aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Support/GenericDomTreeConstruction.h
blob: 7c065f939256bf8fbf5aff51517a062d891db069 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// algorithm described in this document:
///
///   A Fast Algorithm for Finding Dominators in a Flowgraph
///   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
//===----------------------------------------------------------------------===//


#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H

#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/GenericDomTree.h"

namespace llvm {

template<class GraphT>
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
                 typename GraphT::NodeType* V, unsigned N) {
  // This is more understandable as a recursive algorithm, but we can't use the
  // recursive algorithm due to stack depth issues.  Keep it here for
  // documentation purposes.
#if 0
  InfoRec &VInfo = DT.Info[DT.Roots[i]];
  VInfo.DFSNum = VInfo.Semi = ++N;
  VInfo.Label = V;

  Vertex.push_back(V);        // Vertex[n] = V;

  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
    InfoRec &SuccVInfo = DT.Info[*SI];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = V;
      N = DTDFSPass(DT, *SI, N);
    }
  }
#else
  bool IsChildOfArtificialExit = (N != 0);

  SmallVector<std::pair<typename GraphT::NodeType*,
                        typename GraphT::ChildIteratorType>, 32> Worklist;
  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
  while (!Worklist.empty()) {
    typename GraphT::NodeType* BB = Worklist.back().first;
    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;

    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
                                                                    DT.Info[BB];

    // First time we visited this BB?
    if (NextSucc == GraphT::child_begin(BB)) {
      BBInfo.DFSNum = BBInfo.Semi = ++N;
      BBInfo.Label = BB;

      DT.Vertex.push_back(BB);       // Vertex[n] = V;

      if (IsChildOfArtificialExit)
        BBInfo.Parent = 1;

      IsChildOfArtificialExit = false;
    }

    // store the DFS number of the current BB - the reference to BBInfo might
    // get invalidated when processing the successors.
    unsigned BBDFSNum = BBInfo.DFSNum;

    // If we are done with this block, remove it from the worklist.
    if (NextSucc == GraphT::child_end(BB)) {
      Worklist.pop_back();
      continue;
    }

    // Increment the successor number for the next time we get to it.
    ++Worklist.back().second;
    
    // Visit the successor next, if it isn't already visited.
    typename GraphT::NodeType* Succ = *NextSucc;

    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
                                                                  DT.Info[Succ];
    if (SuccVInfo.Semi == 0) {
      SuccVInfo.Parent = BBDFSNum;
      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
    }
  }
#endif
    return N;
}

template<class GraphT>
typename GraphT::NodeType* 
Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
     typename GraphT::NodeType *VIn, unsigned LastLinked) {
  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
                                                                  DT.Info[VIn];
  if (VInInfo.DFSNum < LastLinked)
    return VIn;

  SmallVector<typename GraphT::NodeType*, 32> Work;
  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;

  if (VInInfo.Parent >= LastLinked)
    Work.push_back(VIn);
  
  while (!Work.empty()) {
    typename GraphT::NodeType* V = Work.back();
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
                                                                     DT.Info[V];
    typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];

    // Process Ancestor first
    if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
      Work.push_back(VAncestor);
      continue;
    } 
    Work.pop_back(); 

    // Update VInfo based on Ancestor info
    if (VInfo.Parent < LastLinked)
      continue;

    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
                                                             DT.Info[VAncestor];
    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
    typename GraphT::NodeType* VLabel = VInfo.Label;
    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
      VInfo.Label = VAncestorLabel;
    VInfo.Parent = VAInfo.Parent;
  }

  return VInInfo.Label;
}

template<class FuncT, class NodeT>
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
               FuncT& F) {
  typedef GraphTraits<NodeT> GraphT;

  unsigned N = 0;
  bool MultipleRoots = (DT.Roots.size() > 1);
  if (MultipleRoots) {
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
        DT.Info[nullptr];
    BBInfo.DFSNum = BBInfo.Semi = ++N;
    BBInfo.Label = nullptr;

    DT.Vertex.push_back(nullptr);       // Vertex[n] = V;
  }

  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
       i != e; ++i)
    N = DFSPass<GraphT>(DT, DT.Roots[i], N);

  // it might be that some blocks did not get a DFS number (e.g., blocks of 
  // infinite loops). In these cases an artificial exit node is required.
  MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));

  // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
  // bucket for each vertex. However, this is unnecessary, because each vertex
  // is only placed into a single bucket (that of its semidominator), and each
  // vertex's bucket is processed before it is added to any bucket itself.
  //
  // Instead of using a bucket per vertex, we use a single array Buckets that
  // has two purposes. Before the vertex V with preorder number i is processed,
  // Buckets[i] stores the index of the first element in V's bucket. After V's
  // bucket is processed, Buckets[i] stores the index of the next element in the
  // bucket containing V, if any.
  SmallVector<unsigned, 32> Buckets;
  Buckets.resize(N + 1);
  for (unsigned i = 1; i <= N; ++i)
    Buckets[i] = i;

  for (unsigned i = N; i >= 2; --i) {
    typename GraphT::NodeType* W = DT.Vertex[i];
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
                                                                     DT.Info[W];

    // Step #2: Implicitly define the immediate dominator of vertices
    for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
      typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
      DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
    }

    // Step #3: Calculate the semidominators of all vertices

    // initialize the semi dominator to point to the parent node
    WInfo.Semi = WInfo.Parent;
    typedef GraphTraits<Inverse<NodeT> > InvTraits;
    for (typename InvTraits::ChildIteratorType CI =
         InvTraits::child_begin(W),
         E = InvTraits::child_end(W); CI != E; ++CI) {
      typename InvTraits::NodeType *N = *CI;
      if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
        unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }
    }

    // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
    // necessarily parent(V). In this case, set idom(V) here and avoid placing
    // V into a bucket.
    if (WInfo.Semi == WInfo.Parent) {
      DT.IDoms[W] = DT.Vertex[WInfo.Parent];
    } else {
      Buckets[i] = Buckets[WInfo.Semi];
      Buckets[WInfo.Semi] = i;
    }
  }

  if (N >= 1) {
    typename GraphT::NodeType* Root = DT.Vertex[1];
    for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
      DT.IDoms[V] = Root;
    }
  }

  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    typename GraphT::NodeType* W = DT.Vertex[i];
    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
    if (WIDom != DT.Vertex[DT.Info[W].Semi])
      WIDom = DT.IDoms[WIDom];
  }

  if (DT.Roots.empty()) return;

  // Add a node for the root.  This node might be the actual root, if there is
  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
  // which postdominates all real exits if there are multiple exit blocks, or
  // an infinite loop.
  typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : nullptr;

  DT.RootNode =
      (DT.DomTreeNodes[Root] =
           llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
               Root, nullptr)).get();

  // Loop over all of the reachable blocks in the function...
  for (unsigned i = 2; i <= N; ++i) {
    typename GraphT::NodeType* W = DT.Vertex[i];

    // Don't replace this with 'count', the insertion side effect is important
    if (DT.DomTreeNodes[W])
      continue; // Haven't calculated this node yet?

    typename GraphT::NodeType* ImmDom = DT.getIDom(W);

    assert(ImmDom || DT.DomTreeNodes[nullptr]);

    // Get or calculate the node for the immediate dominator
    DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
                                                     DT.getNodeForBlock(ImmDom);

    // Add a new tree node for this BasicBlock, and link it as a child of
    // IDomNode
    DT.DomTreeNodes[W] = IDomNode->addChild(
        llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
            W, IDomNode));
  }

  // Free temporary memory used to construct idom's
  DT.IDoms.clear();
  DT.Info.clear();
  DT.Vertex.clear();
  DT.Vertex.shrink_to_fit();

  DT.updateDFSNumbers();
}

}

#endif