1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
//===- YAML.h - YAMLIO utilities for object files ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares utility classes for handling the YAML representation of
// object files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_YAML_H
#define LLVM_OBJECT_YAML_H
#include "llvm/Support/YAMLTraits.h"
namespace llvm {
namespace object {
namespace yaml {
/// \brief Specialized YAMLIO scalar type for representing a binary blob.
///
/// A typical use case would be to represent the content of a section in a
/// binary file.
/// This class has custom YAMLIO traits for convenient reading and writing.
/// It renders as a string of hex digits in a YAML file.
/// For example, it might render as `DEADBEEFCAFEBABE` (YAML does not
/// require the quotation marks, so for simplicity when outputting they are
/// omitted).
/// When reading, any string whose content is an even number of hex digits
/// will be accepted.
/// For example, all of the following are acceptable:
/// `DEADBEEF`, `"DeADbEeF"`, `"\x44EADBEEF"` (Note: '\x44' == 'D')
///
/// A significant advantage of using this class is that it never allocates
/// temporary strings or buffers for any of its functionality.
///
/// Example:
///
/// The YAML mapping:
/// \code
/// Foo: DEADBEEFCAFEBABE
/// \endcode
///
/// Could be modeled in YAMLIO by the struct:
/// \code
/// struct FooHolder {
/// BinaryRef Foo;
/// };
/// namespace llvm {
/// namespace yaml {
/// template <>
/// struct MappingTraits<FooHolder> {
/// static void mapping(IO &IO, FooHolder &FH) {
/// IO.mapRequired("Foo", FH.Foo);
/// }
/// };
/// } // end namespace yaml
/// } // end namespace llvm
/// \endcode
class BinaryRef {
friend bool operator==(const BinaryRef &LHS, const BinaryRef &RHS);
/// \brief Either raw binary data, or a string of hex bytes (must always
/// be an even number of characters).
ArrayRef<uint8_t> Data;
/// \brief Discriminator between the two states of the `Data` member.
bool DataIsHexString;
public:
BinaryRef(ArrayRef<uint8_t> Data) : Data(Data), DataIsHexString(false) {}
BinaryRef(StringRef Data)
: Data(reinterpret_cast<const uint8_t *>(Data.data()), Data.size()),
DataIsHexString(true) {}
BinaryRef() : DataIsHexString(true) {}
/// \brief The number of bytes that are represented by this BinaryRef.
/// This is the number of bytes that writeAsBinary() will write.
ArrayRef<uint8_t>::size_type binary_size() const {
if (DataIsHexString)
return Data.size() / 2;
return Data.size();
}
/// \brief Write the contents (regardless of whether it is binary or a
/// hex string) as binary to the given raw_ostream.
void writeAsBinary(raw_ostream &OS) const;
/// \brief Write the contents (regardless of whether it is binary or a
/// hex string) as hex to the given raw_ostream.
///
/// For example, a possible output could be `DEADBEEFCAFEBABE`.
void writeAsHex(raw_ostream &OS) const;
};
inline bool operator==(const BinaryRef &LHS, const BinaryRef &RHS) {
// Special case for default constructed BinaryRef.
if (LHS.Data.empty() && RHS.Data.empty())
return true;
return LHS.DataIsHexString == RHS.DataIsHexString && LHS.Data == RHS.Data;
}
}
}
namespace yaml {
template <> struct ScalarTraits<object::yaml::BinaryRef> {
static void output(const object::yaml::BinaryRef &, void *,
llvm::raw_ostream &);
static StringRef input(StringRef, void *, object::yaml::BinaryRef &);
};
}
}
#endif
|