aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Object/ELFTypes.h
blob: 4bc0c7c2016ed5ee680754d0d5b8503fed2003e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
//===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_OBJECT_ELFTYPES_H
#define LLVM_OBJECT_ELFTYPES_H

#include "llvm/Support/AlignOf.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"

namespace llvm {
namespace object {

using support::endianness;

template <endianness target_endianness, std::size_t max_alignment,
          bool is64Bits>
struct ELFType {
  static const endianness TargetEndianness = target_endianness;
  static const std::size_t MaxAlignment = max_alignment;
  static const bool Is64Bits = is64Bits;
};

template <typename T, int max_align> struct MaximumAlignment {
  enum { value = AlignOf<T>::Alignment > max_align ? max_align
                                                   : AlignOf<T>::Alignment
  };
};

// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
template <endianness target_endianness, std::size_t max_alignment>
struct ELFDataTypeTypedefHelperCommon {
  typedef support::detail::packed_endian_specific_integral<
      uint16_t, target_endianness,
      MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
  typedef support::detail::packed_endian_specific_integral<
      uint32_t, target_endianness,
      MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
  typedef support::detail::packed_endian_specific_integral<
      int32_t, target_endianness,
      MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
  typedef support::detail::packed_endian_specific_integral<
      uint64_t, target_endianness,
      MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
  typedef support::detail::packed_endian_specific_integral<
      int64_t, target_endianness,
      MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
};

template <class ELFT> struct ELFDataTypeTypedefHelper;

/// ELF 32bit types.
template <endianness TargetEndianness, std::size_t MaxAlign>
struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, false> >
    : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
  typedef uint32_t value_type;
  typedef support::detail::packed_endian_specific_integral<
      value_type, TargetEndianness,
      MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
  typedef support::detail::packed_endian_specific_integral<
      value_type, TargetEndianness,
      MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
};

/// ELF 64bit types.
template <endianness TargetEndianness, std::size_t MaxAlign>
struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, true> >
    : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
  typedef uint64_t value_type;
  typedef support::detail::packed_endian_specific_integral<
      value_type, TargetEndianness,
      MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
  typedef support::detail::packed_endian_specific_integral<
      value_type, TargetEndianness,
      MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
};

// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES(E, M, W)                                         \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Addr         \
    Elf_Addr;                                                                  \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Off          \
    Elf_Off;                                                                   \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Half         \
    Elf_Half;                                                                  \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Word         \
    Elf_Word;                                                                  \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Sword        \
    Elf_Sword;                                                                 \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Xword        \
    Elf_Xword;                                                                 \
typedef typename ELFDataTypeTypedefHelper<ELFType<E, M, W> >::Elf_Sxword       \
    Elf_Sxword;

#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
  LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::MaxAlignment,            \
                        ELFT::Is64Bits)

// Section header.
template <class ELFT> struct Elf_Shdr_Base;

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, false> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
  Elf_Word sh_name;      // Section name (index into string table)
  Elf_Word sh_type;      // Section type (SHT_*)
  Elf_Word sh_flags;     // Section flags (SHF_*)
  Elf_Addr sh_addr;      // Address where section is to be loaded
  Elf_Off sh_offset;     // File offset of section data, in bytes
  Elf_Word sh_size;      // Size of section, in bytes
  Elf_Word sh_link;      // Section type-specific header table index link
  Elf_Word sh_info;      // Section type-specific extra information
  Elf_Word sh_addralign; // Section address alignment
  Elf_Word sh_entsize;   // Size of records contained within the section
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, true> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
  Elf_Word sh_name;       // Section name (index into string table)
  Elf_Word sh_type;       // Section type (SHT_*)
  Elf_Xword sh_flags;     // Section flags (SHF_*)
  Elf_Addr sh_addr;       // Address where section is to be loaded
  Elf_Off sh_offset;      // File offset of section data, in bytes
  Elf_Xword sh_size;      // Size of section, in bytes
  Elf_Word sh_link;       // Section type-specific header table index link
  Elf_Word sh_info;       // Section type-specific extra information
  Elf_Xword sh_addralign; // Section address alignment
  Elf_Xword sh_entsize;   // Size of records contained within the section
};

template <class ELFT>
struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
  using Elf_Shdr_Base<ELFT>::sh_entsize;
  using Elf_Shdr_Base<ELFT>::sh_size;

  /// @brief Get the number of entities this section contains if it has any.
  unsigned getEntityCount() const {
    if (sh_entsize == 0)
      return 0;
    return sh_size / sh_entsize;
  }
};

template <class ELFT> struct Elf_Sym_Base;

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, false> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
  Elf_Word st_name;       // Symbol name (index into string table)
  Elf_Addr st_value;      // Value or address associated with the symbol
  Elf_Word st_size;       // Size of the symbol
  unsigned char st_info;  // Symbol's type and binding attributes
  unsigned char st_other; // Must be zero; reserved
  Elf_Half st_shndx;      // Which section (header table index) it's defined in
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, true> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
  Elf_Word st_name;       // Symbol name (index into string table)
  unsigned char st_info;  // Symbol's type and binding attributes
  unsigned char st_other; // Must be zero; reserved
  Elf_Half st_shndx;      // Which section (header table index) it's defined in
  Elf_Addr st_value;      // Value or address associated with the symbol
  Elf_Xword st_size;      // Size of the symbol
};

template <class ELFT>
struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
  using Elf_Sym_Base<ELFT>::st_info;
  using Elf_Sym_Base<ELFT>::st_other;

  // These accessors and mutators correspond to the ELF32_ST_BIND,
  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
  unsigned char getBinding() const { return st_info >> 4; }
  unsigned char getType() const { return st_info & 0x0f; }
  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
  void setBindingAndType(unsigned char b, unsigned char t) {
    st_info = (b << 4) + (t & 0x0f);
  }

  /// Access to the STV_xxx flag stored in the first two bits of st_other.
  unsigned char getVisibility() const { return st_other & 0x3; }
};

/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
/// (.gnu.version). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Versym_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
};

template <class ELFT> struct Elf_Verdaux_Impl;

/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdef_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
  Elf_Half vd_cnt;     // Number of Verdaux entries
  Elf_Word vd_hash;    // Hash of name
  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)

  /// Get the first Verdaux entry for this Verdef.
  const Elf_Verdaux *getAux() const {
    return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
  }
};

/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdaux_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word vda_name; // Version name (offset in string table)
  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
};

/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verneed_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
  Elf_Half vn_cnt;     // Number of associated Vernaux entries
  Elf_Word vn_file;    // Library name (string table offset)
  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
};

/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Vernaux_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word vna_hash;  // Hash of dependency name
  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
  Elf_Half vna_other; // Version index, used in .gnu.version entries
  Elf_Word vna_name;  // Dependency name
  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
};

/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
///               table section (.dynamic) look like.
template <class ELFT> struct Elf_Dyn_Base;

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, false> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
  Elf_Sword d_tag;
  union {
    Elf_Word d_val;
    Elf_Addr d_ptr;
  } d_un;
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, true> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
  Elf_Sxword d_tag;
  union {
    Elf_Xword d_val;
    Elf_Addr d_ptr;
  } d_un;
};

/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
template <class ELFT>
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
  using Elf_Dyn_Base<ELFT>::d_tag;
  using Elf_Dyn_Base<ELFT>::d_un;
  int64_t getTag() const { return d_tag; }
  uint64_t getVal() const { return d_un.d_val; }
  uint64_t getPtr() const { return d_un.ptr; }
};

// Elf_Rel: Elf Relocation
template <class ELFT, bool isRela> struct Elf_Rel_Base;

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, false> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
  Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
  Elf_Word r_info;   // Symbol table index and type of relocation to apply

  uint32_t getRInfo(bool isMips64EL) const {
    assert(!isMips64EL);
    return r_info;
  }
  void setRInfo(uint32_t R) { r_info = R; }
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, false> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
  Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
  Elf_Xword r_info;  // Symbol table index and type of relocation to apply

  uint64_t getRInfo(bool isMips64EL) const {
    uint64_t t = r_info;
    if (!isMips64EL)
      return t;
    // Mips64 little endian has a "special" encoding of r_info. Instead of one
    // 64 bit little endian number, it is a little endian 32 bit number followed
    // by a 32 bit big endian number.
    return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
           ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
  }
  void setRInfo(uint64_t R) {
    // FIXME: Add mips64el support.
    r_info = R;
  }
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, true> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
  Elf_Addr r_offset;  // Location (file byte offset, or program virtual addr)
  Elf_Word r_info;    // Symbol table index and type of relocation to apply
  Elf_Sword r_addend; // Compute value for relocatable field by adding this

  uint32_t getRInfo(bool isMips64EL) const {
    assert(!isMips64EL);
    return r_info;
  }
  void setRInfo(uint32_t R) { r_info = R; }
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, true> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
  Elf_Addr r_offset;   // Location (file byte offset, or program virtual addr)
  Elf_Xword r_info;    // Symbol table index and type of relocation to apply
  Elf_Sxword r_addend; // Compute value for relocatable field by adding this.

  uint64_t getRInfo(bool isMips64EL) const {
    // Mips64 little endian has a "special" encoding of r_info. Instead of one
    // 64 bit little endian number, it is a little endian 32 bit number followed
    // by a 32 bit big endian number.
    uint64_t t = r_info;
    if (!isMips64EL)
      return t;
    return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
           ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
  }
  void setRInfo(uint64_t R) {
    // FIXME: Add mips64el support.
    r_info = R;
  }
};

template <class ELFT, bool isRela> struct Elf_Rel_Impl;

template <endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, true>,
                    isRela> : Elf_Rel_Base<
    ELFType<TargetEndianness, MaxAlign, true>, isRela> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)

  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  // and ELF64_R_INFO macros defined in the ELF specification:
  uint32_t getSymbol(bool isMips64EL) const {
    return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
  }
  uint32_t getType(bool isMips64EL) const {
    return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
  }
  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
  void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
  void setSymbolAndType(uint32_t s, uint32_t t) {
    this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL));
  }
};

template <endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, false>,
                    isRela> : Elf_Rel_Base<
    ELFType<TargetEndianness, MaxAlign, false>, isRela> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)

  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  // and ELF32_R_INFO macros defined in the ELF specification:
  uint32_t getSymbol(bool isMips64EL) const {
    return this->getRInfo(isMips64EL) >> 8;
  }
  unsigned char getType(bool isMips64EL) const {
    return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
  }
  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
  void setSymbolAndType(uint32_t s, unsigned char t) {
    this->setRInfo((s << 8) + t);
  }
};

template <class ELFT>
struct Elf_Ehdr_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
  Elf_Half e_type;                       // Type of file (see ET_*)
  Elf_Half e_machine;   // Required architecture for this file (see EM_*)
  Elf_Word e_version;   // Must be equal to 1
  Elf_Addr e_entry;     // Address to jump to in order to start program
  Elf_Off e_phoff;      // Program header table's file offset, in bytes
  Elf_Off e_shoff;      // Section header table's file offset, in bytes
  Elf_Word e_flags;     // Processor-specific flags
  Elf_Half e_ehsize;    // Size of ELF header, in bytes
  Elf_Half e_phentsize; // Size of an entry in the program header table
  Elf_Half e_phnum;     // Number of entries in the program header table
  Elf_Half e_shentsize; // Size of an entry in the section header table
  Elf_Half e_shnum;     // Number of entries in the section header table
  Elf_Half e_shstrndx;  // Section header table index of section name
                        // string table
  bool checkMagic() const {
    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
  }
  unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
  unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};

template <class ELFT> struct Elf_Phdr_Impl;

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, false> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
  Elf_Word p_type;   // Type of segment
  Elf_Off p_offset;  // FileOffset where segment is located, in bytes
  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
  Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
  Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  Elf_Word p_flags;  // Segment flags
  Elf_Word p_align;  // Segment alignment constraint
};

template <endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, true> > {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
  Elf_Word p_type;    // Type of segment
  Elf_Word p_flags;   // Segment flags
  Elf_Off p_offset;   // FileOffset where segment is located, in bytes
  Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
  Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
  Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
  Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  Elf_Xword p_align;  // Segment alignment constraint
};

} // end namespace object.
} // end namespace llvm.

#endif