1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various classes for working with Instructions and
// ConstantExprs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OPERATOR_H
#define LLVM_OPERATOR_H
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
#include "llvm/Type.h"
namespace llvm {
class GetElementPtrInst;
class BinaryOperator;
class ConstantExpr;
/// Operator - This is a utility class that provides an abstraction for the
/// common functionality between Instructions and ConstantExprs.
///
class Operator : public User {
private:
// Do not implement any of these. The Operator class is intended to be used
// as a utility, and is never itself instantiated.
void *operator new(size_t, unsigned);
void *operator new(size_t s);
Operator();
~Operator();
public:
/// getOpcode - Return the opcode for this Instruction or ConstantExpr.
///
unsigned getOpcode() const {
if (const Instruction *I = dyn_cast<Instruction>(this))
return I->getOpcode();
return cast<ConstantExpr>(this)->getOpcode();
}
/// getOpcode - If V is an Instruction or ConstantExpr, return its
/// opcode. Otherwise return UserOp1.
///
static unsigned getOpcode(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getOpcode();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode();
return Instruction::UserOp1;
}
static inline bool classof(const Operator *) { return true; }
static inline bool classof(const Instruction *) { return true; }
static inline bool classof(const ConstantExpr *) { return true; }
static inline bool classof(const Value *V) {
return isa<Instruction>(V) || isa<ConstantExpr>(V);
}
};
/// OverflowingBinaryOperator - Utility class for integer arithmetic operators
/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
/// despite that operator having the potential for overflow.
///
class OverflowingBinaryOperator : public Operator {
public:
enum {
NoUnsignedWrap = (1 << 0),
NoSignedWrap = (1 << 1)
};
private:
~OverflowingBinaryOperator(); // do not implement
friend class BinaryOperator;
friend class ConstantExpr;
void setHasNoUnsignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
}
void setHasNoSignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
}
public:
/// hasNoUnsignedWrap - Test whether this operation is known to never
/// undergo unsigned overflow, aka the nuw property.
bool hasNoUnsignedWrap() const {
return SubclassOptionalData & NoUnsignedWrap;
}
/// hasNoSignedWrap - Test whether this operation is known to never
/// undergo signed overflow, aka the nsw property.
bool hasNoSignedWrap() const {
return (SubclassOptionalData & NoSignedWrap) != 0;
}
static inline bool classof(const OverflowingBinaryOperator *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Sub ||
I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::Shl;
}
static inline bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Instruction::Add ||
CE->getOpcode() == Instruction::Sub ||
CE->getOpcode() == Instruction::Mul ||
CE->getOpcode() == Instruction::Shl;
}
static inline bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
/// "exact", indicating that no bits are destroyed.
class PossiblyExactOperator : public Operator {
public:
enum {
IsExact = (1 << 0)
};
private:
~PossiblyExactOperator(); // do not implement
friend class BinaryOperator;
friend class ConstantExpr;
void setIsExact(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
}
public:
/// isExact - Test whether this division is known to be exact, with
/// zero remainder.
bool isExact() const {
return SubclassOptionalData & IsExact;
}
static bool isPossiblyExactOpcode(unsigned OpC) {
return OpC == Instruction::SDiv ||
OpC == Instruction::UDiv ||
OpC == Instruction::AShr ||
OpC == Instruction::LShr;
}
static inline bool classof(const ConstantExpr *CE) {
return isPossiblyExactOpcode(CE->getOpcode());
}
static inline bool classof(const Instruction *I) {
return isPossiblyExactOpcode(I->getOpcode());
}
static inline bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// FPMathOperator - Utility class for floating point operations which can have
/// information about relaxed accuracy requirements attached to them.
class FPMathOperator : public Operator {
private:
~FPMathOperator(); // do not implement
public:
/// \brief Get the maximum error permitted by this operation in ULPs. An
/// accuracy of 0.0 means that the operation should be performed with the
/// default precision.
float getFPAccuracy() const;
static inline bool classof(const FPMathOperator *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getType()->isFPOrFPVectorTy();
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
/// ConcreteOperator - A helper template for defining operators for individual
/// opcodes.
template<typename SuperClass, unsigned Opc>
class ConcreteOperator : public SuperClass {
~ConcreteOperator(); // DO NOT IMPLEMENT
public:
static inline bool classof(const ConcreteOperator<SuperClass, Opc> *) {
return true;
}
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Opc;
}
static inline bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Opc;
}
static inline bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
class AddOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
~AddOperator(); // DO NOT IMPLEMENT
};
class SubOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
~SubOperator(); // DO NOT IMPLEMENT
};
class MulOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
~MulOperator(); // DO NOT IMPLEMENT
};
class ShlOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
~ShlOperator(); // DO NOT IMPLEMENT
};
class SDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
~SDivOperator(); // DO NOT IMPLEMENT
};
class UDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
~UDivOperator(); // DO NOT IMPLEMENT
};
class AShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
~AShrOperator(); // DO NOT IMPLEMENT
};
class LShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
~LShrOperator(); // DO NOT IMPLEMENT
};
class GEPOperator
: public ConcreteOperator<Operator, Instruction::GetElementPtr> {
~GEPOperator(); // DO NOT IMPLEMENT
enum {
IsInBounds = (1 << 0)
};
friend class GetElementPtrInst;
friend class ConstantExpr;
void setIsInBounds(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
}
public:
/// isInBounds - Test whether this is an inbounds GEP, as defined
/// by LangRef.html.
bool isInBounds() const {
return SubclassOptionalData & IsInBounds;
}
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
/// getPointerOperandType - Method to return the pointer operand as a
/// PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (ConstantInt *C = dyn_cast<ConstantInt>(I))
if (C->isZero())
continue;
return false;
}
return true;
}
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (!isa<ConstantInt>(I))
return false;
}
return true;
}
};
} // End llvm namespace
#endif
|