aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Support/Casting.h
blob: d18975486571a00313d0bb6e7c295cc10126260c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//===-- llvm/Support/Casting.h - Allow flexible, checked, casts -*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
// and dyn_cast_or_null<X>() templates.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_CASTING_H
#define LLVM_SUPPORT_CASTING_H

namespace llvm {

//===----------------------------------------------------------------------===//
//                          isa<x> Support Templates
//===----------------------------------------------------------------------===//

template<typename FromCl> struct isa_impl_cl;

// Define a template that can be specialized by smart pointers to reflect the
// fact that they are automatically dereferenced, and are not involved with the
// template selection process...  the default implementation is a noop.
//
template<typename From> struct simplify_type {
  typedef       From SimpleType;        // The real type this represents...

  // An accessor to get the real value...
  static SimpleType &getSimplifiedValue(From &Val) { return Val; }
};

template<typename From> struct simplify_type<const From> {
  typedef const From SimpleType;
  static SimpleType &getSimplifiedValue(const From &Val) {
    return simplify_type<From>::getSimplifiedValue(static_cast<From&>(Val));
  }
};


// isa<X> - Return true if the parameter to the template is an instance of the
// template type argument.  Used like this:
//
//  if (isa<Type*>(myVal)) { ... }
//
template <typename To, typename From>
inline bool isa_impl(const From &Val) { 
  return To::classof(&Val);
}

template<typename To, typename From, typename SimpleType>
struct isa_impl_wrap {
  // When From != SimplifiedType, we can simplify the type some more by using
  // the simplify_type template.
  static bool doit(const From &Val) {
    return isa_impl_cl<const SimpleType>::template 
                    isa<To>(simplify_type<const From>::getSimplifiedValue(Val));
  }
};

template<typename To, typename FromTy>
struct isa_impl_wrap<To, const FromTy, const FromTy> {
  // When From == SimpleType, we are as simple as we are going to get.
  static bool doit(const FromTy &Val) {
    return isa_impl<To,FromTy>(Val);
  }
};

// isa_impl_cl - Use class partial specialization to transform types to a single
// canonical form for isa_impl.
//
template<typename FromCl>
struct isa_impl_cl {
  template<class ToCl>
  static bool isa(const FromCl &Val) {
    return isa_impl_wrap<ToCl,const FromCl,
                   typename simplify_type<const FromCl>::SimpleType>::doit(Val);
  }
};

// Specialization used to strip const qualifiers off of the FromCl type...
template<typename FromCl>
struct isa_impl_cl<const FromCl> {
  template<class ToCl>
  static bool isa(const FromCl &Val) {
    return isa_impl_cl<FromCl>::template isa<ToCl>(Val);
  }
};

// Define pointer traits in terms of base traits...
template<class FromCl>
struct isa_impl_cl<FromCl*> {
  template<class ToCl>
  static bool isa(FromCl *Val) {
    return isa_impl_cl<FromCl>::template isa<ToCl>(*Val);
  }
};

// Define reference traits in terms of base traits...
template<class FromCl>
struct isa_impl_cl<FromCl&> {
  template<class ToCl>
  static bool isa(FromCl &Val) {
    return isa_impl_cl<FromCl>::template isa<ToCl>(&Val);
  }
};

template <class X, class Y>
inline bool isa(const Y &Val) {
  return isa_impl_cl<Y>::template isa<X>(Val);
}

//===----------------------------------------------------------------------===//
//                          cast<x> Support Templates
//===----------------------------------------------------------------------===//

template<class To, class From> struct cast_retty;


// Calculate what type the 'cast' function should return, based on a requested
// type of To and a source type of From.
template<class To, class From> struct cast_retty_impl {
  typedef To& ret_type;         // Normal case, return Ty&
};
template<class To, class From> struct cast_retty_impl<To, const From> {
  typedef const To &ret_type;   // Normal case, return Ty&
};

template<class To, class From> struct cast_retty_impl<To, From*> {
  typedef To* ret_type;         // Pointer arg case, return Ty*
};

template<class To, class From> struct cast_retty_impl<To, const From*> {
  typedef const To* ret_type;   // Constant pointer arg case, return const Ty*
};

template<class To, class From> struct cast_retty_impl<To, const From*const> {
  typedef const To* ret_type;   // Constant pointer arg case, return const Ty*
};


template<class To, class From, class SimpleFrom>
struct cast_retty_wrap {
  // When the simplified type and the from type are not the same, use the type
  // simplifier to reduce the type, then reuse cast_retty_impl to get the
  // resultant type.
  typedef typename cast_retty<To, SimpleFrom>::ret_type ret_type;
};

template<class To, class FromTy>
struct cast_retty_wrap<To, FromTy, FromTy> {
  // When the simplified type is equal to the from type, use it directly.
  typedef typename cast_retty_impl<To,FromTy>::ret_type ret_type;
};

template<class To, class From>
struct cast_retty {
  typedef typename cast_retty_wrap<To, From, 
                   typename simplify_type<From>::SimpleType>::ret_type ret_type;
};

// Ensure the non-simple values are converted using the simplify_type template
// that may be specialized by smart pointers...
//
template<class To, class From, class SimpleFrom> struct cast_convert_val {
  // This is not a simple type, use the template to simplify it...
  static typename cast_retty<To, From>::ret_type doit(const From &Val) {
    return cast_convert_val<To, SimpleFrom,
      typename simplify_type<SimpleFrom>::SimpleType>::doit(
                          simplify_type<From>::getSimplifiedValue(Val));
  }
};

template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
  // This _is_ a simple type, just cast it.
  static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
    return reinterpret_cast<typename cast_retty<To, FromTy>::ret_type>(
                         const_cast<FromTy&>(Val));
  }
};



// cast<X> - Return the argument parameter cast to the specified type.  This
// casting operator asserts that the type is correct, so it does not return null
// on failure.  But it will correctly return NULL when the input is NULL.
// Used Like this:
//
//  cast<Instruction>(myVal)->getParent()
//
template <class X, class Y>
inline typename cast_retty<X, Y>::ret_type cast(const Y &Val) {
  assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!");
  return cast_convert_val<X, Y,
                          typename simplify_type<Y>::SimpleType>::doit(Val);
}

// cast_or_null<X> - Functionally identical to cast, except that a null value is
// accepted.
//
template <class X, class Y>
inline typename cast_retty<X, Y*>::ret_type cast_or_null(Y *Val) {
  if (Val == 0) return 0;
  assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!");
  return cast<X>(Val);
}


// dyn_cast<X> - Return the argument parameter cast to the specified type.  This
// casting operator returns null if the argument is of the wrong type, so it can
// be used to test for a type as well as cast if successful.  This should be
// used in the context of an if statement like this:
//
//  if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
//

template <class X, class Y>
inline typename cast_retty<X, Y>::ret_type dyn_cast(Y Val) {
  return isa<X>(Val) ? cast<X, Y>(Val) : 0;
}

// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
// value is accepted.
//
template <class X, class Y>
inline typename cast_retty<X, Y>::ret_type dyn_cast_or_null(Y Val) {
  return (Val && isa<X>(Val)) ? cast<X, Y>(Val) : 0;
}


#ifdef DEBUG_CAST_OPERATORS
#include <iostream>

struct bar {
  bar() {}
private:
  bar(const bar &);
};
struct foo {
  void ext() const;
  /*  static bool classof(const bar *X) {
    cerr << "Classof: " << X << "\n";
    return true;
    }*/
};

template <> inline bool isa_impl<foo,bar>(const bar &Val) { 
  cerr << "Classof: " << &Val << "\n";
  return true;
}


bar *fub();
void test(bar &B1, const bar *B2) {
  // test various configurations of const
  const bar &B3 = B1;
  const bar *const B4 = B2;

  // test isa
  if (!isa<foo>(B1)) return;
  if (!isa<foo>(B2)) return;
  if (!isa<foo>(B3)) return;
  if (!isa<foo>(B4)) return;

  // test cast
  foo &F1 = cast<foo>(B1);
  const foo *F3 = cast<foo>(B2);
  const foo *F4 = cast<foo>(B2);
  const foo &F8 = cast<foo>(B3);
  const foo *F9 = cast<foo>(B4);
  foo *F10 = cast<foo>(fub());

  // test cast_or_null
  const foo *F11 = cast_or_null<foo>(B2);
  const foo *F12 = cast_or_null<foo>(B2);
  const foo *F13 = cast_or_null<foo>(B4);
  const foo *F14 = cast_or_null<foo>(fub());  // Shouldn't print.
  
  // These lines are errors...
  //foo *F20 = cast<foo>(B2);  // Yields const foo*
  //foo &F21 = cast<foo>(B3);  // Yields const foo&
  //foo *F22 = cast<foo>(B4);  // Yields const foo*
  //foo &F23 = cast_or_null<foo>(B1);
  //const foo &F24 = cast_or_null<foo>(B3);
}

bar *fub() { return 0; }
void main() {
  bar B;
  test(B, &B);
}

#endif

} // End llvm namespace

#endif