1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
|
//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains functions (and a class) useful for working with scaled
// numbers -- in particular, pairs of integers where one represents digits and
// another represents a scale. The functions are helpers and live in the
// namespace ScaledNumbers. The class ScaledNumber is useful for modelling
// certain cost metrics that need simple, integer-like semantics that are easy
// to reason about.
//
// These might remind you of soft-floats. If you want one of those, you're in
// the wrong place. Look at include/llvm/ADT/APFloat.h instead.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
#define LLVM_SUPPORT_SCALEDNUMBER_H
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
namespace llvm {
namespace ScaledNumbers {
/// \brief Maximum scale; same as APFloat for easy debug printing.
const int32_t MaxScale = 16383;
/// \brief Maximum scale; same as APFloat for easy debug printing.
const int32_t MinScale = -16382;
/// \brief Get the width of a number.
template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
/// \brief Conditionally round up a scaled number.
///
/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
/// Always returns \c Scale unless there's an overflow, in which case it
/// returns \c 1+Scale.
///
/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
bool ShouldRound) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (ShouldRound)
if (!++Digits)
// Overflow.
return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
return std::make_pair(Digits, Scale);
}
/// \brief Convenience helper for 32-bit rounding.
inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
bool ShouldRound) {
return getRounded(Digits, Scale, ShouldRound);
}
/// \brief Convenience helper for 64-bit rounding.
inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
bool ShouldRound) {
return getRounded(Digits, Scale, ShouldRound);
}
/// \brief Adjust a 64-bit scaled number down to the appropriate width.
///
/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
int16_t Scale = 0) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
const int Width = getWidth<DigitsT>();
if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
return std::make_pair(Digits, Scale);
// Shift right and round.
int Shift = 64 - Width - countLeadingZeros(Digits);
return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
Digits & (UINT64_C(1) << (Shift - 1)));
}
/// \brief Convenience helper for adjusting to 32 bits.
inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
int16_t Scale = 0) {
return getAdjusted<uint32_t>(Digits, Scale);
}
/// \brief Convenience helper for adjusting to 64 bits.
inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
int16_t Scale = 0) {
return getAdjusted<uint64_t>(Digits, Scale);
}
/// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
///
/// Implemented with four 64-bit integer multiplies.
std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
/// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer multiply.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
return multiply64(LHS, RHS);
}
/// \brief Convenience helper for 32-bit product.
inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
return getProduct(LHS, RHS);
}
/// \brief Convenience helper for 64-bit product.
inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
return getProduct(LHS, RHS);
}
/// \brief Divide two 64-bit integers to create a 64-bit scaled number.
///
/// Implemented with long division.
///
/// \pre \c Dividend and \c Divisor are non-zero.
std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
/// \brief Divide two 32-bit integers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer divide/remainder pair.
///
/// \pre \c Dividend and \c Divisor are non-zero.
std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
/// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer divide/remainder pair.
///
/// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
template <class DigitsT>
std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
"expected 32-bit or 64-bit digits");
// Check for zero.
if (!Dividend)
return std::make_pair(0, 0);
if (!Divisor)
return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
if (getWidth<DigitsT>() == 64)
return divide64(Dividend, Divisor);
return divide32(Dividend, Divisor);
}
/// \brief Convenience helper for 32-bit quotient.
inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
uint32_t Divisor) {
return getQuotient(Dividend, Divisor);
}
/// \brief Convenience helper for 64-bit quotient.
inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
uint64_t Divisor) {
return getQuotient(Dividend, Divisor);
}
/// \brief Implementation of getLg() and friends.
///
/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
/// this was rounded up (1), down (-1), or exact (0).
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT>
inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (!Digits)
return std::make_pair(INT32_MIN, 0);
// Get the floor of the lg of Digits.
int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
// Get the actual floor.
int32_t Floor = Scale + LocalFloor;
if (Digits == UINT64_C(1) << LocalFloor)
return std::make_pair(Floor, 0);
// Round based on the next digit.
assert(LocalFloor >= 1);
bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
return std::make_pair(Floor + Round, Round ? 1 : -1);
}
/// \brief Get the lg (rounded) of a scaled number.
///
/// Get the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
return getLgImpl(Digits, Scale).first;
}
/// \brief Get the lg floor of a scaled number.
///
/// Get the floor of the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
auto Lg = getLgImpl(Digits, Scale);
return Lg.first - (Lg.second > 0);
}
/// \brief Get the lg ceiling of a scaled number.
///
/// Get the ceiling of the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
auto Lg = getLgImpl(Digits, Scale);
return Lg.first + (Lg.second < 0);
}
/// \brief Implementation for comparing scaled numbers.
///
/// Compare two 64-bit numbers with different scales. Given that the scale of
/// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
/// 1, and 0 for less than, greater than, and equal, respectively.
///
/// \pre 0 <= ScaleDiff < 64.
int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
/// \brief Compare two scaled numbers.
///
/// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
/// for greater than.
template <class DigitsT>
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
// Check for zero.
if (!LDigits)
return RDigits ? -1 : 0;
if (!RDigits)
return 1;
// Check for the scale. Use getLgFloor to be sure that the scale difference
// is always lower than 64.
int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
if (lgL != lgR)
return lgL < lgR ? -1 : 1;
// Compare digits.
if (LScale < RScale)
return compareImpl(LDigits, RDigits, RScale - LScale);
return -compareImpl(RDigits, LDigits, LScale - RScale);
}
/// \brief Match scales of two numbers.
///
/// Given two scaled numbers, match up their scales. Change the digits and
/// scales in place. Shift the digits as necessary to form equivalent numbers,
/// losing precision only when necessary.
///
/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
/// \c LScale (\c RScale) is unspecified.
///
/// As a convenience, returns the matching scale. If the output value of one
/// number is zero, returns the scale of the other. If both are zero, which
/// scale is returned is unspecifed.
template <class DigitsT>
int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
int16_t &RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (LScale < RScale)
// Swap arguments.
return matchScales(RDigits, RScale, LDigits, LScale);
if (!LDigits)
return RScale;
if (!RDigits || LScale == RScale)
return LScale;
// Now LScale > RScale. Get the difference.
int32_t ScaleDiff = int32_t(LScale) - RScale;
if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
// Don't bother shifting. RDigits will get zero-ed out anyway.
RDigits = 0;
return LScale;
}
// Shift LDigits left as much as possible, then shift RDigits right.
int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
int32_t ShiftR = ScaleDiff - ShiftL;
if (ShiftR >= getWidth<DigitsT>()) {
// Don't bother shifting. RDigits will get zero-ed out anyway.
RDigits = 0;
return LScale;
}
LDigits <<= ShiftL;
RDigits >>= ShiftR;
LScale -= ShiftL;
RScale += ShiftR;
assert(LScale == RScale && "scales should match");
return LScale;
}
/// \brief Get the sum of two scaled numbers.
///
/// Get the sum of two scaled numbers with as much precision as possible.
///
/// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
template <class DigitsT>
std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
DigitsT RDigits, int16_t RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
// Check inputs up front. This is only relevent if addition overflows, but
// testing here should catch more bugs.
assert(LScale < INT16_MAX && "scale too large");
assert(RScale < INT16_MAX && "scale too large");
// Normalize digits to match scales.
int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
// Compute sum.
DigitsT Sum = LDigits + RDigits;
if (Sum >= RDigits)
return std::make_pair(Sum, Scale);
// Adjust sum after arithmetic overflow.
DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
return std::make_pair(HighBit | Sum >> 1, Scale + 1);
}
/// \brief Convenience helper for 32-bit sum.
inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
uint32_t RDigits, int16_t RScale) {
return getSum(LDigits, LScale, RDigits, RScale);
}
/// \brief Convenience helper for 64-bit sum.
inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
uint64_t RDigits, int16_t RScale) {
return getSum(LDigits, LScale, RDigits, RScale);
}
/// \brief Get the difference of two scaled numbers.
///
/// Get LHS minus RHS with as much precision as possible.
///
/// Returns \c (0, 0) if the RHS is larger than the LHS.
template <class DigitsT>
std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
DigitsT RDigits, int16_t RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
// Normalize digits to match scales.
const DigitsT SavedRDigits = RDigits;
const int16_t SavedRScale = RScale;
matchScales(LDigits, LScale, RDigits, RScale);
// Compute difference.
if (LDigits <= RDigits)
return std::make_pair(0, 0);
if (RDigits || !SavedRDigits)
return std::make_pair(LDigits - RDigits, LScale);
// Check if RDigits just barely lost its last bit. E.g., for 32-bit:
//
// 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
return std::make_pair(LDigits, LScale);
}
/// \brief Convenience helper for 32-bit difference.
inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
int16_t LScale,
uint32_t RDigits,
int16_t RScale) {
return getDifference(LDigits, LScale, RDigits, RScale);
}
/// \brief Convenience helper for 64-bit difference.
inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
int16_t LScale,
uint64_t RDigits,
int16_t RScale) {
return getDifference(LDigits, LScale, RDigits, RScale);
}
} // end namespace ScaledNumbers
} // end namespace llvm
namespace llvm {
class raw_ostream;
class ScaledNumberBase {
public:
static const int DefaultPrecision = 10;
static void dump(uint64_t D, int16_t E, int Width);
static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
unsigned Precision);
static std::string toString(uint64_t D, int16_t E, int Width,
unsigned Precision);
static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
static std::pair<uint64_t, bool> splitSigned(int64_t N) {
if (N >= 0)
return std::make_pair(N, false);
uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
return std::make_pair(Unsigned, true);
}
static int64_t joinSigned(uint64_t U, bool IsNeg) {
if (U > uint64_t(INT64_MAX))
return IsNeg ? INT64_MIN : INT64_MAX;
return IsNeg ? -int64_t(U) : int64_t(U);
}
};
/// \brief Simple representation of a scaled number.
///
/// ScaledNumber is a number represented by digits and a scale. It uses simple
/// saturation arithmetic and every operation is well-defined for every value.
/// It's somewhat similar in behaviour to a soft-float, but is *not* a
/// replacement for one. If you're doing numerics, look at \a APFloat instead.
/// Nevertheless, we've found these semantics useful for modelling certain cost
/// metrics.
///
/// The number is split into a signed scale and unsigned digits. The number
/// represented is \c getDigits()*2^getScale(). In this way, the digits are
/// much like the mantissa in the x87 long double, but there is no canonical
/// form so the same number can be represented by many bit representations.
///
/// ScaledNumber is templated on the underlying integer type for digits, which
/// is expected to be unsigned.
///
/// Unlike APFloat, ScaledNumber does not model architecture floating point
/// behaviour -- while this might make it a little faster and easier to reason
/// about, it certainly makes it more dangerous for general numerics.
///
/// ScaledNumber is totally ordered. However, there is no canonical form, so
/// there are multiple representations of most scalars. E.g.:
///
/// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
/// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
/// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
///
/// ScaledNumber implements most arithmetic operations. Precision is kept
/// where possible. Uses simple saturation arithmetic, so that operations
/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
/// Any other division by 0.0 is defined to be getLargest().
///
/// As a convenience for modifying the exponent, left and right shifting are
/// both implemented, and both interpret negative shifts as positive shifts in
/// the opposite direction.
///
/// Scales are limited to the range accepted by x87 long double. This makes
/// it trivial to add functionality to convert to APFloat (this is already
/// relied on for the implementation of printing).
///
/// Possible (and conflicting) future directions:
///
/// 1. Turn this into a wrapper around \a APFloat.
/// 2. Share the algorithm implementations with \a APFloat.
/// 3. Allow \a ScaledNumber to represent a signed number.
template <class DigitsT> class ScaledNumber : ScaledNumberBase {
public:
static_assert(!std::numeric_limits<DigitsT>::is_signed,
"only unsigned floats supported");
typedef DigitsT DigitsType;
private:
typedef std::numeric_limits<DigitsType> DigitsLimits;
static const int Width = sizeof(DigitsType) * 8;
static_assert(Width <= 64, "invalid integer width for digits");
private:
DigitsType Digits;
int16_t Scale;
public:
ScaledNumber() : Digits(0), Scale(0) {}
ScaledNumber(DigitsType Digits, int16_t Scale)
: Digits(Digits), Scale(Scale) {}
private:
ScaledNumber(const std::pair<uint64_t, int16_t> &X)
: Digits(X.first), Scale(X.second) {}
public:
static ScaledNumber getZero() { return ScaledNumber(0, 0); }
static ScaledNumber getOne() { return ScaledNumber(1, 0); }
static ScaledNumber getLargest() {
return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
}
static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
static ScaledNumber getInverse(uint64_t N) {
return get(N).invert();
}
static ScaledNumber getFraction(DigitsType N, DigitsType D) {
return getQuotient(N, D);
}
int16_t getScale() const { return Scale; }
DigitsType getDigits() const { return Digits; }
/// \brief Convert to the given integer type.
///
/// Convert to \c IntT using simple saturating arithmetic, truncating if
/// necessary.
template <class IntT> IntT toInt() const;
bool isZero() const { return !Digits; }
bool isLargest() const { return *this == getLargest(); }
bool isOne() const {
if (Scale > 0 || Scale <= -Width)
return false;
return Digits == DigitsType(1) << -Scale;
}
/// \brief The log base 2, rounded.
///
/// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
/// \brief The log base 2, rounded towards INT32_MIN.
///
/// Get the lg floor. lg 0 is defined to be INT32_MIN.
int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
/// \brief The log base 2, rounded towards INT32_MAX.
///
/// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
int32_t lgCeiling() const {
return ScaledNumbers::getLgCeiling(Digits, Scale);
}
bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
bool operator!() const { return isZero(); }
/// \brief Convert to a decimal representation in a string.
///
/// Convert to a string. Uses scientific notation for very large/small
/// numbers. Scientific notation is used roughly for numbers outside of the
/// range 2^-64 through 2^64.
///
/// \c Precision indicates the number of decimal digits of precision to use;
/// 0 requests the maximum available.
///
/// As a special case to make debugging easier, if the number is small enough
/// to convert without scientific notation and has more than \c Precision
/// digits before the decimal place, it's printed accurately to the first
/// digit past zero. E.g., assuming 10 digits of precision:
///
/// 98765432198.7654... => 98765432198.8
/// 8765432198.7654... => 8765432198.8
/// 765432198.7654... => 765432198.8
/// 65432198.7654... => 65432198.77
/// 5432198.7654... => 5432198.765
std::string toString(unsigned Precision = DefaultPrecision) {
return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
}
/// \brief Print a decimal representation.
///
/// Print a string. See toString for documentation.
raw_ostream &print(raw_ostream &OS,
unsigned Precision = DefaultPrecision) const {
return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
}
void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
ScaledNumber &operator+=(const ScaledNumber &X) {
std::tie(Digits, Scale) =
ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
// Check for exponent past MaxScale.
if (Scale > ScaledNumbers::MaxScale)
*this = getLargest();
return *this;
}
ScaledNumber &operator-=(const ScaledNumber &X) {
std::tie(Digits, Scale) =
ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
return *this;
}
ScaledNumber &operator*=(const ScaledNumber &X);
ScaledNumber &operator/=(const ScaledNumber &X);
ScaledNumber &operator<<=(int16_t Shift) {
shiftLeft(Shift);
return *this;
}
ScaledNumber &operator>>=(int16_t Shift) {
shiftRight(Shift);
return *this;
}
private:
void shiftLeft(int32_t Shift);
void shiftRight(int32_t Shift);
/// \brief Adjust two floats to have matching exponents.
///
/// Adjust \c this and \c X to have matching exponents. Returns the new \c X
/// by value. Does nothing if \a isZero() for either.
///
/// The value that compares smaller will lose precision, and possibly become
/// \a isZero().
ScaledNumber matchScales(ScaledNumber X) {
ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
return X;
}
public:
/// \brief Scale a large number accurately.
///
/// Scale N (multiply it by this). Uses full precision multiplication, even
/// if Width is smaller than 64, so information is not lost.
uint64_t scale(uint64_t N) const;
uint64_t scaleByInverse(uint64_t N) const {
// TODO: implement directly, rather than relying on inverse. Inverse is
// expensive.
return inverse().scale(N);
}
int64_t scale(int64_t N) const {
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
return joinSigned(scale(Unsigned.first), Unsigned.second);
}
int64_t scaleByInverse(int64_t N) const {
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
}
int compare(const ScaledNumber &X) const {
return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
}
int compareTo(uint64_t N) const {
ScaledNumber Scaled = get(N);
int Compare = compare(Scaled);
if (Width == 64 || Compare != 0)
return Compare;
// Check for precision loss. We know *this == RoundTrip.
uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
}
int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
private:
static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
return ScaledNumbers::getProduct(LHS, RHS);
}
static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
return ScaledNumbers::getQuotient(Dividend, Divisor);
}
static int countLeadingZerosWidth(DigitsType Digits) {
if (Width == 64)
return countLeadingZeros64(Digits);
if (Width == 32)
return countLeadingZeros32(Digits);
return countLeadingZeros32(Digits) + Width - 32;
}
/// \brief Adjust a number to width, rounding up if necessary.
///
/// Should only be called for \c Shift close to zero.
///
/// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
assert(Shift <= ScaledNumbers::MaxScale - 64 &&
"Shift should be close to 0");
auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
return Adjusted;
}
static ScaledNumber getRounded(ScaledNumber P, bool Round) {
// Saturate.
if (P.isLargest())
return P;
return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
}
};
#define SCALED_NUMBER_BOP(op, base) \
template <class DigitsT> \
ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
const ScaledNumber<DigitsT> &R) { \
return ScaledNumber<DigitsT>(L) base R; \
}
SCALED_NUMBER_BOP(+, += )
SCALED_NUMBER_BOP(-, -= )
SCALED_NUMBER_BOP(*, *= )
SCALED_NUMBER_BOP(/, /= )
SCALED_NUMBER_BOP(<<, <<= )
SCALED_NUMBER_BOP(>>, >>= )
#undef SCALED_NUMBER_BOP
template <class DigitsT>
raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
return X.print(OS, 10);
}
#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
template <class DigitsT> \
bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
return L.compareTo(T2(R)) op 0; \
} \
template <class DigitsT> \
bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
return 0 op R.compareTo(T2(L)); \
}
#define SCALED_NUMBER_COMPARE_TO(op) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
SCALED_NUMBER_COMPARE_TO(< )
SCALED_NUMBER_COMPARE_TO(> )
SCALED_NUMBER_COMPARE_TO(== )
SCALED_NUMBER_COMPARE_TO(!= )
SCALED_NUMBER_COMPARE_TO(<= )
SCALED_NUMBER_COMPARE_TO(>= )
#undef SCALED_NUMBER_COMPARE_TO
#undef SCALED_NUMBER_COMPARE_TO_TYPE
template <class DigitsT>
uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
if (Width == 64 || N <= DigitsLimits::max())
return (get(N) * *this).template toInt<uint64_t>();
// Defer to the 64-bit version.
return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
}
template <class DigitsT>
template <class IntT>
IntT ScaledNumber<DigitsT>::toInt() const {
typedef std::numeric_limits<IntT> Limits;
if (*this < 1)
return 0;
if (*this >= Limits::max())
return Limits::max();
IntT N = Digits;
if (Scale > 0) {
assert(size_t(Scale) < sizeof(IntT) * 8);
return N << Scale;
}
if (Scale < 0) {
assert(size_t(-Scale) < sizeof(IntT) * 8);
return N >> -Scale;
}
return N;
}
template <class DigitsT>
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
operator*=(const ScaledNumber &X) {
if (isZero())
return *this;
if (X.isZero())
return *this = X;
// Save the exponents.
int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
// Get the raw product.
*this = getProduct(Digits, X.Digits);
// Combine with exponents.
return *this <<= Scales;
}
template <class DigitsT>
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
operator/=(const ScaledNumber &X) {
if (isZero())
return *this;
if (X.isZero())
return *this = getLargest();
// Save the exponents.
int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
// Get the raw quotient.
*this = getQuotient(Digits, X.Digits);
// Combine with exponents.
return *this <<= Scales;
}
template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
if (!Shift || isZero())
return;
assert(Shift != INT32_MIN);
if (Shift < 0) {
shiftRight(-Shift);
return;
}
// Shift as much as we can in the exponent.
int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
Scale += ScaleShift;
if (ScaleShift == Shift)
return;
// Check this late, since it's rare.
if (isLargest())
return;
// Shift the digits themselves.
Shift -= ScaleShift;
if (Shift > countLeadingZerosWidth(Digits)) {
// Saturate.
*this = getLargest();
return;
}
Digits <<= Shift;
return;
}
template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
if (!Shift || isZero())
return;
assert(Shift != INT32_MIN);
if (Shift < 0) {
shiftLeft(-Shift);
return;
}
// Shift as much as we can in the exponent.
int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
Scale -= ScaleShift;
if (ScaleShift == Shift)
return;
// Shift the digits themselves.
Shift -= ScaleShift;
if (Shift >= Width) {
// Saturate.
*this = getZero();
return;
}
Digits >>= Shift;
return;
}
template <typename T> struct isPodLike;
template <typename T> struct isPodLike<ScaledNumber<T>> {
static const bool value = true;
};
} // end namespace llvm
#endif
|