aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Support/Allocator.h
blob: 06413225a98522b336158fd038a1c20a5abf8b1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
//===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MallocAllocator and BumpPtrAllocator interfaces.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_ALLOCATOR_H
#define LLVM_SUPPORT_ALLOCATOR_H

#include "llvm/Support/AlignOf.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>

namespace llvm {
template <typename T> struct ReferenceAdder {
  typedef T &result;
};
template <typename T> struct ReferenceAdder<T &> {
  typedef T result;
};

class MallocAllocator {
public:
  MallocAllocator() {}
  ~MallocAllocator() {}

  void Reset() {}

  void *Allocate(size_t Size, size_t /*Alignment*/) { return malloc(Size); }

  template <typename T> T *Allocate() {
    return static_cast<T *>(malloc(sizeof(T)));
  }

  template <typename T> T *Allocate(size_t Num) {
    return static_cast<T *>(malloc(sizeof(T) * Num));
  }

  void Deallocate(const void *Ptr) { free(const_cast<void *>(Ptr)); }

  void PrintStats() const {}
};

/// MemSlab - This structure lives at the beginning of every slab allocated by
/// the bump allocator.
class MemSlab {
public:
  size_t Size;
  MemSlab *NextPtr;
};

/// SlabAllocator - This class can be used to parameterize the underlying
/// allocation strategy for the bump allocator.  In particular, this is used
/// by the JIT to allocate contiguous swathes of executable memory.  The
/// interface uses MemSlab's instead of void *'s so that the allocator
/// doesn't have to remember the size of the pointer it allocated.
class SlabAllocator {
public:
  virtual ~SlabAllocator();
  virtual MemSlab *Allocate(size_t Size) = 0;
  virtual void Deallocate(MemSlab *Slab) = 0;
};

/// MallocSlabAllocator - The default slab allocator for the bump allocator
/// is an adapter class for MallocAllocator that just forwards the method
/// calls and translates the arguments.
class MallocSlabAllocator : public SlabAllocator {
  /// Allocator - The underlying allocator that we forward to.
  ///
  MallocAllocator Allocator;

public:
  MallocSlabAllocator() : Allocator() {}
  virtual ~MallocSlabAllocator();
  MemSlab *Allocate(size_t Size) override;
  void Deallocate(MemSlab *Slab) override;
};

/// \brief Non-templated base class for the \c BumpPtrAllocatorImpl template.
class BumpPtrAllocatorBase {
public:
  void Deallocate(const void * /*Ptr*/) {}
  void PrintStats() const;

  /// \brief Returns the total physical memory allocated by this allocator.
  size_t getTotalMemory() const;

protected:
  /// \brief The slab that we are currently allocating into.
  MemSlab *CurSlab;

  /// \brief How many bytes we've allocated.
  ///
  /// Used so that we can compute how much space was wasted.
  size_t BytesAllocated;

  BumpPtrAllocatorBase() : CurSlab(0), BytesAllocated(0) {}
};

/// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
///
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
/// memory rather than relying on boundless contiguous heap. However, it has
/// bump-pointer semantics in that is a monotonically growing pool of memory
/// where every allocation is found by merely allocating the next N bytes in
/// the slab, or the next N bytes in the next slab.
///
/// Note that this also has a threshold for forcing allocations above a certain
/// size into their own slab.
template <size_t SlabSize = 4096, size_t SizeThreshold = SlabSize>
class BumpPtrAllocatorImpl : public BumpPtrAllocatorBase {
  BumpPtrAllocatorImpl(const BumpPtrAllocatorImpl &) LLVM_DELETED_FUNCTION;
  void operator=(const BumpPtrAllocatorImpl &) LLVM_DELETED_FUNCTION;

public:
  static_assert(SizeThreshold <= SlabSize,
                "The SizeThreshold must be at most the SlabSize to ensure "
                "that objects larger than a slab go into their own memory "
                "allocation.");

  BumpPtrAllocatorImpl()
      : Allocator(DefaultSlabAllocator), NumSlabs(0) {}
  BumpPtrAllocatorImpl(SlabAllocator &Allocator)
      : Allocator(Allocator), NumSlabs(0) {}
  ~BumpPtrAllocatorImpl() { DeallocateSlabs(CurSlab); }

  /// \brief Deallocate all but the current slab and reset the current pointer
  /// to the beginning of it, freeing all memory allocated so far.
  void Reset() {
    if (!CurSlab)
      return;
    DeallocateSlabs(CurSlab->NextPtr);
    CurSlab->NextPtr = 0;
    CurPtr = (char *)(CurSlab + 1);
    End = ((char *)CurSlab) + CurSlab->Size;
    BytesAllocated = 0;
  }

  /// \brief Allocate space at the specified alignment.
  void *Allocate(size_t Size, size_t Alignment) {
    if (!CurSlab) // Start a new slab if we haven't allocated one already.
      StartNewSlab();

    // Keep track of how many bytes we've allocated.
    BytesAllocated += Size;

    // 0-byte alignment means 1-byte alignment.
    if (Alignment == 0)
      Alignment = 1;

    // Allocate the aligned space, going forwards from CurPtr.
    char *Ptr = alignPtr(CurPtr, Alignment);

    // Check if we can hold it.
    if (Ptr + Size <= End) {
      CurPtr = Ptr + Size;
      // Update the allocation point of this memory block in MemorySanitizer.
      // Without this, MemorySanitizer messages for values originated from here
      // will point to the allocation of the entire slab.
      __msan_allocated_memory(Ptr, Size);
      return Ptr;
    }

    // If Size is really big, allocate a separate slab for it.
    size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
    if (PaddedSize > SizeThreshold) {
      ++NumSlabs;
      MemSlab *NewSlab = Allocator.Allocate(PaddedSize);

      // Put the new slab after the current slab, since we are not allocating
      // into it.
      NewSlab->NextPtr = CurSlab->NextPtr;
      CurSlab->NextPtr = NewSlab;

      Ptr = alignPtr((char *)(NewSlab + 1), Alignment);
      assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
      __msan_allocated_memory(Ptr, Size);
      return Ptr;
    }

    // Otherwise, start a new slab and try again.
    StartNewSlab();
    Ptr = alignPtr(CurPtr, Alignment);
    CurPtr = Ptr + Size;
    assert(CurPtr <= End && "Unable to allocate memory!");
    __msan_allocated_memory(Ptr, Size);
    return Ptr;
  }

  /// \brief Allocate space for one object without constructing it.
  template <typename T> T *Allocate() {
    return static_cast<T *>(Allocate(sizeof(T), AlignOf<T>::Alignment));
  }

  /// \brief Allocate space for an array of objects without constructing them.
  template <typename T> T *Allocate(size_t Num) {
    return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
  }

  /// \brief Allocate space for an array of objects with the specified alignment
  /// and without constructing them.
  template <typename T> T *Allocate(size_t Num, size_t Alignment) {
    // Round EltSize up to the specified alignment.
    size_t EltSize = (sizeof(T) + Alignment - 1) & (-Alignment);
    return static_cast<T *>(Allocate(Num * EltSize, Alignment));
  }

  size_t GetNumSlabs() const { return NumSlabs; }

private:
  /// \brief The default allocator used if one is not provided.
  MallocSlabAllocator DefaultSlabAllocator;

  /// \brief The underlying allocator we use to get slabs of memory.
  ///
  /// This defaults to MallocSlabAllocator, which wraps malloc, but it could be
  /// changed to use a custom allocator.
  SlabAllocator &Allocator;

  /// \brief The current pointer into the current slab.
  ///
  /// This points to the next free byte in the slab.
  char *CurPtr;

  /// \brief The end of the current slab.
  char *End;

  /// \brief How many slabs we've allocated.
  ///
  /// Used to scale the size of each slab and reduce the number of allocations
  /// for extremely heavy memory use scenarios.
  size_t NumSlabs;

  /// \brief Allocate a new slab and move the bump pointers over into the new
  /// slab, modifying CurPtr and End.
  void StartNewSlab() {
    ++NumSlabs;
    // Scale the actual allocated slab size based on the number of slabs
    // allocated. Every 128 slabs allocated, we double the allocated size to
    // reduce allocation frequency, but saturate at multiplying the slab size by
    // 2^30.
    // FIXME: Currently, this count includes special slabs for objects above the
    // size threshold. That will be fixed in a subsequent commit to make the
    // growth even more predictable.
    size_t AllocatedSlabSize =
        SlabSize * ((size_t)1 << std::min<size_t>(30, NumSlabs / 128));

    MemSlab *NewSlab = Allocator.Allocate(AllocatedSlabSize);
    NewSlab->NextPtr = CurSlab;
    CurSlab = NewSlab;
    CurPtr = (char *)(CurSlab + 1);
    End = ((char *)CurSlab) + CurSlab->Size;
  }

  /// \brief Deallocate all memory slabs after and including this one.
  void DeallocateSlabs(MemSlab *Slab) {
    while (Slab) {
      MemSlab *NextSlab = Slab->NextPtr;
#ifndef NDEBUG
      // Poison the memory so stale pointers crash sooner.  Note we must
      // preserve the Size and NextPtr fields at the beginning.
      sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
      memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
#endif
      Allocator.Deallocate(Slab);
      Slab = NextSlab;
      --NumSlabs;
    }
  }

  template <typename T> friend class SpecificBumpPtrAllocator;
};

/// \brief The standard BumpPtrAllocator which just uses the default template
/// paramaters.
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;

/// \brief A BumpPtrAllocator that allows only elements of a specific type to be
/// allocated.
///
/// This allows calling the destructor in DestroyAll() and when the allocator is
/// destroyed.
template <typename T> class SpecificBumpPtrAllocator {
  BumpPtrAllocator Allocator;

public:
  SpecificBumpPtrAllocator() : Allocator() {}
  SpecificBumpPtrAllocator(SlabAllocator &allocator) : Allocator(allocator) {}

  ~SpecificBumpPtrAllocator() { DestroyAll(); }

  /// Call the destructor of each allocated object and deallocate all but the
  /// current slab and reset the current pointer to the beginning of it, freeing
  /// all memory allocated so far.
  void DestroyAll() {
    MemSlab *Slab = Allocator.CurSlab;
    while (Slab) {
      char *End = Slab == Allocator.CurSlab ? Allocator.CurPtr
                                            : (char *)Slab + Slab->Size;
      for (char *Ptr = (char *)(Slab + 1); Ptr < End; Ptr += sizeof(T)) {
        Ptr = alignPtr(Ptr, alignOf<T>());
        if (Ptr + sizeof(T) <= End)
          reinterpret_cast<T *>(Ptr)->~T();
      }
      Slab = Slab->NextPtr;
    }
    Allocator.Reset();
  }

  /// \brief Allocate space for an array of objects without constructing them.
  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
};

}  // end namespace llvm

template <size_t SlabSize, size_t SizeThreshold>
void *
operator new(size_t Size,
             llvm::BumpPtrAllocatorImpl<SlabSize, SizeThreshold> &Allocator) {
  struct S {
    char c;
    union {
      double D;
      long double LD;
      long long L;
      void *P;
    } x;
  };
  return Allocator.Allocate(
      Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
}

template <size_t SlabSize, size_t SizeThreshold>
void operator delete(void *,
                     llvm::BumpPtrAllocatorImpl<SlabSize, SizeThreshold> &) {}

#endif // LLVM_SUPPORT_ALLOCATOR_H