1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
|
//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
// The details of the ELF32 bits in this file are largely based on the Tool
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ELF_H
#define LLVM_SUPPORT_ELF_H
#include "llvm/Support/DataTypes.h"
#include <cstring>
namespace llvm {
namespace ELF {
typedef uint32_t Elf32_Addr; // Program address
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Off; // File offset
typedef int32_t Elf32_Sword;
typedef uint32_t Elf32_Word;
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef int32_t Elf64_Shalf;
typedef int32_t Elf64_Sword;
typedef uint32_t Elf64_Word;
typedef int64_t Elf64_Sxword;
typedef uint64_t Elf64_Xword;
typedef uint32_t Elf64_Half;
typedef uint16_t Elf64_Quarter;
// Object file magic string.
static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
// e_ident size and indices.
enum {
EI_MAG0 = 0, // File identification index.
EI_MAG1 = 1, // File identification index.
EI_MAG2 = 2, // File identification index.
EI_MAG3 = 3, // File identification index.
EI_CLASS = 4, // File class.
EI_DATA = 5, // Data encoding.
EI_VERSION = 6, // File version.
EI_OSABI = 7, // OS/ABI identification.
EI_ABIVERSION = 8, // ABI version.
EI_PAD = 9, // Start of padding bytes.
EI_NIDENT = 16 // Number of bytes in e_ident.
};
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
Elf32_Half e_type; // Type of file (see ET_* below)
Elf32_Half e_machine; // Required architecture for this file (see EM_*)
Elf32_Word e_version; // Must be equal to 1
Elf32_Addr e_entry; // Address to jump to in order to start program
Elf32_Off e_phoff; // Program header table's file offset, in bytes
Elf32_Off e_shoff; // Section header table's file offset, in bytes
Elf32_Word e_flags; // Processor-specific flags
Elf32_Half e_ehsize; // Size of ELF header, in bytes
Elf32_Half e_phentsize; // Size of an entry in the program header table
Elf32_Half e_phnum; // Number of entries in the program header table
Elf32_Half e_shentsize; // Size of an entry in the section header table
Elf32_Half e_shnum; // Number of entries in the section header table
Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
bool checkMagic() const {
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};
// 64-bit ELF header. Fields are the same as for ELF32, but with different
// types (see above).
struct Elf64_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf64_Quarter e_type;
Elf64_Quarter e_machine;
Elf64_Half e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Half e_flags;
Elf64_Quarter e_ehsize;
Elf64_Quarter e_phentsize;
Elf64_Quarter e_phnum;
Elf64_Quarter e_shentsize;
Elf64_Quarter e_shnum;
Elf64_Quarter e_shstrndx;
bool checkMagic() const {
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};
// File types
enum {
ET_NONE = 0, // No file type
ET_REL = 1, // Relocatable file
ET_EXEC = 2, // Executable file
ET_DYN = 3, // Shared object file
ET_CORE = 4, // Core file
ET_LOPROC = 0xff00, // Beginning of processor-specific codes
ET_HIPROC = 0xffff // Processor-specific
};
// Versioning
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
// Machine architectures
enum {
EM_NONE = 0, // No machine
EM_M32 = 1, // AT&T WE 32100
EM_SPARC = 2, // SPARC
EM_386 = 3, // Intel 386
EM_68K = 4, // Motorola 68000
EM_88K = 5, // Motorola 88000
EM_486 = 6, // Intel 486 (deprecated)
EM_860 = 7, // Intel 80860
EM_MIPS = 8, // MIPS R3000
EM_PPC = 20, // PowerPC
EM_PPC64 = 21, // PowerPC64
EM_ARM = 40, // ARM
EM_ALPHA = 41, // DEC Alpha
EM_SPARCV9 = 43, // SPARC V9
EM_X86_64 = 62, // AMD64
EM_MBLAZE = 47787 // Xilinx MicroBlaze
};
// Object file classes.
enum {
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// Object file byte orderings.
enum {
ELFDATANONE = 0, // Invalid data encoding.
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
// OS ABI identification.
enum {
ELFOSABI_NONE = 0, // UNIX System V ABI
ELFOSABI_HPUX = 1, // HP-UX operating system
ELFOSABI_NETBSD = 2, // NetBSD
ELFOSABI_LINUX = 3, // GNU/Linux
ELFOSABI_HURD = 4, // GNU/Hurd
ELFOSABI_SOLARIS = 6, // Solaris
ELFOSABI_AIX = 7, // AIX
ELFOSABI_IRIX = 8, // IRIX
ELFOSABI_FREEBSD = 9, // FreeBSD
ELFOSABI_TRU64 = 10, // TRU64 UNIX
ELFOSABI_MODESTO = 11, // Novell Modesto
ELFOSABI_OPENBSD = 12, // OpenBSD
ELFOSABI_OPENVMS = 13, // OpenVMS
ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
ELFOSABI_AROS = 15, // AROS
ELFOSABI_FENIXOS = 16, // FenixOS
ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
ELFOSABI_ARM = 97, // ARM
ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
};
// X86_64 relocations.
enum {
R_X86_64_NONE = 0,
R_X86_64_64 = 1,
R_X86_64_PC32 = 2,
R_X86_64_GOT32 = 3,
R_X86_64_PLT32 = 4,
R_X86_64_COPY = 5,
R_X86_64_GLOB_DAT = 6,
R_X86_64_JUMP_SLOT = 7,
R_X86_64_RELATIVE = 8,
R_X86_64_GOTPCREL = 9,
R_X86_64_32 = 10,
R_X86_64_32S = 11,
R_X86_64_16 = 12,
R_X86_64_PC16 = 13,
R_X86_64_8 = 14,
R_X86_64_PC8 = 15,
R_X86_64_DTPMOD64 = 16,
R_X86_64_DTPOFF64 = 17,
R_X86_64_TPOFF64 = 18,
R_X86_64_TLSGD = 19,
R_X86_64_TLSLD = 20,
R_X86_64_DTPOFF32 = 21,
R_X86_64_GOTTPOFF = 22,
R_X86_64_TPOFF32 = 23,
R_X86_64_PC64 = 24,
R_X86_64_GOTOFF64 = 25,
R_X86_64_GOTPC32 = 26,
R_X86_64_SIZE32 = 32,
R_X86_64_SIZE64 = 33,
R_X86_64_GOTPC32_TLSDESC = 34,
R_X86_64_TLSDESC_CALL = 35,
R_X86_64_TLSDESC = 36
};
// i386 relocations.
// TODO: this is just a subset
enum {
R_386_NONE = 0,
R_386_32 = 1,
R_386_PC32 = 2,
R_386_GOT32 = 3,
R_386_PLT32 = 4,
R_386_COPY = 5,
R_386_GLOB_DAT = 6,
R_386_JUMP_SLOT = 7,
R_386_RELATIVE = 8,
R_386_GOTOFF = 9,
R_386_GOTPC = 10,
R_386_32PLT = 11,
R_386_TLS_TPOFF = 14,
R_386_TLS_IE = 15,
R_386_TLS_GOTIE = 16,
R_386_TLS_LE = 17,
R_386_TLS_GD = 18,
R_386_TLS_LDM = 19,
R_386_16 = 20,
R_386_PC16 = 21,
R_386_8 = 22,
R_386_PC8 = 23,
R_386_TLS_GD_32 = 24,
R_386_TLS_GD_PUSH = 25,
R_386_TLS_GD_CALL = 26,
R_386_TLS_GD_POP = 27,
R_386_TLS_LDM_32 = 28,
R_386_TLS_LDM_PUSH = 29,
R_386_TLS_LDM_CALL = 30,
R_386_TLS_LDM_POP = 31,
R_386_TLS_LDO_32 = 32,
R_386_TLS_IE_32 = 33,
R_386_TLS_LE_32 = 34,
R_386_TLS_DTPMOD32 = 35,
R_386_TLS_DTPOFF32 = 36,
R_386_TLS_TPOFF32 = 37,
R_386_TLS_GOTDESC = 39,
R_386_TLS_DESC_CALL = 40,
R_386_TLS_DESC = 41,
R_386_IRELATIVE = 42,
R_386_NUM = 43
};
// MBlaze relocations.
enum {
R_MICROBLAZE_NONE = 0,
R_MICROBLAZE_32 = 1,
R_MICROBLAZE_32_PCREL = 2,
R_MICROBLAZE_64_PCREL = 3,
R_MICROBLAZE_32_PCREL_LO = 4,
R_MICROBLAZE_64 = 5,
R_MICROBLAZE_32_LO = 6,
R_MICROBLAZE_SRO32 = 7,
R_MICROBLAZE_SRW32 = 8,
R_MICROBLAZE_64_NONE = 9,
R_MICROBLAZE_32_SYM_OP_SYM = 10,
R_MICROBLAZE_GNU_VTINHERIT = 11,
R_MICROBLAZE_GNU_VTENTRY = 12,
R_MICROBLAZE_GOTPC_64 = 13,
R_MICROBLAZE_GOT_64 = 14,
R_MICROBLAZE_PLT_64 = 15,
R_MICROBLAZE_REL = 16,
R_MICROBLAZE_JUMP_SLOT = 17,
R_MICROBLAZE_GLOB_DAT = 18,
R_MICROBLAZE_GOTOFF_64 = 19,
R_MICROBLAZE_GOTOFF_32 = 20,
R_MICROBLAZE_COPY = 21
};
// ELF Relocation types for ARM
// Meets 2.08 ABI Specs.
enum {
R_ARM_NONE = 0x00,
R_ARM_PC24 = 0x01,
R_ARM_ABS32 = 0x02,
R_ARM_REL32 = 0x03,
R_ARM_LDR_PC_G0 = 0x04,
R_ARM_ABS16 = 0x05,
R_ARM_ABS12 = 0x06,
R_ARM_THM_ABS5 = 0x07,
R_ARM_ABS8 = 0x08,
R_ARM_SBREL32 = 0x09,
R_ARM_THM_CALL = 0x0a,
R_ARM_THM_PC8 = 0x0b,
R_ARM_BREL_ADJ = 0x0c,
R_ARM_TLS_DESC = 0x0d,
R_ARM_THM_SWI8 = 0x0e,
R_ARM_XPC25 = 0x0f,
R_ARM_THM_XPC22 = 0x10,
R_ARM_TLS_DTPMOD32 = 0x11,
R_ARM_TLS_DTPOFF32 = 0x12,
R_ARM_TLS_TPOFF32 = 0x13,
R_ARM_COPY = 0x14,
R_ARM_GLOB_DAT = 0x15,
R_ARM_JUMP_SLOT = 0x16,
R_ARM_RELATIVE = 0x17,
R_ARM_GOTOFF32 = 0x18,
R_ARM_BASE_PREL = 0x19,
R_ARM_GOT_BREL = 0x1a,
R_ARM_PLT32 = 0x1b,
R_ARM_CALL = 0x1c,
R_ARM_JUMP24 = 0x1d,
R_ARM_THM_JUMP24 = 0x1e,
R_ARM_BASE_ABS = 0x1f,
R_ARM_ALU_PCREL_7_0 = 0x20,
R_ARM_ALU_PCREL_15_8 = 0x21,
R_ARM_ALU_PCREL_23_15 = 0x22,
R_ARM_LDR_SBREL_11_0_NC = 0x23,
R_ARM_ALU_SBREL_19_12_NC = 0x24,
R_ARM_ALU_SBREL_27_20_CK = 0x25,
R_ARM_TARGET1 = 0x26,
R_ARM_SBREL31 = 0x27,
R_ARM_V4BX = 0x28,
R_ARM_TARGET2 = 0x29,
R_ARM_PREL31 = 0x2a,
R_ARM_MOVW_ABS_NC = 0x2b,
R_ARM_MOVT_ABS = 0x2c,
R_ARM_MOVW_PREL_NC = 0x2d,
R_ARM_MOVT_PREL = 0x2e,
R_ARM_THM_MOVW_ABS_NC = 0x2f,
R_ARM_THM_MOVT_ABS = 0x30,
R_ARM_THM_MOVW_PREL_NC = 0x31,
R_ARM_THM_MOVT_PREL = 0x32,
R_ARM_THM_JUMP19 = 0x33,
R_ARM_THM_JUMP6 = 0x34,
R_ARM_THM_ALU_PREL_11_0 = 0x35,
R_ARM_THM_PC12 = 0x36,
R_ARM_ABS32_NOI = 0x37,
R_ARM_REL32_NOI = 0x38,
R_ARM_ALU_PC_G0_NC = 0x39,
R_ARM_ALU_PC_G0 = 0x3a,
R_ARM_ALU_PC_G1_NC = 0x3b,
R_ARM_ALU_PC_G1 = 0x3c,
R_ARM_ALU_PC_G2 = 0x3d,
R_ARM_LDR_PC_G1 = 0x3e,
R_ARM_LDR_PC_G2 = 0x3f,
R_ARM_LDRS_PC_G0 = 0x40,
R_ARM_LDRS_PC_G1 = 0x41,
R_ARM_LDRS_PC_G2 = 0x42,
R_ARM_LDC_PC_G0 = 0x43,
R_ARM_LDC_PC_G1 = 0x44,
R_ARM_LDC_PC_G2 = 0x45,
R_ARM_ALU_SB_G0_NC = 0x46,
R_ARM_ALU_SB_G0 = 0x47,
R_ARM_ALU_SB_G1_NC = 0x48,
R_ARM_ALU_SB_G1 = 0x49,
R_ARM_ALU_SB_G2 = 0x4a,
R_ARM_LDR_SB_G0 = 0x4b,
R_ARM_LDR_SB_G1 = 0x4c,
R_ARM_LDR_SB_G2 = 0x4d,
R_ARM_LDRS_SB_G0 = 0x4e,
R_ARM_LDRS_SB_G1 = 0x4f,
R_ARM_LDRS_SB_G2 = 0x50,
R_ARM_LDC_SB_G0 = 0x51,
R_ARM_LDC_SB_G1 = 0x52,
R_ARM_LDC_SB_G2 = 0x53,
R_ARM_MOVW_BREL_NC = 0x54,
R_ARM_MOVT_BREL = 0x55,
R_ARM_MOVW_BREL = 0x56,
R_ARM_THM_MOVW_BREL_NC = 0x57,
R_ARM_THM_MOVT_BREL = 0x58,
R_ARM_THM_MOVW_BREL = 0x59,
R_ARM_TLS_GOTDESC = 0x5a,
R_ARM_TLS_CALL = 0x5b,
R_ARM_TLS_DESCSEQ = 0x5c,
R_ARM_THM_TLS_CALL = 0x5d,
R_ARM_PLT32_ABS = 0x5e,
R_ARM_GOT_ABS = 0x5f,
R_ARM_GOT_PREL = 0x60,
R_ARM_GOT_BREL12 = 0x61,
R_ARM_GOTOFF12 = 0x62,
R_ARM_GOTRELAX = 0x63,
R_ARM_GNU_VTENTRY = 0x64,
R_ARM_GNU_VTINHERIT = 0x65,
R_ARM_THM_JUMP11 = 0x66,
R_ARM_THM_JUMP8 = 0x67,
R_ARM_TLS_GD32 = 0x68,
R_ARM_TLS_LDM32 = 0x69,
R_ARM_TLS_LDO32 = 0x6a,
R_ARM_TLS_IE32 = 0x6b,
R_ARM_TLS_LE32 = 0x6c,
R_ARM_TLS_LDO12 = 0x6d,
R_ARM_TLS_LE12 = 0x6e,
R_ARM_TLS_IE12GP = 0x6f,
R_ARM_PRIVATE_0 = 0x70,
R_ARM_PRIVATE_1 = 0x71,
R_ARM_PRIVATE_2 = 0x72,
R_ARM_PRIVATE_3 = 0x73,
R_ARM_PRIVATE_4 = 0x74,
R_ARM_PRIVATE_5 = 0x75,
R_ARM_PRIVATE_6 = 0x76,
R_ARM_PRIVATE_7 = 0x77,
R_ARM_PRIVATE_8 = 0x78,
R_ARM_PRIVATE_9 = 0x79,
R_ARM_PRIVATE_10 = 0x7a,
R_ARM_PRIVATE_11 = 0x7b,
R_ARM_PRIVATE_12 = 0x7c,
R_ARM_PRIVATE_13 = 0x7d,
R_ARM_PRIVATE_14 = 0x7e,
R_ARM_PRIVATE_15 = 0x7f,
R_ARM_ME_TOO = 0x80,
R_ARM_THM_TLS_DESCSEQ16 = 0x81,
R_ARM_THM_TLS_DESCSEQ32 = 0x82
};
// Section header.
struct Elf32_Shdr {
Elf32_Word sh_name; // Section name (index into string table)
Elf32_Word sh_type; // Section type (SHT_*)
Elf32_Word sh_flags; // Section flags (SHF_*)
Elf32_Addr sh_addr; // Address where section is to be loaded
Elf32_Off sh_offset; // File offset of section data, in bytes
Elf32_Word sh_size; // Size of section, in bytes
Elf32_Word sh_link; // Section type-specific header table index link
Elf32_Word sh_info; // Section type-specific extra information
Elf32_Word sh_addralign; // Section address alignment
Elf32_Word sh_entsize; // Size of records contained within the section
};
// Section header for ELF64 - same fields as ELF32, different types.
struct Elf64_Shdr {
Elf64_Half sh_name;
Elf64_Half sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Half sh_link;
Elf64_Half sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;
};
// Special section indices.
enum {
SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
SHN_LORESERVE = 0xff00, // Lowest reserved index
SHN_LOPROC = 0xff00, // Lowest processor-specific index
SHN_HIPROC = 0xff1f, // Highest processor-specific index
SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
SHN_HIRESERVE = 0xffff // Highest reserved index
};
// Section types.
enum {
SHT_NULL = 0, // No associated section (inactive entry).
SHT_PROGBITS = 1, // Program-defined contents.
SHT_SYMTAB = 2, // Symbol table.
SHT_STRTAB = 3, // String table.
SHT_RELA = 4, // Relocation entries; explicit addends.
SHT_HASH = 5, // Symbol hash table.
SHT_DYNAMIC = 6, // Information for dynamic linking.
SHT_NOTE = 7, // Information about the file.
SHT_NOBITS = 8, // Data occupies no space in the file.
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
SHT_INIT_ARRAY = 14, // Pointers to initialisation functions.
SHT_FINI_ARRAY = 15, // Pointers to termination functions.
SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
SHT_GROUP = 17, // Section group.
SHT_SYMTAB_SHNDX = 18, // Indicies for SHN_XINDEX entries.
SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type.
// Fixme: All this is duplicated in MCSectionELF. Why??
// Exception Index table
SHT_ARM_EXIDX = 0x70000001U,
// BPABI DLL dynamic linking pre-emption map
SHT_ARM_PREEMPTMAP = 0x70000002U,
// Object file compatibility attributes
SHT_ARM_ATTRIBUTES = 0x70000003U,
SHT_ARM_DEBUGOVERLAY = 0x70000004U,
SHT_ARM_OVERLAYSECTION = 0x70000005U,
SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
// Section flags.
enum {
SHF_WRITE = 0x1, // Section data should be writable during execution.
SHF_ALLOC = 0x2, // Section occupies memory during program execution.
SHF_EXECINSTR = 0x4, // Section contains executable machine instructions.
SHF_MASKPROC = 0xf0000000 // Bits indicating processor-specific flags.
};
// Section Group Flags
enum {
GRP_COMDAT = 0x1,
GRP_MASKOS = 0x0ff00000,
GRP_MASKPROC = 0xf0000000
};
// Symbol table entries for ELF32.
struct Elf32_Sym {
Elf32_Word st_name; // Symbol name (index into string table)
Elf32_Addr st_value; // Value or address associated with the symbol
Elf32_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf32_Half st_shndx; // Which section (header table index) it's defined in
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
// Symbol table entries for ELF64.
struct Elf64_Sym {
Elf64_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf64_Half st_shndx; // Which section (header table index) it's defined in
Elf64_Addr st_value; // Value or address associated with the symbol
Elf64_Xword st_size; // Size of the symbol
// These accessors and mutators are identical to those defined for ELF32
// symbol table entries.
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
// The size (in bytes) of symbol table entries.
enum {
SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
};
// Symbol bindings.
enum {
STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
STB_WEAK = 2, // Weak symbol, like global but lower-precedence
STB_LOPROC = 13, // Lowest processor-specific binding type
STB_HIPROC = 15 // Highest processor-specific binding type
};
// Symbol types.
enum {
STT_NOTYPE = 0, // Symbol's type is not specified
STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
STT_FUNC = 2, // Symbol is executable code (function, etc.)
STT_SECTION = 3, // Symbol refers to a section
STT_FILE = 4, // Local, absolute symbol that refers to a file
STT_COMMON = 5, // An uninitialised common block
STT_TLS = 6, // Thread local data object
STT_LOPROC = 13, // Lowest processor-specific symbol type
STT_HIPROC = 15 // Highest processor-specific symbol type
};
enum {
STV_DEFAULT = 0, // Visibility is specified by binding type
STV_INTERNAL = 1, // Defined by processor supplements
STV_HIDDEN = 2, // Not visible to other components
STV_PROTECTED = 3 // Visible in other components but not preemptable
};
// Relocation entry, without explicit addend.
struct Elf32_Rel {
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf32_Word r_info; // Symbol table index and type of relocation to apply
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
Elf32_Word getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf32_Word s, unsigned char t) {
r_info = (s << 8) + t;
}
};
// Relocation entry with explicit addend.
struct Elf32_Rela {
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf32_Word r_info; // Symbol table index and type of relocation to apply
Elf32_Sword r_addend; // Compute value for relocatable field by adding this
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
Elf32_Word getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf32_Word s, unsigned char t) {
r_info = (s << 8) + t;
}
};
// Relocation entry, without explicit addend.
struct Elf64_Rel {
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
Elf64_Xword getSymbol() const { return (r_info >> 32); }
unsigned char getType() const {
return (unsigned char) (r_info & 0xffffffffL);
}
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf64_Xword s, unsigned char t) {
r_info = (s << 32) + (t&0xffffffffL);
}
};
// Relocation entry with explicit addend.
struct Elf64_Rela {
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
Elf64_Xword getSymbol() const { return (r_info >> 32); }
unsigned char getType() const {
return (unsigned char) (r_info & 0xffffffffL);
}
void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf64_Xword s, unsigned char t) {
r_info = (s << 32) + (t&0xffffffffL);
}
};
// Program header for ELF32.
struct Elf32_Phdr {
Elf32_Word p_type; // Type of segment
Elf32_Off p_offset; // File offset where segment is located, in bytes
Elf32_Addr p_vaddr; // Virtual address of beginning of segment
Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf32_Word p_flags; // Segment flags
Elf32_Word p_align; // Segment alignment constraint
};
// Program header for ELF64.
struct Elf64_Phdr {
Elf64_Word p_type; // Type of segment
Elf64_Word p_flags; // Segment flags
Elf64_Off p_offset; // File offset where segment is located, in bytes
Elf64_Addr p_vaddr; // Virtual address of beginning of segment
Elf64_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf64_Xword p_align; // Segment alignment constraint
};
// Segment types.
enum {
PT_NULL = 0, // Unused segment.
PT_LOAD = 1, // Loadable segment.
PT_DYNAMIC = 2, // Dynamic linking information.
PT_INTERP = 3, // Interpreter pathname.
PT_NOTE = 4, // Auxiliary information.
PT_SHLIB = 5, // Reserved.
PT_PHDR = 6, // The program header table itself.
PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
PT_HIPROC = 0x7fffffff // Highest processor-specific program hdr entry type.
};
// Segment flag bits.
enum {
PF_X = 1, // Execute
PF_W = 2, // Write
PF_R = 4, // Read
PF_MASKPROC = 0xf0000000 // Unspecified
};
// Dynamic table entry for ELF32.
struct Elf32_Dyn
{
Elf32_Sword d_tag; // Type of dynamic table entry.
union
{
Elf32_Word d_val; // Integer value of entry.
Elf32_Addr d_ptr; // Pointer value of entry.
} d_un;
};
// Dynamic table entry for ELF64.
struct Elf64_Dyn
{
Elf64_Sxword d_tag; // Type of dynamic table entry.
union
{
Elf64_Xword d_val; // Integer value of entry.
Elf64_Addr d_ptr; // Pointer value of entry.
} d_un;
};
// Dynamic table entry tags.
enum {
DT_NULL = 0, // Marks end of dynamic array.
DT_NEEDED = 1, // String table offset of needed library.
DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
DT_PLTGOT = 3, // Address associated with linkage table.
DT_HASH = 4, // Address of symbolic hash table.
DT_STRTAB = 5, // Address of dynamic string table.
DT_SYMTAB = 6, // Address of dynamic symbol table.
DT_RELA = 7, // Address of relocation table (Rela entries).
DT_RELASZ = 8, // Size of Rela relocation table.
DT_RELAENT = 9, // Size of a Rela relocation entry.
DT_STRSZ = 10, // Total size of the string table.
DT_SYMENT = 11, // Size of a symbol table entry.
DT_INIT = 12, // Address of initialization function.
DT_FINI = 13, // Address of termination function.
DT_SONAME = 14, // String table offset of a shared objects name.
DT_RPATH = 15, // String table offset of library search path.
DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
DT_REL = 17, // Address of relocation table (Rel entries).
DT_RELSZ = 18, // Size of Rel relocation table.
DT_RELENT = 19, // Size of a Rel relocation entry.
DT_PLTREL = 20, // Type of relocation entry used for linking.
DT_DEBUG = 21, // Reserved for debugger.
DT_TEXTREL = 22, // Relocations exist for non-writable segements.
DT_JMPREL = 23, // Address of relocations associated with PLT.
DT_BIND_NOW = 24, // Process all relocations before execution.
DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
DT_LOOS = 0x60000000, // Start of environment specific tags.
DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
DT_LOPROC = 0x70000000, // Start of processor specific tags.
DT_HIPROC = 0x7FFFFFFF // End of processor specific tags.
};
} // end namespace ELF
} // end namespace llvm
#endif
|