aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Instructions.h
blob: 535333a9f5d0e680713228da173a815d09baae3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class.  This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INSTRUCTIONS_H
#define LLVM_INSTRUCTIONS_H

#include "llvm/InstrTypes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Attributes.h"
#include "llvm/BasicBlock.h"
#include "llvm/ADT/SmallVector.h"
#include <iterator>

namespace llvm {

class ConstantInt;
class ConstantRange;
class APInt;

//===----------------------------------------------------------------------===//
//                             AllocationInst Class
//===----------------------------------------------------------------------===//

/// AllocationInst - This class is the common base class of MallocInst and
/// AllocaInst.
///
class AllocationInst : public UnaryInstruction {
protected:
  AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align,
                 const std::string &Name = "", Instruction *InsertBefore = 0);
  AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align,
                 const std::string &Name, BasicBlock *InsertAtEnd);
public:
  // Out of line virtual method, so the vtable, etc. has a home.
  virtual ~AllocationInst();

  /// isArrayAllocation - Return true if there is an allocation size parameter
  /// to the allocation instruction that is not 1.
  ///
  bool isArrayAllocation() const;

  /// getArraySize - Get the number of element allocated, for a simple
  /// allocation of a single element, this will return a constant 1 value.
  ///
  const Value *getArraySize() const { return getOperand(0); }
  Value *getArraySize() { return getOperand(0); }

  /// getType - Overload to return most specific pointer type
  ///
  const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  /// getAllocatedType - Return the type that is being allocated by the
  /// instruction.
  ///
  const Type *getAllocatedType() const;

  /// getAlignment - Return the alignment of the memory that is being allocated
  /// by the instruction.
  ///
  unsigned getAlignment() const { return (1u << SubclassData) >> 1; }
  void setAlignment(unsigned Align);

  virtual Instruction *clone() const = 0;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const AllocationInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Malloc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                MallocInst Class
//===----------------------------------------------------------------------===//

/// MallocInst - an instruction to allocated memory on the heap
///
class MallocInst : public AllocationInst {
  MallocInst(const MallocInst &MI);
public:
  explicit MallocInst(const Type *Ty, Value *ArraySize = 0,
                      const std::string &NameStr = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Malloc, 0, NameStr, InsertBefore) {}
  MallocInst(const Type *Ty, Value *ArraySize, const std::string &NameStr,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Malloc, 0, NameStr, InsertAtEnd) {}

  MallocInst(const Type *Ty, const std::string &NameStr,
             Instruction *InsertBefore = 0)
    : AllocationInst(Ty, 0, Malloc, 0, NameStr, InsertBefore) {}
  MallocInst(const Type *Ty, const std::string &NameStr,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, 0, Malloc, 0, NameStr, InsertAtEnd) {}

  MallocInst(const Type *Ty, Value *ArraySize, unsigned Align,
             const std::string &NameStr, BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Malloc, Align, NameStr, InsertAtEnd) {}
  MallocInst(const Type *Ty, Value *ArraySize, unsigned Align,
                      const std::string &NameStr = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Malloc, Align, NameStr, InsertBefore) {}

  virtual MallocInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const MallocInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Malloc);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                AllocaInst Class
//===----------------------------------------------------------------------===//

/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public AllocationInst {
  AllocaInst(const AllocaInst &);
public:
  explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
                      const std::string &NameStr = "",
                      Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Alloca, 0, NameStr, InsertBefore) {}
  AllocaInst(const Type *Ty, Value *ArraySize, const std::string &NameStr,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Alloca, 0, NameStr, InsertAtEnd) {}

  AllocaInst(const Type *Ty, const std::string &NameStr,
             Instruction *InsertBefore = 0)
    : AllocationInst(Ty, 0, Alloca, 0, NameStr, InsertBefore) {}
  AllocaInst(const Type *Ty, const std::string &NameStr,
             BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, 0, Alloca, 0, NameStr, InsertAtEnd) {}

  AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
             const std::string &NameStr = "", Instruction *InsertBefore = 0)
    : AllocationInst(Ty, ArraySize, Alloca, Align, NameStr, InsertBefore) {}
  AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
             const std::string &NameStr, BasicBlock *InsertAtEnd)
    : AllocationInst(Ty, ArraySize, Alloca, Align, NameStr, InsertAtEnd) {}

  virtual AllocaInst *clone() const;

  /// isStaticAlloca - Return true if this alloca is in the entry block of the
  /// function and is a constant size.  If so, the code generator will fold it
  /// into the prolog/epilog code, so it is basically free.
  bool isStaticAlloca() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const AllocaInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Alloca);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                 FreeInst Class
//===----------------------------------------------------------------------===//

/// FreeInst - an instruction to deallocate memory
///
class FreeInst : public UnaryInstruction {
  void AssertOK();
public:
  explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0);
  FreeInst(Value *Ptr, BasicBlock *InsertAfter);

  virtual FreeInst *clone() const;

  // Accessor methods for consistency with other memory operations
  Value *getPointerOperand() { return getOperand(0); }
  const Value *getPointerOperand() const { return getOperand(0); }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FreeInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Free);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                LoadInst Class
//===----------------------------------------------------------------------===//

/// LoadInst - an instruction for reading from memory.  This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction {

  LoadInst(const LoadInst &LI)
    : UnaryInstruction(LI.getType(), Load, LI.getOperand(0)) {
    setVolatile(LI.isVolatile());
    setAlignment(LI.getAlignment());

#ifndef NDEBUG
    AssertOK();
#endif
  }
  void AssertOK();
public:
  LoadInst(Value *Ptr, const std::string &NameStr, Instruction *InsertBefore);
  LoadInst(Value *Ptr, const std::string &NameStr, BasicBlock *InsertAtEnd);
  LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile = false,
           Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile,
           unsigned Align, Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile,
           BasicBlock *InsertAtEnd);
  LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile,
           unsigned Align, BasicBlock *InsertAtEnd);

  LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
  LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
  explicit LoadInst(Value *Ptr, const char *NameStr = 0,
                    bool isVolatile = false,  Instruction *InsertBefore = 0);
  LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
           BasicBlock *InsertAtEnd);

  /// isVolatile - Return true if this is a load from a volatile memory
  /// location.
  ///
  bool isVolatile() const { return SubclassData & 1; }

  /// setVolatile - Specify whether this is a volatile load or not.
  ///
  void setVolatile(bool V) {
    SubclassData = (SubclassData & ~1) | (V ? 1 : 0);
  }

  virtual LoadInst *clone() const;

  /// getAlignment - Return the alignment of the access that is being performed
  ///
  unsigned getAlignment() const {
    return (1 << (SubclassData>>1)) >> 1;
  }

  void setAlignment(unsigned Align);

  Value *getPointerOperand() { return getOperand(0); }
  const Value *getPointerOperand() const { return getOperand(0); }
  static unsigned getPointerOperandIndex() { return 0U; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const LoadInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Load;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                                StoreInst Class
//===----------------------------------------------------------------------===//

/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT

  StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store,
                                               &Op<0>(), 2) {
    Op<0>() = SI.Op<0>();
    Op<1>() = SI.Op<1>();
    setVolatile(SI.isVolatile());
    setAlignment(SI.getAlignment());

#ifndef NDEBUG
    AssertOK();
#endif
  }
  void AssertOK();
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
            Instruction *InsertBefore = 0);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
            unsigned Align, Instruction *InsertBefore = 0);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
            unsigned Align, BasicBlock *InsertAtEnd);


  /// isVolatile - Return true if this is a load from a volatile memory
  /// location.
  ///
  bool isVolatile() const { return SubclassData & 1; }

  /// setVolatile - Specify whether this is a volatile load or not.
  ///
  void setVolatile(bool V) {
    SubclassData = (SubclassData & ~1) | (V ? 1 : 0);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getAlignment - Return the alignment of the access that is being performed
  ///
  unsigned getAlignment() const {
    return (1 << (SubclassData>>1)) >> 1;
  }

  void setAlignment(unsigned Align);

  virtual StoreInst *clone() const;

  Value *getPointerOperand() { return getOperand(1); }
  const Value *getPointerOperand() const { return getOperand(1); }
  static unsigned getPointerOperandIndex() { return 1U; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const StoreInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Store;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<StoreInst> : FixedNumOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)

//===----------------------------------------------------------------------===//
//                             GetElementPtrInst Class
//===----------------------------------------------------------------------===//

// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
  assert(Ty && "Invalid GetElementPtrInst indices for type!");
  return Ty;
}

/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
  GetElementPtrInst(const GetElementPtrInst &GEPI);
  void init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
            const std::string &NameStr);
  void init(Value *Ptr, Value *Idx, const std::string &NameStr);

  template<typename InputIterator>
  void init(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd,
            const std::string &NameStr,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));

    if (NumIdx > 0) {
      // This requires that the iterator points to contiguous memory.
      init(Ptr, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
                                     // we have to build an array here
    }
    else {
      init(Ptr, 0, NumIdx, NameStr);
    }
  }

  /// getIndexedType - Returns the type of the element that would be loaded with
  /// a load instruction with the specified parameters.
  ///
  /// Null is returned if the indices are invalid for the specified
  /// pointer type.
  ///
  template<typename InputIterator>
  static const Type *getIndexedType(const Type *Ptr,
                                    InputIterator IdxBegin,
                                    InputIterator IdxEnd,
                                    // This argument ensures that we
                                    // have an iterator we can do
                                    // arithmetic on in constant time
                                    std::random_access_iterator_tag) {
    unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));

    if (NumIdx > 0)
      // This requires that the iterator points to contiguous memory.
      return getIndexedType(Ptr, &*IdxBegin, NumIdx);
    else
      return getIndexedType(Ptr, (Value *const*)0, NumIdx);
  }

  /// Constructors - Create a getelementptr instruction with a base pointer an
  /// list of indices.  The first ctor can optionally insert before an existing
  /// instruction, the second appends the new instruction to the specified
  /// BasicBlock.
  template<typename InputIterator>
  inline GetElementPtrInst(Value *Ptr, InputIterator IdxBegin,
                           InputIterator IdxEnd,
                           unsigned Values,
                           const std::string &NameStr,
                           Instruction *InsertBefore);
  template<typename InputIterator>
  inline GetElementPtrInst(Value *Ptr,
                           InputIterator IdxBegin, InputIterator IdxEnd,
                           unsigned Values,
                           const std::string &NameStr, BasicBlock *InsertAtEnd);

  /// Constructors - These two constructors are convenience methods because one
  /// and two index getelementptr instructions are so common.
  GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &NameStr = "",
                    Instruction *InsertBefore = 0);
  GetElementPtrInst(Value *Ptr, Value *Idx,
                    const std::string &NameStr, BasicBlock *InsertAtEnd);
public:
  template<typename InputIterator>
  static GetElementPtrInst *Create(Value *Ptr, InputIterator IdxBegin,
                                   InputIterator IdxEnd,
                                   const std::string &NameStr = "",
                                   Instruction *InsertBefore = 0) {
    typename std::iterator_traits<InputIterator>::difference_type Values =
      1 + std::distance(IdxBegin, IdxEnd);
    return new(Values)
      GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertBefore);
  }
  template<typename InputIterator>
  static GetElementPtrInst *Create(Value *Ptr,
                                   InputIterator IdxBegin, InputIterator IdxEnd,
                                   const std::string &NameStr,
                                   BasicBlock *InsertAtEnd) {
    typename std::iterator_traits<InputIterator>::difference_type Values =
      1 + std::distance(IdxBegin, IdxEnd);
    return new(Values)
      GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertAtEnd);
  }

  /// Constructors - These two creators are convenience methods because one
  /// index getelementptr instructions are so common.
  static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
                                   const std::string &NameStr = "",
                                   Instruction *InsertBefore = 0) {
    return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertBefore);
  }
  static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
                                   const std::string &NameStr,
                                   BasicBlock *InsertAtEnd) {
    return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertAtEnd);
  }

  virtual GetElementPtrInst *clone() const;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // getType - Overload to return most specific pointer type...
  const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  /// getIndexedType - Returns the type of the element that would be loaded with
  /// a load instruction with the specified parameters.
  ///
  /// Null is returned if the indices are invalid for the specified
  /// pointer type.
  ///
  template<typename InputIterator>
  static const Type *getIndexedType(const Type *Ptr,
                                    InputIterator IdxBegin,
                                    InputIterator IdxEnd) {
    return getIndexedType(Ptr, IdxBegin, IdxEnd,
                          typename std::iterator_traits<InputIterator>::
                          iterator_category());
  }

  static const Type *getIndexedType(const Type *Ptr,
                                    Value* const *Idx, unsigned NumIdx);

  static const Type *getIndexedType(const Type *Ptr,
                                    uint64_t const *Idx, unsigned NumIdx);

  static const Type *getIndexedType(const Type *Ptr, Value *Idx);

  inline op_iterator       idx_begin()       { return op_begin()+1; }
  inline const_op_iterator idx_begin() const { return op_begin()+1; }
  inline op_iterator       idx_end()         { return op_end(); }
  inline const_op_iterator idx_end()   const { return op_end(); }

  Value *getPointerOperand() {
    return getOperand(0);
  }
  const Value *getPointerOperand() const {
    return getOperand(0);
  }
  static unsigned getPointerOperandIndex() {
    return 0U;                      // get index for modifying correct operand
  }

  /// getPointerOperandType - Method to return the pointer operand as a
  /// PointerType.
  const PointerType *getPointerOperandType() const {
    return reinterpret_cast<const PointerType*>(getPointerOperand()->getType());
  }


  unsigned getNumIndices() const {  // Note: always non-negative
    return getNumOperands() - 1;
  }

  bool hasIndices() const {
    return getNumOperands() > 1;
  }

  /// hasAllZeroIndices - Return true if all of the indices of this GEP are
  /// zeros.  If so, the result pointer and the first operand have the same
  /// value, just potentially different types.
  bool hasAllZeroIndices() const;

  /// hasAllConstantIndices - Return true if all of the indices of this GEP are
  /// constant integers.  If so, the result pointer and the first operand have
  /// a constant offset between them.
  bool hasAllConstantIndices() const;


  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const GetElementPtrInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::GetElementPtr);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<GetElementPtrInst> : VariadicOperandTraits<1> {
};

template<typename InputIterator>
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
                                     InputIterator IdxBegin,
                                     InputIterator IdxEnd,
                                     unsigned Values,
                                     const std::string &NameStr,
                                     Instruction *InsertBefore)
  : Instruction(PointerType::get(checkType(
                                   getIndexedType(Ptr->getType(),
                                                  IdxBegin, IdxEnd)),
                                 cast<PointerType>(Ptr->getType())
                                   ->getAddressSpace()),
                GetElementPtr,
                OperandTraits<GetElementPtrInst>::op_end(this) - Values,
                Values, InsertBefore) {
  init(Ptr, IdxBegin, IdxEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}
template<typename InputIterator>
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
                                     InputIterator IdxBegin,
                                     InputIterator IdxEnd,
                                     unsigned Values,
                                     const std::string &NameStr,
                                     BasicBlock *InsertAtEnd)
  : Instruction(PointerType::get(checkType(
                                   getIndexedType(Ptr->getType(),
                                                  IdxBegin, IdxEnd)),
                                 cast<PointerType>(Ptr->getType())
                                   ->getAddressSpace()),
                GetElementPtr,
                OperandTraits<GetElementPtrInst>::op_end(this) - Values,
                Values, InsertAtEnd) {
  init(Ptr, IdxBegin, IdxEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}


DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)


//===----------------------------------------------------------------------===//
//                               ICmpInst Class
//===----------------------------------------------------------------------===//

/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on integers or pointers. The operands
/// must be identical types.
/// @brief Represent an integer comparison operator.
class ICmpInst: public CmpInst {
public:
  /// @brief Constructor with insert-before-instruction semantics.
  ICmpInst(
    Predicate pred,  ///< The predicate to use for the comparison
    Value *LHS,      ///< The left-hand-side of the expression
    Value *RHS,      ///< The right-hand-side of the expression
    const std::string &NameStr = "",  ///< Name of the instruction
    Instruction *InsertBefore = 0  ///< Where to insert
  ) : CmpInst(makeCmpResultType(LHS->getType()),
              Instruction::ICmp, pred, LHS, RHS, NameStr,
              InsertBefore) {
    assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
           pred <= CmpInst::LAST_ICMP_PREDICATE &&
           "Invalid ICmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
          "Both operands to ICmp instruction are not of the same type!");
    // Check that the operands are the right type
    assert((getOperand(0)->getType()->isIntOrIntVector() ||
            isa<PointerType>(getOperand(0)->getType())) &&
           "Invalid operand types for ICmp instruction");
  }

  /// @brief Constructor with insert-at-block-end semantics.
  ICmpInst(
    Predicate pred, ///< The predicate to use for the comparison
    Value *LHS,     ///< The left-hand-side of the expression
    Value *RHS,     ///< The right-hand-side of the expression
    const std::string &NameStr,  ///< Name of the instruction
    BasicBlock *InsertAtEnd   ///< Block to insert into.
  ) : CmpInst(makeCmpResultType(LHS->getType()),
              Instruction::ICmp, pred, LHS, RHS, NameStr,
              InsertAtEnd) {
    assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
           pred <= CmpInst::LAST_ICMP_PREDICATE &&
           "Invalid ICmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
          "Both operands to ICmp instruction are not of the same type!");
    // Check that the operands are the right type
    assert((getOperand(0)->getType()->isIntOrIntVector() ||
            isa<PointerType>(getOperand(0)->getType())) &&
           "Invalid operand types for ICmp instruction");
  }

  /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
  /// @returns the predicate that would be the result if the operand were
  /// regarded as signed.
  /// @brief Return the signed version of the predicate
  Predicate getSignedPredicate() const {
    return getSignedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction.
  /// @brief Return the signed version of the predicate.
  static Predicate getSignedPredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
  /// @returns the predicate that would be the result if the operand were
  /// regarded as unsigned.
  /// @brief Return the unsigned version of the predicate
  Predicate getUnsignedPredicate() const {
    return getUnsignedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction.
  /// @brief Return the unsigned version of the predicate.
  static Predicate getUnsignedPredicate(Predicate pred);

  /// isEquality - Return true if this predicate is either EQ or NE.  This also
  /// tests for commutativity.
  static bool isEquality(Predicate P) {
    return P == ICMP_EQ || P == ICMP_NE;
  }

  /// isEquality - Return true if this predicate is either EQ or NE.  This also
  /// tests for commutativity.
  bool isEquality() const {
    return isEquality(getPredicate());
  }

  /// @returns true if the predicate of this ICmpInst is commutative
  /// @brief Determine if this relation is commutative.
  bool isCommutative() const { return isEquality(); }

  /// isRelational - Return true if the predicate is relational (not EQ or NE).
  ///
  bool isRelational() const {
    return !isEquality();
  }

  /// isRelational - Return true if the predicate is relational (not EQ or NE).
  ///
  static bool isRelational(Predicate P) {
    return !isEquality(P);
  }

  /// @returns true if the predicate of this ICmpInst is signed, false otherwise
  /// @brief Determine if this instruction's predicate is signed.
  bool isSignedPredicate() const { return isSignedPredicate(getPredicate()); }

  /// @returns true if the predicate provided is signed, false otherwise
  /// @brief Determine if the predicate is signed.
  static bool isSignedPredicate(Predicate pred);

  /// @returns true if the specified compare predicate is
  /// true when both operands are equal...
  /// @brief Determine if the icmp is true when both operands are equal
  static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
    return pred == ICmpInst::ICMP_EQ  || pred == ICmpInst::ICMP_UGE ||
           pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
           pred == ICmpInst::ICMP_SLE;
  }

  /// @returns true if the specified compare instruction is
  /// true when both operands are equal...
  /// @brief Determine if the ICmpInst returns true when both operands are equal
  bool isTrueWhenEqual() {
    return isTrueWhenEqual(getPredicate());
  }

  /// Initialize a set of values that all satisfy the predicate with C.
  /// @brief Make a ConstantRange for a relation with a constant value.
  static ConstantRange makeConstantRange(Predicate pred, const APInt &C);

  /// Exchange the two operands to this instruction in such a way that it does
  /// not modify the semantics of the instruction. The predicate value may be
  /// changed to retain the same result if the predicate is order dependent
  /// (e.g. ult).
  /// @brief Swap operands and adjust predicate.
  void swapOperands() {
    SubclassData = getSwappedPredicate();
    Op<0>().swap(Op<1>());
  }

  virtual ICmpInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ICmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

};

//===----------------------------------------------------------------------===//
//                               FCmpInst Class
//===----------------------------------------------------------------------===//

/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on floating point values or packed
/// vectors of floating point values. The operands must be identical types.
/// @brief Represents a floating point comparison operator.
class FCmpInst: public CmpInst {
public:
  /// @brief Constructor with insert-before-instruction semantics.
  FCmpInst(
    Predicate pred,  ///< The predicate to use for the comparison
    Value *LHS,      ///< The left-hand-side of the expression
    Value *RHS,      ///< The right-hand-side of the expression
    const std::string &NameStr = "",  ///< Name of the instruction
    Instruction *InsertBefore = 0  ///< Where to insert
  ) : CmpInst(makeCmpResultType(LHS->getType()),
              Instruction::FCmp, pred, LHS, RHS, NameStr,
              InsertBefore) {
    assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
           "Invalid FCmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
           "Both operands to FCmp instruction are not of the same type!");
    // Check that the operands are the right type
    assert(getOperand(0)->getType()->isFPOrFPVector() &&
           "Invalid operand types for FCmp instruction");
  }

  /// @brief Constructor with insert-at-block-end semantics.
  FCmpInst(
    Predicate pred, ///< The predicate to use for the comparison
    Value *LHS,     ///< The left-hand-side of the expression
    Value *RHS,     ///< The right-hand-side of the expression
    const std::string &NameStr,  ///< Name of the instruction
    BasicBlock *InsertAtEnd   ///< Block to insert into.
  ) : CmpInst(makeCmpResultType(LHS->getType()),
              Instruction::FCmp, pred, LHS, RHS, NameStr,
              InsertAtEnd) {
    assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
           "Invalid FCmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
           "Both operands to FCmp instruction are not of the same type!");
    // Check that the operands are the right type
    assert(getOperand(0)->getType()->isFPOrFPVector() &&
           "Invalid operand types for FCmp instruction");
  }

  /// @returns true if the predicate of this instruction is EQ or NE.
  /// @brief Determine if this is an equality predicate.
  bool isEquality() const {
    return SubclassData == FCMP_OEQ || SubclassData == FCMP_ONE ||
           SubclassData == FCMP_UEQ || SubclassData == FCMP_UNE;
  }

  /// @returns true if the predicate of this instruction is commutative.
  /// @brief Determine if this is a commutative predicate.
  bool isCommutative() const {
    return isEquality() ||
           SubclassData == FCMP_FALSE ||
           SubclassData == FCMP_TRUE ||
           SubclassData == FCMP_ORD ||
           SubclassData == FCMP_UNO;
  }

  /// @returns true if the predicate is relational (not EQ or NE).
  /// @brief Determine if this a relational predicate.
  bool isRelational() const { return !isEquality(); }

  /// Exchange the two operands to this instruction in such a way that it does
  /// not modify the semantics of the instruction. The predicate value may be
  /// changed to retain the same result if the predicate is order dependent
  /// (e.g. ult).
  /// @brief Swap operands and adjust predicate.
  void swapOperands() {
    SubclassData = getSwappedPredicate();
    Op<0>().swap(Op<1>());
  }

  virtual FCmpInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FCmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::FCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

};

//===----------------------------------------------------------------------===//
//                               VICmpInst Class
//===----------------------------------------------------------------------===//

/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on vectors of integers.
/// The operands must be identical types.
/// @brief Represents a vector integer comparison operator.
class VICmpInst: public CmpInst {
public:
  /// @brief Constructor with insert-before-instruction semantics.
  VICmpInst(
    Predicate pred,  ///< The predicate to use for the comparison
    Value *LHS,      ///< The left-hand-side of the expression
    Value *RHS,      ///< The right-hand-side of the expression
    const std::string &NameStr = "",  ///< Name of the instruction
    Instruction *InsertBefore = 0  ///< Where to insert
  ) : CmpInst(LHS->getType(), Instruction::VICmp, pred, LHS, RHS, NameStr,
              InsertBefore) {
    assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
           pred <= CmpInst::LAST_ICMP_PREDICATE &&
           "Invalid VICmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
          "Both operands to VICmp instruction are not of the same type!");
  }

  /// @brief Constructor with insert-at-block-end semantics.
  VICmpInst(
    Predicate pred, ///< The predicate to use for the comparison
    Value *LHS,     ///< The left-hand-side of the expression
    Value *RHS,     ///< The right-hand-side of the expression
    const std::string &NameStr,  ///< Name of the instruction
    BasicBlock *InsertAtEnd   ///< Block to insert into.
  ) : CmpInst(LHS->getType(), Instruction::VICmp, pred, LHS, RHS, NameStr,
              InsertAtEnd) {
    assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
           pred <= CmpInst::LAST_ICMP_PREDICATE &&
           "Invalid VICmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
          "Both operands to VICmp instruction are not of the same type!");
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const { return Predicate(SubclassData); }

  virtual VICmpInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VICmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::VICmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               VFCmpInst Class
//===----------------------------------------------------------------------===//

/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on vectors of floating point values.
/// The operands must be identical types.
/// @brief Represents a vector floating point comparison operator.
class VFCmpInst: public CmpInst {
public:
  /// @brief Constructor with insert-before-instruction semantics.
  VFCmpInst(
    Predicate pred,  ///< The predicate to use for the comparison
    Value *LHS,      ///< The left-hand-side of the expression
    Value *RHS,      ///< The right-hand-side of the expression
    const std::string &NameStr = "",  ///< Name of the instruction
    Instruction *InsertBefore = 0  ///< Where to insert
  ) : CmpInst(VectorType::getInteger(cast<VectorType>(LHS->getType())),
              Instruction::VFCmp, pred, LHS, RHS, NameStr, InsertBefore) {
    assert(pred <= CmpInst::LAST_FCMP_PREDICATE &&
           "Invalid VFCmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
           "Both operands to VFCmp instruction are not of the same type!");
  }

  /// @brief Constructor with insert-at-block-end semantics.
  VFCmpInst(
    Predicate pred, ///< The predicate to use for the comparison
    Value *LHS,     ///< The left-hand-side of the expression
    Value *RHS,     ///< The right-hand-side of the expression
    const std::string &NameStr,  ///< Name of the instruction
    BasicBlock *InsertAtEnd   ///< Block to insert into.
  ) : CmpInst(VectorType::getInteger(cast<VectorType>(LHS->getType())),
              Instruction::VFCmp, pred, LHS, RHS, NameStr, InsertAtEnd) {
    assert(pred <= CmpInst::LAST_FCMP_PREDICATE &&
           "Invalid VFCmp predicate value");
    assert(getOperand(0)->getType() == getOperand(1)->getType() &&
           "Both operands to VFCmp instruction are not of the same type!");
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const { return Predicate(SubclassData); }

  virtual VFCmpInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VFCmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::VFCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 CallInst Class
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention.  This class uses low bit of the SubClassData
/// field to indicate whether or not this is a tail call.  The rest of the bits
/// hold the calling convention of the call.
///

class CallInst : public Instruction {
  AttrListPtr AttributeList; ///< parameter attributes for call
  CallInst(const CallInst &CI);
  void init(Value *Func, Value* const *Params, unsigned NumParams);
  void init(Value *Func, Value *Actual1, Value *Actual2);
  void init(Value *Func, Value *Actual);
  void init(Value *Func);

  template<typename InputIterator>
  void init(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
            const std::string &NameStr,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);

    // This requires that the iterator points to contiguous memory.
    init(Func, NumArgs ? &*ArgBegin : 0, NumArgs);
    setName(NameStr);
  }

  /// Construct a CallInst given a range of arguments.  InputIterator
  /// must be a random-access iterator pointing to contiguous storage
  /// (e.g. a std::vector<>::iterator).  Checks are made for
  /// random-accessness but not for contiguous storage as that would
  /// incur runtime overhead.
  /// @brief Construct a CallInst from a range of arguments
  template<typename InputIterator>
  CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
           const std::string &NameStr, Instruction *InsertBefore);

  /// Construct a CallInst given a range of arguments.  InputIterator
  /// must be a random-access iterator pointing to contiguous storage
  /// (e.g. a std::vector<>::iterator).  Checks are made for
  /// random-accessness but not for contiguous storage as that would
  /// incur runtime overhead.
  /// @brief Construct a CallInst from a range of arguments
  template<typename InputIterator>
  inline CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
                  const std::string &NameStr, BasicBlock *InsertAtEnd);

  CallInst(Value *F, Value *Actual, const std::string& NameStr,
           Instruction *InsertBefore);
  CallInst(Value *F, Value *Actual, const std::string& NameStr,
           BasicBlock *InsertAtEnd);
  explicit CallInst(Value *F, const std::string &NameStr,
                    Instruction *InsertBefore);
  CallInst(Value *F, const std::string &NameStr, BasicBlock *InsertAtEnd);
public:
  template<typename InputIterator>
  static CallInst *Create(Value *Func,
                          InputIterator ArgBegin, InputIterator ArgEnd,
                          const std::string &NameStr = "",
                          Instruction *InsertBefore = 0) {
    return new((unsigned)(ArgEnd - ArgBegin + 1))
      CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertBefore);
  }
  template<typename InputIterator>
  static CallInst *Create(Value *Func,
                          InputIterator ArgBegin, InputIterator ArgEnd,
                          const std::string &NameStr, BasicBlock *InsertAtEnd) {
    return new((unsigned)(ArgEnd - ArgBegin + 1))
      CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertAtEnd);
  }
  static CallInst *Create(Value *F, Value *Actual,
                          const std::string& NameStr = "",
                          Instruction *InsertBefore = 0) {
    return new(2) CallInst(F, Actual, NameStr, InsertBefore);
  }
  static CallInst *Create(Value *F, Value *Actual, const std::string& NameStr,
                          BasicBlock *InsertAtEnd) {
    return new(2) CallInst(F, Actual, NameStr, InsertAtEnd);
  }
  static CallInst *Create(Value *F, const std::string &NameStr = "",
                          Instruction *InsertBefore = 0) {
    return new(1) CallInst(F, NameStr, InsertBefore);
  }
  static CallInst *Create(Value *F, const std::string &NameStr,
                          BasicBlock *InsertAtEnd) {
    return new(1) CallInst(F, NameStr, InsertAtEnd);
  }

  ~CallInst();

  bool isTailCall() const           { return SubclassData & 1; }
  void setTailCall(bool isTC = true) {
    SubclassData = (SubclassData & ~1) | unsigned(isTC);
  }

  virtual CallInst *clone() const;

  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getCallingConv/setCallingConv - Get or set the calling convention of this
  /// function call.
  unsigned getCallingConv() const { return SubclassData >> 1; }
  void setCallingConv(unsigned CC) {
    SubclassData = (SubclassData & 1) | (CC << 1);
  }

  /// getAttributes - Return the parameter attributes for this call.
  ///
  const AttrListPtr &getAttributes() const { return AttributeList; }

  /// setAttributes - Set the parameter attributes for this call.
  ///
  void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }

  /// addAttribute - adds the attribute to the list of attributes.
  void addAttribute(unsigned i, Attributes attr);

  /// removeAttribute - removes the attribute from the list of attributes.
  void removeAttribute(unsigned i, Attributes attr);

  /// @brief Determine whether the call or the callee has the given attribute.
  bool paramHasAttr(unsigned i, Attributes attr) const;

  /// @brief Extract the alignment for a call or parameter (0=unknown).
  unsigned getParamAlignment(unsigned i) const {
    return AttributeList.getParamAlignment(i);
  }

  /// @brief Determine if the call does not access memory.
  bool doesNotAccessMemory() const {
    return paramHasAttr(~0, Attribute::ReadNone);
  }
  void setDoesNotAccessMemory(bool NotAccessMemory = true) {
    if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
    else removeAttribute(~0, Attribute::ReadNone);
  }

  /// @brief Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
  }
  void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
    if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
    else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
  }

  /// @brief Determine if the call cannot return.
  bool doesNotReturn() const {
    return paramHasAttr(~0, Attribute::NoReturn);
  }
  void setDoesNotReturn(bool DoesNotReturn = true) {
    if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
    else removeAttribute(~0, Attribute::NoReturn);
  }

  /// @brief Determine if the call cannot unwind.
  bool doesNotThrow() const {
    return paramHasAttr(~0, Attribute::NoUnwind);
  }
  void setDoesNotThrow(bool DoesNotThrow = true) {
    if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
    else removeAttribute(~0, Attribute::NoUnwind);
  }

  /// @brief Determine if the call returns a structure through first
  /// pointer argument.
  bool hasStructRetAttr() const {
    // Be friendly and also check the callee.
    return paramHasAttr(1, Attribute::StructRet);
  }

  /// @brief Determine if any call argument is an aggregate passed by value.
  bool hasByValArgument() const {
    return AttributeList.hasAttrSomewhere(Attribute::ByVal);
  }

  /// getCalledFunction - Return the function called, or null if this is an
  /// indirect function invocation.
  ///
  Function *getCalledFunction() const {
    return dyn_cast<Function>(getOperand(0));
  }

  /// getCalledValue - Get a pointer to the function that is invoked by this
  /// instruction
  const Value *getCalledValue() const { return getOperand(0); }
        Value *getCalledValue()       { return getOperand(0); }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CallInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Call;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<CallInst> : VariadicOperandTraits<1> {
};

template<typename InputIterator>
CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
                   const std::string &NameStr, BasicBlock *InsertAtEnd)
  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
                                   ->getElementType())->getReturnType(),
                Instruction::Call,
                OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
                (unsigned)(ArgEnd - ArgBegin + 1), InsertAtEnd) {
  init(Func, ArgBegin, ArgEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}

template<typename InputIterator>
CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
                   const std::string &NameStr, Instruction *InsertBefore)
  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
                                   ->getElementType())->getReturnType(),
                Instruction::Call,
                OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
                (unsigned)(ArgEnd - ArgBegin + 1), InsertBefore) {
  init(Func, ArgBegin, ArgEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)

//===----------------------------------------------------------------------===//
//                               SelectInst Class
//===----------------------------------------------------------------------===//

/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
  void init(Value *C, Value *S1, Value *S2) {
    assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
    Op<0>() = C;
    Op<1>() = S1;
    Op<2>() = S2;
  }

  SelectInst(const SelectInst &SI)
    : Instruction(SI.getType(), SI.getOpcode(), &Op<0>(), 3) {
    init(SI.Op<0>(), SI.Op<1>(), SI.Op<2>());
  }
  SelectInst(Value *C, Value *S1, Value *S2, const std::string &NameStr,
             Instruction *InsertBefore)
    : Instruction(S1->getType(), Instruction::Select,
                  &Op<0>(), 3, InsertBefore) {
    init(C, S1, S2);
    setName(NameStr);
  }
  SelectInst(Value *C, Value *S1, Value *S2, const std::string &NameStr,
             BasicBlock *InsertAtEnd)
    : Instruction(S1->getType(), Instruction::Select,
                  &Op<0>(), 3, InsertAtEnd) {
    init(C, S1, S2);
    setName(NameStr);
  }
public:
  static SelectInst *Create(Value *C, Value *S1, Value *S2,
                            const std::string &NameStr = "",
                            Instruction *InsertBefore = 0) {
    return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
  }
  static SelectInst *Create(Value *C, Value *S1, Value *S2,
                            const std::string &NameStr,
                            BasicBlock *InsertAtEnd) {
    return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
  }

  Value *getCondition() const { return Op<0>(); }
  Value *getTrueValue() const { return Op<1>(); }
  Value *getFalseValue() const { return Op<2>(); }

  /// areInvalidOperands - Return a string if the specified operands are invalid
  /// for a select operation, otherwise return null.
  static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  virtual SelectInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SelectInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Select;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<SelectInst> : FixedNumOperandTraits<3> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)

//===----------------------------------------------------------------------===//
//                                VAArgInst Class
//===----------------------------------------------------------------------===//

/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list and increments that list
///
class VAArgInst : public UnaryInstruction {
  VAArgInst(const VAArgInst &VAA)
    : UnaryInstruction(VAA.getType(), VAArg, VAA.getOperand(0)) {}
public:
  VAArgInst(Value *List, const Type *Ty, const std::string &NameStr = "",
             Instruction *InsertBefore = 0)
    : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
    setName(NameStr);
  }
  VAArgInst(Value *List, const Type *Ty, const std::string &NameStr,
            BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
    setName(NameStr);
  }

  virtual VAArgInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const VAArgInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == VAArg;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                ExtractElementInst Class
//===----------------------------------------------------------------------===//

/// ExtractElementInst - This instruction extracts a single (scalar)
/// element from a VectorType value
///
class ExtractElementInst : public Instruction {
  ExtractElementInst(const ExtractElementInst &EE) :
    Instruction(EE.getType(), ExtractElement, &Op<0>(), 2) {
    Op<0>() = EE.Op<0>();
    Op<1>() = EE.Op<1>();
  }

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2); // FIXME: "unsigned Idx" forms of ctor?
  }
  ExtractElementInst(Value *Vec, Value *Idx, const std::string &NameStr = "",
                     Instruction *InsertBefore = 0);
  ExtractElementInst(Value *Vec, unsigned Idx, const std::string &NameStr = "",
                     Instruction *InsertBefore = 0);
  ExtractElementInst(Value *Vec, Value *Idx, const std::string &NameStr,
                     BasicBlock *InsertAtEnd);
  ExtractElementInst(Value *Vec, unsigned Idx, const std::string &NameStr,
                     BasicBlock *InsertAtEnd);

  /// isValidOperands - Return true if an extractelement instruction can be
  /// formed with the specified operands.
  static bool isValidOperands(const Value *Vec, const Value *Idx);

  virtual ExtractElementInst *clone() const;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ExtractElementInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ExtractElement;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<ExtractElementInst> : FixedNumOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)

//===----------------------------------------------------------------------===//
//                                InsertElementInst Class
//===----------------------------------------------------------------------===//

/// InsertElementInst - This instruction inserts a single (scalar)
/// element into a VectorType value
///
class InsertElementInst : public Instruction {
  InsertElementInst(const InsertElementInst &IE);
  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
                    const std::string &NameStr = "",
                    Instruction *InsertBefore = 0);
  InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx,
                    const std::string &NameStr = "",
                    Instruction *InsertBefore = 0);
  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
                    const std::string &NameStr, BasicBlock *InsertAtEnd);
  InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx,
                    const std::string &NameStr, BasicBlock *InsertAtEnd);
public:
  static InsertElementInst *Create(const InsertElementInst &IE) {
    return new(IE.getNumOperands()) InsertElementInst(IE);
  }
  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
                                   const std::string &NameStr = "",
                                   Instruction *InsertBefore = 0) {
    return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
  }
  static InsertElementInst *Create(Value *Vec, Value *NewElt, unsigned Idx,
                                   const std::string &NameStr = "",
                                   Instruction *InsertBefore = 0) {
    return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
  }
  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
                                   const std::string &NameStr,
                                   BasicBlock *InsertAtEnd) {
    return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
  }
  static InsertElementInst *Create(Value *Vec, Value *NewElt, unsigned Idx,
                                   const std::string &NameStr,
                                   BasicBlock *InsertAtEnd) {
    return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
  }

  /// isValidOperands - Return true if an insertelement instruction can be
  /// formed with the specified operands.
  static bool isValidOperands(const Value *Vec, const Value *NewElt,
                              const Value *Idx);

  virtual InsertElementInst *clone() const;

  /// getType - Overload to return most specific vector type.
  ///
  const VectorType *getType() const {
    return reinterpret_cast<const VectorType*>(Instruction::getType());
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InsertElementInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::InsertElement;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<InsertElementInst> : FixedNumOperandTraits<3> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)

//===----------------------------------------------------------------------===//
//                           ShuffleVectorInst Class
//===----------------------------------------------------------------------===//

/// ShuffleVectorInst - This instruction constructs a fixed permutation of two
/// input vectors.
///
class ShuffleVectorInst : public Instruction {
  ShuffleVectorInst(const ShuffleVectorInst &IE);
public:
  // allocate space for exactly three operands
  void *operator new(size_t s) {
    return User::operator new(s, 3);
  }
  ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
                    const std::string &NameStr = "",
                    Instruction *InsertBefor = 0);
  ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
                    const std::string &NameStr, BasicBlock *InsertAtEnd);

  /// isValidOperands - Return true if a shufflevector instruction can be
  /// formed with the specified operands.
  static bool isValidOperands(const Value *V1, const Value *V2,
                              const Value *Mask);

  virtual ShuffleVectorInst *clone() const;

  /// getType - Overload to return most specific vector type.
  ///
  const VectorType *getType() const {
    return reinterpret_cast<const VectorType*>(Instruction::getType());
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getMaskValue - Return the index from the shuffle mask for the specified
  /// output result.  This is either -1 if the element is undef or a number less
  /// than 2*numelements.
  int getMaskValue(unsigned i) const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ShuffleVectorInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ShuffleVector;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<ShuffleVectorInst> : FixedNumOperandTraits<3> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)

//===----------------------------------------------------------------------===//
//                                ExtractValueInst Class
//===----------------------------------------------------------------------===//

/// ExtractValueInst - This instruction extracts a struct member or array
/// element value from an aggregate value.
///
class ExtractValueInst : public UnaryInstruction {
  SmallVector<unsigned, 4> Indices;

  ExtractValueInst(const ExtractValueInst &EVI);
  void init(const unsigned *Idx, unsigned NumIdx,
            const std::string &NameStr);
  void init(unsigned Idx, const std::string &NameStr);

  template<typename InputIterator>
  void init(InputIterator IdxBegin, InputIterator IdxEnd,
            const std::string &NameStr,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));

    // There's no fundamental reason why we require at least one index
    // (other than weirdness with &*IdxBegin being invalid; see
    // getelementptr's init routine for example). But there's no
    // present need to support it.
    assert(NumIdx > 0 && "ExtractValueInst must have at least one index");

    // This requires that the iterator points to contiguous memory.
    init(&*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
                                         // we have to build an array here
  }

  /// getIndexedType - Returns the type of the element that would be extracted
  /// with an extractvalue instruction with the specified parameters.
  ///
  /// Null is returned if the indices are invalid for the specified
  /// pointer type.
  ///
  static const Type *getIndexedType(const Type *Agg,
                                    const unsigned *Idx, unsigned NumIdx);

  template<typename InputIterator>
  static const Type *getIndexedType(const Type *Ptr,
                                    InputIterator IdxBegin,
                                    InputIterator IdxEnd,
                                    // This argument ensures that we
                                    // have an iterator we can do
                                    // arithmetic on in constant time
                                    std::random_access_iterator_tag) {
    unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));

    if (NumIdx > 0)
      // This requires that the iterator points to contiguous memory.
      return getIndexedType(Ptr, &*IdxBegin, NumIdx);
    else
      return getIndexedType(Ptr, (const unsigned *)0, NumIdx);
  }

  /// Constructors - Create a extractvalue instruction with a base aggregate
  /// value and a list of indices.  The first ctor can optionally insert before
  /// an existing instruction, the second appends the new instruction to the
  /// specified BasicBlock.
  template<typename InputIterator>
  inline ExtractValueInst(Value *Agg, InputIterator IdxBegin,
                          InputIterator IdxEnd,
                          const std::string &NameStr,
                          Instruction *InsertBefore);
  template<typename InputIterator>
  inline ExtractValueInst(Value *Agg,
                          InputIterator IdxBegin, InputIterator IdxEnd,
                          const std::string &NameStr, BasicBlock *InsertAtEnd);

  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

public:
  template<typename InputIterator>
  static ExtractValueInst *Create(Value *Agg, InputIterator IdxBegin,
                                  InputIterator IdxEnd,
                                  const std::string &NameStr = "",
                                  Instruction *InsertBefore = 0) {
    return new
      ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertBefore);
  }
  template<typename InputIterator>
  static ExtractValueInst *Create(Value *Agg,
                                  InputIterator IdxBegin, InputIterator IdxEnd,
                                  const std::string &NameStr,
                                  BasicBlock *InsertAtEnd) {
    return new ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertAtEnd);
  }

  /// Constructors - These two creators are convenience methods because one
  /// index extractvalue instructions are much more common than those with
  /// more than one.
  static ExtractValueInst *Create(Value *Agg, unsigned Idx,
                                  const std::string &NameStr = "",
                                  Instruction *InsertBefore = 0) {
    unsigned Idxs[1] = { Idx };
    return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertBefore);
  }
  static ExtractValueInst *Create(Value *Agg, unsigned Idx,
                                  const std::string &NameStr,
                                  BasicBlock *InsertAtEnd) {
    unsigned Idxs[1] = { Idx };
    return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertAtEnd);
  }

  virtual ExtractValueInst *clone() const;

  // getType - Overload to return most specific pointer type...
  const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  /// getIndexedType - Returns the type of the element that would be extracted
  /// with an extractvalue instruction with the specified parameters.
  ///
  /// Null is returned if the indices are invalid for the specified
  /// pointer type.
  ///
  template<typename InputIterator>
  static const Type *getIndexedType(const Type *Ptr,
                                    InputIterator IdxBegin,
                                    InputIterator IdxEnd) {
    return getIndexedType(Ptr, IdxBegin, IdxEnd,
                          typename std::iterator_traits<InputIterator>::
                          iterator_category());
  }
  static const Type *getIndexedType(const Type *Ptr, unsigned Idx);

  typedef const unsigned* idx_iterator;
  inline idx_iterator idx_begin() const { return Indices.begin(); }
  inline idx_iterator idx_end()   const { return Indices.end(); }

  Value *getAggregateOperand() {
    return getOperand(0);
  }
  const Value *getAggregateOperand() const {
    return getOperand(0);
  }
  static unsigned getAggregateOperandIndex() {
    return 0U;                      // get index for modifying correct operand
  }

  unsigned getNumIndices() const {  // Note: always non-negative
    return (unsigned)Indices.size();
  }

  bool hasIndices() const {
    return true;
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ExtractValueInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ExtractValue;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template<typename InputIterator>
ExtractValueInst::ExtractValueInst(Value *Agg,
                                   InputIterator IdxBegin,
                                   InputIterator IdxEnd,
                                   const std::string &NameStr,
                                   Instruction *InsertBefore)
  : UnaryInstruction(checkType(getIndexedType(Agg->getType(),
                                              IdxBegin, IdxEnd)),
                     ExtractValue, Agg, InsertBefore) {
  init(IdxBegin, IdxEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}
template<typename InputIterator>
ExtractValueInst::ExtractValueInst(Value *Agg,
                                   InputIterator IdxBegin,
                                   InputIterator IdxEnd,
                                   const std::string &NameStr,
                                   BasicBlock *InsertAtEnd)
  : UnaryInstruction(checkType(getIndexedType(Agg->getType(),
                                              IdxBegin, IdxEnd)),
                     ExtractValue, Agg, InsertAtEnd) {
  init(IdxBegin, IdxEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}


//===----------------------------------------------------------------------===//
//                                InsertValueInst Class
//===----------------------------------------------------------------------===//

/// InsertValueInst - This instruction inserts a struct field of array element
/// value into an aggregate value.
///
class InsertValueInst : public Instruction {
  SmallVector<unsigned, 4> Indices;

  void *operator new(size_t, unsigned); // Do not implement
  InsertValueInst(const InsertValueInst &IVI);
  void init(Value *Agg, Value *Val, const unsigned *Idx, unsigned NumIdx,
            const std::string &NameStr);
  void init(Value *Agg, Value *Val, unsigned Idx, const std::string &NameStr);

  template<typename InputIterator>
  void init(Value *Agg, Value *Val,
            InputIterator IdxBegin, InputIterator IdxEnd,
            const std::string &NameStr,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));

    // There's no fundamental reason why we require at least one index
    // (other than weirdness with &*IdxBegin being invalid; see
    // getelementptr's init routine for example). But there's no
    // present need to support it.
    assert(NumIdx > 0 && "InsertValueInst must have at least one index");

    // This requires that the iterator points to contiguous memory.
    init(Agg, Val, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
                                              // we have to build an array here
  }

  /// Constructors - Create a insertvalue instruction with a base aggregate
  /// value, a value to insert, and a list of indices.  The first ctor can
  /// optionally insert before an existing instruction, the second appends
  /// the new instruction to the specified BasicBlock.
  template<typename InputIterator>
  inline InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin,
                         InputIterator IdxEnd,
                         const std::string &NameStr,
                         Instruction *InsertBefore);
  template<typename InputIterator>
  inline InsertValueInst(Value *Agg, Value *Val,
                         InputIterator IdxBegin, InputIterator IdxEnd,
                         const std::string &NameStr, BasicBlock *InsertAtEnd);

  /// Constructors - These two constructors are convenience methods because one
  /// and two index insertvalue instructions are so common.
  InsertValueInst(Value *Agg, Value *Val,
                  unsigned Idx, const std::string &NameStr = "",
                  Instruction *InsertBefore = 0);
  InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
                  const std::string &NameStr, BasicBlock *InsertAtEnd);
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  template<typename InputIterator>
  static InsertValueInst *Create(Value *Agg, Value *Val, InputIterator IdxBegin,
                                 InputIterator IdxEnd,
                                 const std::string &NameStr = "",
                                 Instruction *InsertBefore = 0) {
    return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
                               NameStr, InsertBefore);
  }
  template<typename InputIterator>
  static InsertValueInst *Create(Value *Agg, Value *Val,
                                 InputIterator IdxBegin, InputIterator IdxEnd,
                                 const std::string &NameStr,
                                 BasicBlock *InsertAtEnd) {
    return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
                               NameStr, InsertAtEnd);
  }

  /// Constructors - These two creators are convenience methods because one
  /// index insertvalue instructions are much more common than those with
  /// more than one.
  static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
                                 const std::string &NameStr = "",
                                 Instruction *InsertBefore = 0) {
    return new InsertValueInst(Agg, Val, Idx, NameStr, InsertBefore);
  }
  static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
                                 const std::string &NameStr,
                                 BasicBlock *InsertAtEnd) {
    return new InsertValueInst(Agg, Val, Idx, NameStr, InsertAtEnd);
  }

  virtual InsertValueInst *clone() const;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // getType - Overload to return most specific pointer type...
  const PointerType *getType() const {
    return reinterpret_cast<const PointerType*>(Instruction::getType());
  }

  typedef const unsigned* idx_iterator;
  inline idx_iterator idx_begin() const { return Indices.begin(); }
  inline idx_iterator idx_end()   const { return Indices.end(); }

  Value *getAggregateOperand() {
    return getOperand(0);
  }
  const Value *getAggregateOperand() const {
    return getOperand(0);
  }
  static unsigned getAggregateOperandIndex() {
    return 0U;                      // get index for modifying correct operand
  }

  Value *getInsertedValueOperand() {
    return getOperand(1);
  }
  const Value *getInsertedValueOperand() const {
    return getOperand(1);
  }
  static unsigned getInsertedValueOperandIndex() {
    return 1U;                      // get index for modifying correct operand
  }

  unsigned getNumIndices() const {  // Note: always non-negative
    return (unsigned)Indices.size();
  }

  bool hasIndices() const {
    return true;
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InsertValueInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::InsertValue;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<InsertValueInst> : FixedNumOperandTraits<2> {
};

template<typename InputIterator>
InsertValueInst::InsertValueInst(Value *Agg,
                                 Value *Val,
                                 InputIterator IdxBegin,
                                 InputIterator IdxEnd,
                                 const std::string &NameStr,
                                 Instruction *InsertBefore)
  : Instruction(Agg->getType(), InsertValue,
                OperandTraits<InsertValueInst>::op_begin(this),
                2, InsertBefore) {
  init(Agg, Val, IdxBegin, IdxEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}
template<typename InputIterator>
InsertValueInst::InsertValueInst(Value *Agg,
                                 Value *Val,
                                 InputIterator IdxBegin,
                                 InputIterator IdxEnd,
                                 const std::string &NameStr,
                                 BasicBlock *InsertAtEnd)
  : Instruction(Agg->getType(), InsertValue,
                OperandTraits<InsertValueInst>::op_begin(this),
                2, InsertAtEnd) {
  init(Agg, Val, IdxBegin, IdxEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)

//===----------------------------------------------------------------------===//
//                               PHINode Class
//===----------------------------------------------------------------------===//

// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
  /// ReservedSpace - The number of operands actually allocated.  NumOperands is
  /// the number actually in use.
  unsigned ReservedSpace;
  PHINode(const PHINode &PN);
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
  explicit PHINode(const Type *Ty, const std::string &NameStr = "",
                   Instruction *InsertBefore = 0)
    : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore),
      ReservedSpace(0) {
    setName(NameStr);
  }

  PHINode(const Type *Ty, const std::string &NameStr, BasicBlock *InsertAtEnd)
    : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd),
      ReservedSpace(0) {
    setName(NameStr);
  }
public:
  static PHINode *Create(const Type *Ty, const std::string &NameStr = "",
                         Instruction *InsertBefore = 0) {
    return new PHINode(Ty, NameStr, InsertBefore);
  }
  static PHINode *Create(const Type *Ty, const std::string &NameStr,
                         BasicBlock *InsertAtEnd) {
    return new PHINode(Ty, NameStr, InsertAtEnd);
  }
  ~PHINode();

  /// reserveOperandSpace - This method can be used to avoid repeated
  /// reallocation of PHI operand lists by reserving space for the correct
  /// number of operands before adding them.  Unlike normal vector reserves,
  /// this method can also be used to trim the operand space.
  void reserveOperandSpace(unsigned NumValues) {
    resizeOperands(NumValues*2);
  }

  virtual PHINode *clone() const;

  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getNumIncomingValues - Return the number of incoming edges
  ///
  unsigned getNumIncomingValues() const { return getNumOperands()/2; }

  /// getIncomingValue - Return incoming value number x
  ///
  Value *getIncomingValue(unsigned i) const {
    assert(i*2 < getNumOperands() && "Invalid value number!");
    return getOperand(i*2);
  }
  void setIncomingValue(unsigned i, Value *V) {
    assert(i*2 < getNumOperands() && "Invalid value number!");
    setOperand(i*2, V);
  }
  unsigned getOperandNumForIncomingValue(unsigned i) {
    return i*2;
  }

  /// getIncomingBlock - Return incoming basic block corresponding
  /// to value use iterator
  ///
  template <typename U>
  BasicBlock *getIncomingBlock(value_use_iterator<U> I) const {
    assert(this == *I && "Iterator doesn't point to PHI's Uses?");
    return static_cast<BasicBlock*>((&I.getUse() + 1)->get());
  }
  /// getIncomingBlock - Return incoming basic block number x
  ///
  BasicBlock *getIncomingBlock(unsigned i) const {
    return static_cast<BasicBlock*>(getOperand(i*2+1));
  }
  void setIncomingBlock(unsigned i, BasicBlock *BB) {
    setOperand(i*2+1, BB);
  }
  unsigned getOperandNumForIncomingBlock(unsigned i) {
    return i*2+1;
  }

  /// addIncoming - Add an incoming value to the end of the PHI list
  ///
  void addIncoming(Value *V, BasicBlock *BB) {
    assert(V && "PHI node got a null value!");
    assert(BB && "PHI node got a null basic block!");
    assert(getType() == V->getType() &&
           "All operands to PHI node must be the same type as the PHI node!");
    unsigned OpNo = NumOperands;
    if (OpNo+2 > ReservedSpace)
      resizeOperands(0);  // Get more space!
    // Initialize some new operands.
    NumOperands = OpNo+2;
    OperandList[OpNo] = V;
    OperandList[OpNo+1] = BB;
  }

  /// removeIncomingValue - Remove an incoming value.  This is useful if a
  /// predecessor basic block is deleted.  The value removed is returned.
  ///
  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
  /// is true), the PHI node is destroyed and any uses of it are replaced with
  /// dummy values.  The only time there should be zero incoming values to a PHI
  /// node is when the block is dead, so this strategy is sound.
  ///
  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);

  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
    int Idx = getBasicBlockIndex(BB);
    assert(Idx >= 0 && "Invalid basic block argument to remove!");
    return removeIncomingValue(Idx, DeletePHIIfEmpty);
  }

  /// getBasicBlockIndex - Return the first index of the specified basic
  /// block in the value list for this PHI.  Returns -1 if no instance.
  ///
  int getBasicBlockIndex(const BasicBlock *BB) const {
    Use *OL = OperandList;
    for (unsigned i = 0, e = getNumOperands(); i != e; i += 2)
      if (OL[i+1].get() == BB) return i/2;
    return -1;
  }

  Value *getIncomingValueForBlock(const BasicBlock *BB) const {
    return getIncomingValue(getBasicBlockIndex(BB));
  }

  /// hasConstantValue - If the specified PHI node always merges together the
  /// same value, return the value, otherwise return null.
  ///
  Value *hasConstantValue(bool AllowNonDominatingInstruction = false) const;

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PHINode *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::PHI;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
 private:
  void resizeOperands(unsigned NumOperands);
};

template <>
struct OperandTraits<PHINode> : HungoffOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)


//===----------------------------------------------------------------------===//
//                               ReturnInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function.  Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
  ReturnInst(const ReturnInst &RI);

private:
  // ReturnInst constructors:
  // ReturnInst()                  - 'ret void' instruction
  // ReturnInst(    null)          - 'ret void' instruction
  // ReturnInst(Value* X)          - 'ret X'    instruction
  // ReturnInst(    null, Inst *I) - 'ret void' instruction, insert before I
  // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
  // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of B
  // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of B
  //
  // NOTE: If the Value* passed is of type void then the constructor behaves as
  // if it was passed NULL.
  explicit ReturnInst(Value *retVal = 0, Instruction *InsertBefore = 0);
  ReturnInst(Value *retVal, BasicBlock *InsertAtEnd);
  explicit ReturnInst(BasicBlock *InsertAtEnd);
public:
  static ReturnInst* Create(Value *retVal = 0, Instruction *InsertBefore = 0) {
    return new(!!retVal) ReturnInst(retVal, InsertBefore);
  }
  static ReturnInst* Create(Value *retVal, BasicBlock *InsertAtEnd) {
    return new(!!retVal) ReturnInst(retVal, InsertAtEnd);
  }
  static ReturnInst* Create(BasicBlock *InsertAtEnd) {
    return new(0) ReturnInst(InsertAtEnd);
  }
  virtual ~ReturnInst();

  virtual ReturnInst *clone() const;

  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Convenience accessor
  Value *getReturnValue(unsigned n = 0) const {
    return n < getNumOperands()
      ? getOperand(n)
      : 0;
  }

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ReturnInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Ret);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
 private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

template <>
struct OperandTraits<ReturnInst> : OptionalOperandTraits<> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)

//===----------------------------------------------------------------------===//
//                               BranchInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
  /// Ops list - Branches are strange.  The operands are ordered:
  ///  TrueDest, FalseDest, Cond.  This makes some accessors faster because
  /// they don't have to check for cond/uncond branchness.
  BranchInst(const BranchInst &BI);
  void AssertOK();
  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
  // BranchInst(BB *B)                           - 'br B'
  // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
  // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
  // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
  // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
  explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0);
  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
             Instruction *InsertBefore = 0);
  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
             BasicBlock *InsertAtEnd);
public:
  static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) {
    return new(1) BranchInst(IfTrue, InsertBefore);
  }
  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
                            Value *Cond, Instruction *InsertBefore = 0) {
    return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
  }
  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
    return new(1) BranchInst(IfTrue, InsertAtEnd);
  }
  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
                            Value *Cond, BasicBlock *InsertAtEnd) {
    return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
  }

  ~BranchInst() {
    if (NumOperands == 1)
      NumOperands = (unsigned)((Use*)this - OperandList);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  virtual BranchInst *clone() const;

  bool isUnconditional() const { return getNumOperands() == 1; }
  bool isConditional()   const { return getNumOperands() == 3; }

  Value *getCondition() const {
    assert(isConditional() && "Cannot get condition of an uncond branch!");
    return getOperand(2);
  }

  void setCondition(Value *V) {
    assert(isConditional() && "Cannot set condition of unconditional branch!");
    setOperand(2, V);
  }

  // setUnconditionalDest - Change the current branch to an unconditional branch
  // targeting the specified block.
  // FIXME: Eliminate this ugly method.
  void setUnconditionalDest(BasicBlock *Dest) {
    Op<0>() = Dest;
    if (isConditional()) {  // Convert this to an uncond branch.
      Op<1>().set(0);
      Op<2>().set(0);
      NumOperands = 1;
    }
  }

  unsigned getNumSuccessors() const { return 1+isConditional(); }

  BasicBlock *getSuccessor(unsigned i) const {
    assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
    return cast_or_null<BasicBlock>(getOperand(i));
  }

  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
    setOperand(idx, NewSucc);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BranchInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Br);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

template <>
struct OperandTraits<BranchInst> : HungoffOperandTraits<> {
  // we need to access operands via OperandList, since
  // the NumOperands may change from 3 to 1
  static inline void *allocate(unsigned); // FIXME
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)

//===----------------------------------------------------------------------===//
//                               SwitchInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
  unsigned ReservedSpace;
  // Operand[0]    = Value to switch on
  // Operand[1]    = Default basic block destination
  // Operand[2n  ] = Value to match
  // Operand[2n+1] = BasicBlock to go to on match
  SwitchInst(const SwitchInst &RI);
  void init(Value *Value, BasicBlock *Default, unsigned NumCases);
  void resizeOperands(unsigned No);
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
  /// SwitchInst ctor - Create a new switch instruction, specifying a value to
  /// switch on and a default destination.  The number of additional cases can
  /// be specified here to make memory allocation more efficient.  This
  /// constructor can also autoinsert before another instruction.
  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
             Instruction *InsertBefore = 0);

  /// SwitchInst ctor - Create a new switch instruction, specifying a value to
  /// switch on and a default destination.  The number of additional cases can
  /// be specified here to make memory allocation more efficient.  This
  /// constructor also autoinserts at the end of the specified BasicBlock.
  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
             BasicBlock *InsertAtEnd);
public:
  static SwitchInst *Create(Value *Value, BasicBlock *Default,
                            unsigned NumCases, Instruction *InsertBefore = 0) {
    return new SwitchInst(Value, Default, NumCases, InsertBefore);
  }
  static SwitchInst *Create(Value *Value, BasicBlock *Default,
                            unsigned NumCases, BasicBlock *InsertAtEnd) {
    return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
  }
  ~SwitchInst();

  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Accessor Methods for Switch stmt
  Value *getCondition() const { return getOperand(0); }
  void setCondition(Value *V) { setOperand(0, V); }

  BasicBlock *getDefaultDest() const {
    return cast<BasicBlock>(getOperand(1));
  }

  /// getNumCases - return the number of 'cases' in this switch instruction.
  /// Note that case #0 is always the default case.
  unsigned getNumCases() const {
    return getNumOperands()/2;
  }

  /// getCaseValue - Return the specified case value.  Note that case #0, the
  /// default destination, does not have a case value.
  ConstantInt *getCaseValue(unsigned i) {
    assert(i && i < getNumCases() && "Illegal case value to get!");
    return getSuccessorValue(i);
  }

  /// getCaseValue - Return the specified case value.  Note that case #0, the
  /// default destination, does not have a case value.
  const ConstantInt *getCaseValue(unsigned i) const {
    assert(i && i < getNumCases() && "Illegal case value to get!");
    return getSuccessorValue(i);
  }

  /// findCaseValue - Search all of the case values for the specified constant.
  /// If it is explicitly handled, return the case number of it, otherwise
  /// return 0 to indicate that it is handled by the default handler.
  unsigned findCaseValue(const ConstantInt *C) const {
    for (unsigned i = 1, e = getNumCases(); i != e; ++i)
      if (getCaseValue(i) == C)
        return i;
    return 0;
  }

  /// findCaseDest - Finds the unique case value for a given successor. Returns
  /// null if the successor is not found, not unique, or is the default case.
  ConstantInt *findCaseDest(BasicBlock *BB) {
    if (BB == getDefaultDest()) return NULL;

    ConstantInt *CI = NULL;
    for (unsigned i = 1, e = getNumCases(); i != e; ++i) {
      if (getSuccessor(i) == BB) {
        if (CI) return NULL;   // Multiple cases lead to BB.
        else CI = getCaseValue(i);
      }
    }
    return CI;
  }

  /// addCase - Add an entry to the switch instruction...
  ///
  void addCase(ConstantInt *OnVal, BasicBlock *Dest);

  /// removeCase - This method removes the specified successor from the switch
  /// instruction.  Note that this cannot be used to remove the default
  /// destination (successor #0).
  ///
  void removeCase(unsigned idx);

  virtual SwitchInst *clone() const;

  unsigned getNumSuccessors() const { return getNumOperands()/2; }
  BasicBlock *getSuccessor(unsigned idx) const {
    assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
    return cast<BasicBlock>(getOperand(idx*2+1));
  }
  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
    setOperand(idx*2+1, NewSucc);
  }

  // getSuccessorValue - Return the value associated with the specified
  // successor.
  ConstantInt *getSuccessorValue(unsigned idx) const {
    assert(idx < getNumSuccessors() && "Successor # out of range!");
    return reinterpret_cast<ConstantInt*>(getOperand(idx*2));
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SwitchInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Switch;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

template <>
struct OperandTraits<SwitchInst> : HungoffOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)


//===----------------------------------------------------------------------===//
//                               InvokeInst Class
//===----------------------------------------------------------------------===//

/// InvokeInst - Invoke instruction.  The SubclassData field is used to hold the
/// calling convention of the call.
///
class InvokeInst : public TerminatorInst {
  AttrListPtr AttributeList;
  InvokeInst(const InvokeInst &BI);
  void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
            Value* const *Args, unsigned NumArgs);

  template<typename InputIterator>
  void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
            InputIterator ArgBegin, InputIterator ArgEnd,
            const std::string &NameStr,
            // This argument ensures that we have an iterator we can
            // do arithmetic on in constant time
            std::random_access_iterator_tag) {
    unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);

    // This requires that the iterator points to contiguous memory.
    init(Func, IfNormal, IfException, NumArgs ? &*ArgBegin : 0, NumArgs);
    setName(NameStr);
  }

  /// Construct an InvokeInst given a range of arguments.
  /// InputIterator must be a random-access iterator pointing to
  /// contiguous storage (e.g. a std::vector<>::iterator).  Checks are
  /// made for random-accessness but not for contiguous storage as
  /// that would incur runtime overhead.
  ///
  /// @brief Construct an InvokeInst from a range of arguments
  template<typename InputIterator>
  inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
                    InputIterator ArgBegin, InputIterator ArgEnd,
                    unsigned Values,
                    const std::string &NameStr, Instruction *InsertBefore);

  /// Construct an InvokeInst given a range of arguments.
  /// InputIterator must be a random-access iterator pointing to
  /// contiguous storage (e.g. a std::vector<>::iterator).  Checks are
  /// made for random-accessness but not for contiguous storage as
  /// that would incur runtime overhead.
  ///
  /// @brief Construct an InvokeInst from a range of arguments
  template<typename InputIterator>
  inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
                    InputIterator ArgBegin, InputIterator ArgEnd,
                    unsigned Values,
                    const std::string &NameStr, BasicBlock *InsertAtEnd);
public:
  template<typename InputIterator>
  static InvokeInst *Create(Value *Func,
                            BasicBlock *IfNormal, BasicBlock *IfException,
                            InputIterator ArgBegin, InputIterator ArgEnd,
                            const std::string &NameStr = "",
                            Instruction *InsertBefore = 0) {
    unsigned Values(ArgEnd - ArgBegin + 3);
    return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
                                  Values, NameStr, InsertBefore);
  }
  template<typename InputIterator>
  static InvokeInst *Create(Value *Func,
                            BasicBlock *IfNormal, BasicBlock *IfException,
                            InputIterator ArgBegin, InputIterator ArgEnd,
                            const std::string &NameStr,
                            BasicBlock *InsertAtEnd) {
    unsigned Values(ArgEnd - ArgBegin + 3);
    return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
                                  Values, NameStr, InsertAtEnd);
  }

  virtual InvokeInst *clone() const;

  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getCallingConv/setCallingConv - Get or set the calling convention of this
  /// function call.
  unsigned getCallingConv() const { return SubclassData; }
  void setCallingConv(unsigned CC) {
    SubclassData = CC;
  }

  /// getAttributes - Return the parameter attributes for this invoke.
  ///
  const AttrListPtr &getAttributes() const { return AttributeList; }

  /// setAttributes - Set the parameter attributes for this invoke.
  ///
  void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }

  /// addAttribute - adds the attribute to the list of attributes.
  void addAttribute(unsigned i, Attributes attr);

  /// removeAttribute - removes the attribute from the list of attributes.
  void removeAttribute(unsigned i, Attributes attr);

  /// @brief Determine whether the call or the callee has the given attribute.
  bool paramHasAttr(unsigned i, Attributes attr) const;

  /// @brief Extract the alignment for a call or parameter (0=unknown).
  unsigned getParamAlignment(unsigned i) const {
    return AttributeList.getParamAlignment(i);
  }

  /// @brief Determine if the call does not access memory.
  bool doesNotAccessMemory() const {
    return paramHasAttr(0, Attribute::ReadNone);
  }
  void setDoesNotAccessMemory(bool NotAccessMemory = true) {
    if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
    else removeAttribute(~0, Attribute::ReadNone);
  }

  /// @brief Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
  }
  void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
    if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
    else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
  }

  /// @brief Determine if the call cannot return.
  bool doesNotReturn() const {
    return paramHasAttr(~0, Attribute::NoReturn);
  }
  void setDoesNotReturn(bool DoesNotReturn = true) {
    if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
    else removeAttribute(~0, Attribute::NoReturn);
  }

  /// @brief Determine if the call cannot unwind.
  bool doesNotThrow() const {
    return paramHasAttr(~0, Attribute::NoUnwind);
  }
  void setDoesNotThrow(bool DoesNotThrow = true) {
    if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
    else removeAttribute(~0, Attribute::NoUnwind);
  }

  /// @brief Determine if the call returns a structure through first
  /// pointer argument.
  bool hasStructRetAttr() const {
    // Be friendly and also check the callee.
    return paramHasAttr(1, Attribute::StructRet);
  }

  /// @brief Determine if any call argument is an aggregate passed by value.
  bool hasByValArgument() const {
    return AttributeList.hasAttrSomewhere(Attribute::ByVal);
  }

  /// getCalledFunction - Return the function called, or null if this is an
  /// indirect function invocation.
  ///
  Function *getCalledFunction() const {
    return dyn_cast<Function>(getOperand(0));
  }

  /// getCalledValue - Get a pointer to the function that is invoked by this
  /// instruction
  const Value *getCalledValue() const { return getOperand(0); }
        Value *getCalledValue()       { return getOperand(0); }

  // get*Dest - Return the destination basic blocks...
  BasicBlock *getNormalDest() const {
    return cast<BasicBlock>(getOperand(1));
  }
  BasicBlock *getUnwindDest() const {
    return cast<BasicBlock>(getOperand(2));
  }
  void setNormalDest(BasicBlock *B) {
    setOperand(1, B);
  }

  void setUnwindDest(BasicBlock *B) {
    setOperand(2, B);
  }

  BasicBlock *getSuccessor(unsigned i) const {
    assert(i < 2 && "Successor # out of range for invoke!");
    return i == 0 ? getNormalDest() : getUnwindDest();
  }

  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
    assert(idx < 2 && "Successor # out of range for invoke!");
    setOperand(idx+1, NewSucc);
  }

  unsigned getNumSuccessors() const { return 2; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const InvokeInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return (I->getOpcode() == Instruction::Invoke);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

template <>
struct OperandTraits<InvokeInst> : VariadicOperandTraits<3> {
};

template<typename InputIterator>
InvokeInst::InvokeInst(Value *Func,
                       BasicBlock *IfNormal, BasicBlock *IfException,
                       InputIterator ArgBegin, InputIterator ArgEnd,
                       unsigned Values,
                       const std::string &NameStr, Instruction *InsertBefore)
  : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
                                      ->getElementType())->getReturnType(),
                   Instruction::Invoke,
                   OperandTraits<InvokeInst>::op_end(this) - Values,
                   Values, InsertBefore) {
  init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}
template<typename InputIterator>
InvokeInst::InvokeInst(Value *Func,
                       BasicBlock *IfNormal, BasicBlock *IfException,
                       InputIterator ArgBegin, InputIterator ArgEnd,
                       unsigned Values,
                       const std::string &NameStr, BasicBlock *InsertAtEnd)
  : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
                                      ->getElementType())->getReturnType(),
                   Instruction::Invoke,
                   OperandTraits<InvokeInst>::op_end(this) - Values,
                   Values, InsertAtEnd) {
  init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
       typename std::iterator_traits<InputIterator>::iterator_category());
}

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)

//===----------------------------------------------------------------------===//
//                              UnwindInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// UnwindInst - Immediately exit the current function, unwinding the stack
/// until an invoke instruction is found.
///
class UnwindInst : public TerminatorInst {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
  explicit UnwindInst(Instruction *InsertBefore = 0);
  explicit UnwindInst(BasicBlock *InsertAtEnd);

  virtual UnwindInst *clone() const;

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnwindInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Unwind;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                           UnreachableInst Class
//===----------------------------------------------------------------------===//

//===---------------------------------------------------------------------------
/// UnreachableInst - This function has undefined behavior.  In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public TerminatorInst {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
public:
  // allocate space for exactly zero operands
  void *operator new(size_t s) {
    return User::operator new(s, 0);
  }
  explicit UnreachableInst(Instruction *InsertBefore = 0);
  explicit UnreachableInst(BasicBlock *InsertAtEnd);

  virtual UnreachableInst *clone() const;

  unsigned getNumSuccessors() const { return 0; }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnreachableInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Unreachable;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
private:
  virtual BasicBlock *getSuccessorV(unsigned idx) const;
  virtual unsigned getNumSuccessorsV() const;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};

//===----------------------------------------------------------------------===//
//                                 TruncInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a truncation of integer types.
class TruncInst : public CastInst {
  /// Private copy constructor
  TruncInst(const TruncInst &CI)
    : CastInst(CI.getType(), Trunc, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  TruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The (smaller) type to truncate to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  TruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The (smaller) type to truncate to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical TruncInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const TruncInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Trunc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 ZExtInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents zero extension of integer types.
class ZExtInst : public CastInst {
  /// @brief Private copy constructor
  ZExtInst(const ZExtInst &CI)
    : CastInst(CI.getType(), ZExt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  ZExtInst(
    Value *S,                     ///< The value to be zero extended
    const Type *Ty,               ///< The type to zero extend to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end semantics.
  ZExtInst(
    Value *S,                     ///< The value to be zero extended
    const Type *Ty,               ///< The type to zero extend to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical ZExtInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const ZExtInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == ZExt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 SExtInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a sign extension of integer types.
class SExtInst : public CastInst {
  /// @brief Private copy constructor
  SExtInst(const SExtInst &CI)
    : CastInst(CI.getType(), SExt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  SExtInst(
    Value *S,                     ///< The value to be sign extended
    const Type *Ty,               ///< The type to sign extend to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  SExtInst(
    Value *S,                     ///< The value to be sign extended
    const Type *Ty,               ///< The type to sign extend to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical SExtInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SExtInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == SExt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPTruncInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a truncation of floating point types.
class FPTruncInst : public CastInst {
  FPTruncInst(const FPTruncInst &CI)
    : CastInst(CI.getType(), FPTrunc, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPTruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The type to truncate to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-before-instruction semantics
  FPTruncInst(
    Value *S,                     ///< The value to be truncated
    const Type *Ty,               ///< The type to truncate to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical FPTruncInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPTruncInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPTrunc;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPExtInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents an extension of floating point types.
class FPExtInst : public CastInst {
  FPExtInst(const FPExtInst &CI)
    : CastInst(CI.getType(), FPExt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPExtInst(
    Value *S,                     ///< The value to be extended
    const Type *Ty,               ///< The type to extend to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  FPExtInst(
    Value *S,                     ///< The value to be extended
    const Type *Ty,               ///< The type to extend to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical FPExtInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPExtInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPExt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 UIToFPInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast unsigned integer to floating point.
class UIToFPInst : public CastInst {
  UIToFPInst(const UIToFPInst &CI)
    : CastInst(CI.getType(), UIToFP, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  UIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  UIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical UIToFPInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UIToFPInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == UIToFP;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 SIToFPInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from signed integer to floating point.
class SIToFPInst : public CastInst {
  SIToFPInst(const SIToFPInst &CI)
    : CastInst(CI.getType(), SIToFP, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  SIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  SIToFPInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical SIToFPInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const SIToFPInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == SIToFP;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPToUIInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from floating point to unsigned integer
class FPToUIInst  : public CastInst {
  FPToUIInst(const FPToUIInst &CI)
    : CastInst(CI.getType(), FPToUI, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPToUIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  FPToUIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
  );

  /// @brief Clone an identical FPToUIInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPToUIInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPToUI;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 FPToSIInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from floating point to signed integer.
class FPToSIInst  : public CastInst {
  FPToSIInst(const FPToSIInst &CI)
    : CastInst(CI.getType(), FPToSI, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  FPToSIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  FPToSIInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical FPToSIInst
  virtual CastInst *clone() const;

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const FPToSIInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == FPToSI;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 IntToPtrInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from an integer to a pointer.
class IntToPtrInst : public CastInst {
  IntToPtrInst(const IntToPtrInst &CI)
    : CastInst(CI.getType(), IntToPtr, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  IntToPtrInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  IntToPtrInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical IntToPtrInst
  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const IntToPtrInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == IntToPtr;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                                 PtrToIntInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a cast from a pointer to an integer
class PtrToIntInst : public CastInst {
  PtrToIntInst(const PtrToIntInst &CI)
    : CastInst(CI.getType(), PtrToInt, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  PtrToIntInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  PtrToIntInst(
    Value *S,                     ///< The value to be converted
    const Type *Ty,               ///< The type to convert to
    const std::string &NameStr,   ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical PtrToIntInst
  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const PtrToIntInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == PtrToInt;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                             BitCastInst Class
//===----------------------------------------------------------------------===//

/// @brief This class represents a no-op cast from one type to another.
class BitCastInst : public CastInst {
  BitCastInst(const BitCastInst &CI)
    : CastInst(CI.getType(), BitCast, CI.getOperand(0)) {
  }
public:
  /// @brief Constructor with insert-before-instruction semantics
  BitCastInst(
    Value *S,                     ///< The value to be casted
    const Type *Ty,               ///< The type to casted to
    const std::string &NameStr = "", ///< A name for the new instruction
    Instruction *InsertBefore = 0 ///< Where to insert the new instruction
  );

  /// @brief Constructor with insert-at-end-of-block semantics
  BitCastInst(
    Value *S,                     ///< The value to be casted
    const Type *Ty,               ///< The type to casted to
    const std::string &NameStr,      ///< A name for the new instruction
    BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
  );

  /// @brief Clone an identical BitCastInst
  virtual CastInst *clone() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BitCastInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == BitCast;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

} // End llvm namespace

#endif