for subclasses
  CastInst(const Type *Ty, unsigned iType, Value *S,
           const std::string &NameStr = "", Instruction *InsertBefore = 0)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// @brief Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(const Type *Ty, unsigned iType, Value *S,
           const std::string &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }
public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast or a PtrToInt cast instruction
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast or a PtrToInt cast instruction
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    const Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    const Type *Ty,          ///< The floating point type to cast to
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    const Type *Ty,          ///< The floating point type to cast to
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const std::string &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const std::string &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Check whether it is valid to call getCastOpcode for these types.
  static bool isCastable(
    const Type *SrcTy, ///< The Type from which the value should be cast.
    const Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// @brief Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    const Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// @brief Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, int->ptr, or vector->anything.
  /// @returns true iff the cast is lossless.
  /// @brief Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// IntPtrTy argument is used to make accurate determinations for casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform. Generally, the result of TargetData::getIntPtrType() should be
  /// passed in. If that's not available, use Type::Int64Ty, which will make
  /// the isNoopCast call conservative.
  /// @brief Determine if this cast is a no-op cast.
  bool isNoopCast(
    const Type *IntPtrTy ///< Integer type corresponding to pointer
  ) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated
  /// @returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// @brief Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    const Type *SrcTy, ///< SrcTy of 1st cast
    const Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    const Type *DstTy, ///< DstTy of 2nd cast
    const Type *IntPtrTy ///< Integer type corresponding to Ptr types
  );

  /// @brief Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// @brief Return the source type, as a convenience
  const Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// @brief Return the destination type, as a convenience
  const Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from S to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// @brief Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CastInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->isCast();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
// FIXME: why not derive from BinaryOperator?
class CmpInst: public Instruction {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
  CmpInst(); // do not implement
protected:
  CmpInst(const Type *ty, Instruction::OtherOps op, unsigned short pred,
          Value *LHS, Value *RHS, const std::string &Name = "",
          Instruction *InsertBefore = 0);

  CmpInst(const Type *ty, Instruction::OtherOps op, unsigned short pred,
          Value *LHS, Value *RHS, const std::string &Name,
          BasicBlock *InsertAtEnd);

public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  enum Predicate {
    // Opcode             U L G E    Intuitive operation
    FCMP_FALSE =  0,  /// 0 0 0 0    Always false (always folded)
    FCMP_OEQ   =  1,  /// 0 0 0 1    True if ordered and equal
    FCMP_OGT   =  2,  /// 0 0 1 0    True if ordered and greater than
    FCMP_OGE   =  3,  /// 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   =  4,  /// 0 1 0 0    True if ordered and less than
    FCMP_OLE   =  5,  /// 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   =  6,  /// 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   =  7,  /// 0 1 1 1    True if ordered (no nans)
    FCMP_UNO   =  8,  /// 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   =  9,  /// 1 0 0 1    True if unordered or equal
    FCMP_UGT   = 10,  /// 1 0 1 0    True if unordered or greater than
    FCMP_UGE   = 11,  /// 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   = 12,  /// 1 1 0 0    True if unordered or less than
    FCMP_ULE   = 13,  /// 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   = 14,  /// 1 1 1 0    True if unordered or not equal
    FCMP_TRUE  = 15,  /// 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ    = 32,  /// equal
    ICMP_NE    = 33,  /// not equal
    ICMP_UGT   = 34,  /// unsigned greater than
    ICMP_UGE   = 35,  /// unsigned greater or equal
    ICMP_ULT   = 36,  /// unsigned less than
    ICMP_ULE   = 37,  /// unsigned less or equal
    ICMP_SGT   = 38,  /// signed greater than
    ICMP_SGE   = 39,  /// signed greater or equal
    ICMP_SLT   = 40,  /// signed less than
    ICMP_SLE   = 41,  /// signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
                         Value *S2, const std::string &Name = "",
                         Instruction *InsertBefore = 0);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
                         Value *S2, const std::string &Name,
                         BasicBlock *InsertAtEnd);

  /// @brief Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const { return Predicate(SubclassData); }

  /// @brief Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { SubclassData = P; }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// @brief Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// @brief Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// @brief Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @brief Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// @brief Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this CmpInst is commutative.
  bool isCommutative();

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this is an equals/not equals predicate.
  bool isEquality();

  /// @returns true if the predicate is unsigned, false otherwise.
  /// @brief Determine if the predicate is an unsigned operation.
  static bool isUnsigned(unsigned short predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// @brief Determine if the predicate is an signed operation.
  static bool isSigned(unsigned short predicate);

  /// @brief Determine if the predicate is an ordered operation.
  static bool isOrdered(unsigned short predicate);

  /// @brief Determine if the predicate is an unordered operation.
  static bool isUnordered(unsigned short predicate);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp ||
           I->getOpcode() == Instruction::VICmp ||
           I->getOpcode() == Instruction::VFCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
  /// @brief Create a result type for fcmp/icmp (but not vicmp/vfcmp)
  static const Type* makeCmpResultType(const Type* opnd_type) {
    if (const VectorType* vt = dyn_cast<const VectorType>(opnd_type)) {
      return VectorType::get(Type::Int1Ty, vt->getNumElements());
    }
    return Type::Int1Ty;
  }
};


// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : FixedNumOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

} // End llvm namespace

#endif