aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Target/MRegisterInfo.h
blob: 12e28c0dad5ff6e30dcf253c26fb03cdfccf63f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
//===- Target/MRegisterInfo.h - Target Register Information -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes an abstract interface used to get information about a
// target machines register file.  This information is used for a variety of
// purposed, especially register allocation.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_MREGISTERINFO_H
#define LLVM_TARGET_MREGISTERINFO_H

#include "llvm/CodeGen/MachineBasicBlock.h"
#include <cassert>
#include <functional>

namespace llvm {

class Type;
class MachineFunction;
class MachineInstr;

/// MRegisterDesc - This record contains all of the information known about a
/// particular register.  The AliasSet field (if not null) contains a pointer to
/// a Zero terminated array of registers that this register aliases.  This is
/// needed for architectures like X86 which have AL alias AX alias EAX.
/// Registers that this does not apply to simply should set this to null.
///
struct MRegisterDesc {
  const char     *Name;         // Assembly language name for the register
  const unsigned *AliasSet;     // Register Alias Set, described above
  unsigned char SpillSize;      // Size of this register in bytes
  unsigned char SpillAlignment; // Alignment of stack slot for this reg
};

class TargetRegisterClass {
public:
  typedef const unsigned* iterator;
  typedef const unsigned* const_iterator;

private:
  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
  const iterator RegsBegin, RegsEnd;
public:
  TargetRegisterClass(unsigned RS, unsigned Al, iterator RB, iterator RE)
    : RegSize(RS), Alignment(Al), RegsBegin(RB), RegsEnd(RE) {}
  virtual ~TargetRegisterClass() {}     // Allow subclasses

  // begin/end - Return all of the registers in this class.
  iterator       begin() const { return RegsBegin; }
  iterator         end() const { return RegsEnd; }

  // getNumRegs - Return the number of registers in this class
  unsigned getNumRegs() const { return RegsEnd-RegsBegin; }

  // getRegister - Return the specified register in the class
  unsigned getRegister(unsigned i) const {
    assert(i < getNumRegs() && "Register number out of range!");
    return RegsBegin[i];
  }

  /// contains - Return true if the specified register is included in this
  /// register class.
  bool contains(unsigned Reg) const {
    for (iterator I = begin(), E = end(); I != E; ++I)
      if (*I == Reg) return true;
    return false;
  }

  /// allocation_order_begin/end - These methods define a range of registers
  /// which specify the registers in this class that are valid to register
  /// allocate, and the preferred order to allocate them in.  For example,
  /// callee saved registers should be at the end of the list, because it is
  /// cheaper to allocate caller saved registers.
  ///
  /// These methods take a MachineFunction argument, which can be used to tune
  /// the allocatable registers based on the characteristics of the function.
  /// One simple example is that the frame pointer register can be used if
  /// frame-pointer-elimination is performed.
  ///
  /// By default, these methods return all registers in the class.
  ///
  virtual iterator allocation_order_begin(MachineFunction &MF) const {
    return begin();
  }
  virtual iterator allocation_order_end(MachineFunction &MF)   const {
    return end();
  }



  /// getSize - Return the size of the register in bytes, which is also the size
  /// of a stack slot allocated to hold a spilled copy of this register.
  unsigned getSize() const { return RegSize; }

  /// getAlignment - Return the minimum required alignment for a register of
  /// this class.
  unsigned getAlignment() const { return Alignment; }
};


/// MRegisterInfo base class - We assume that the target defines a static array
/// of MRegisterDesc objects that represent all of the machine registers that
/// the target has.  As such, we simply have to track a pointer to this array so
/// that we can turn register number into a register descriptor.
///
class MRegisterInfo {
public:
  typedef const TargetRegisterClass * const * regclass_iterator;
private:
  const MRegisterDesc *Desc;                  // Pointer to the descriptor array
  unsigned NumRegs;                           // Number of entries in the array

  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses

  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
protected:
  MRegisterInfo(const MRegisterDesc *D, unsigned NR,
                regclass_iterator RegClassBegin, regclass_iterator RegClassEnd,
                int CallFrameSetupOpcode = -1, int CallFrameDestroyOpcode = -1);
  virtual ~MRegisterInfo();
public:

  enum {                        // Define some target independent constants
    /// NoRegister - This 'hard' register is a 'noop' register for all backends.
    /// This is used as the destination register for instructions that do not
    /// produce a value.  Some frontends may use this as an operand register to
    /// mean special things, for example, the Sparc backend uses R0 to mean %g0
    /// which always PRODUCES the value 0.  The X86 backend does not use this
    /// value as an operand register, except for memory references.
    ///
    NoRegister = 0,

    /// FirstVirtualRegister - This is the first register number that is
    /// considered to be a 'virtual' register, which is part of the SSA
    /// namespace.  This must be the same for all targets, which means that each
    /// target is limited to 1024 registers.
    ///
    FirstVirtualRegister = 1024,
  };

  /// isPhysicalRegister - Return true if the specified register number is in
  /// the physical register namespace.
  static bool isPhysicalRegister(unsigned Reg) {
    assert(Reg && "this is not a register!");
    return Reg < FirstVirtualRegister;
  }

  /// isVirtualRegister - Return true if the specified register number is in
  /// the virtual register namespace.
  static bool isVirtualRegister(unsigned Reg) {
    assert(Reg && "this is not a register!");
    return Reg >= FirstVirtualRegister;
  }

  /// getAllocatableSet - Returns a bitset indexed by register number
  /// indicating if a register is allocatable or not.
  std::vector<bool> getAllocatableSet(MachineFunction &MF) const;

  const MRegisterDesc &operator[](unsigned RegNo) const {
    assert(RegNo < NumRegs &&
           "Attempting to access record for invalid register number!");
    return Desc[RegNo];
  }

  /// Provide a get method, equivalent to [], but more useful if we have a
  /// pointer to this object.
  ///
  const MRegisterDesc &get(unsigned RegNo) const { return operator[](RegNo); }

  /// getAliasSet - Return the set of registers aliased by the specified
  /// register, or a null list of there are none.  The list returned is zero
  /// terminated.
  ///
  const unsigned *getAliasSet(unsigned RegNo) const {
    return get(RegNo).AliasSet;
  }

  /// getName - Return the symbolic target specific name for the specified
  /// physical register.
  const char *getName(unsigned RegNo) const {
    return get(RegNo).Name;
  }

  /// getSpillSize - Return the size in bits required of a stack slot used to
  /// spill register into.
  unsigned getSpillSize(unsigned RegNo) const {
    return get(RegNo).SpillSize;
  }

  /// getSpillAlignment - Return the alignment required by a stack slot used to
  /// spill register into.
  unsigned getSpillAlignment(unsigned RegNo) const {
    return get(RegNo).SpillAlignment;
  }

  /// getNumRegs - Return the number of registers this target has
  /// (useful for sizing arrays holding per register information)
  unsigned getNumRegs() const {
    return NumRegs;
  }

  /// areAliases - Returns true if the two registers alias each other,
  /// false otherwise
  bool areAliases(unsigned regA, unsigned regB) const {
    for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias)
      if (*Alias == regB) return true;
    return false;
  }

  virtual const unsigned* getCalleeSaveRegs() const = 0;


  //===--------------------------------------------------------------------===//
  // Register Class Information
  //

  /// Register class iterators
  ///
  regclass_iterator regclass_begin() const { return RegClassBegin; }
  regclass_iterator regclass_end() const { return RegClassEnd; }

  unsigned getNumRegClasses() const {
    return regclass_end()-regclass_begin();
  }

  //===--------------------------------------------------------------------===//
  // Interfaces used by the register allocator and stack frame
  // manipulation passes to move data around between registers,
  // immediates and memory.  The return value is the number of
  // instructions added to (negative if removed from) the basic block.
  //

  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MI,
                                   unsigned SrcReg, int FrameIndex) const = 0;

  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator MI,
                                    unsigned DestReg, int FrameIndex) const = 0;

  virtual void copyRegToReg(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI,
                            unsigned DestReg, unsigned SrcReg,
                            const TargetRegisterClass *RC) const = 0;


  /// foldMemoryOperand - Attempt to fold a load or store of the
  /// specified stack slot into the specified machine instruction for
  /// the specified operand.  If this is possible, a new instruction
  /// is returned with the specified operand folded, otherwise NULL is
  /// returned. The client is responsible for removing the old
  /// instruction and adding the new one in the instruction stream
  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
                                          unsigned OpNum,
                                          int FrameIndex) const {
    return 0;
  }

  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
  /// targets use pseudo instructions in order to abstract away the difference
  /// between operating with a frame pointer and operating without, through the
  /// use of these two instructions.
  ///
  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }


  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
  /// code insertion to eliminate call frame setup and destroy pseudo
  /// instructions (but only if the Target is using them).  It is responsible
  /// for eliminating these instructions, replacing them with concrete
  /// instructions.  This method need only be implemented if using call frame
  /// setup/destroy pseudo instructions.
  ///
  virtual void
  eliminateCallFramePseudoInstr(MachineFunction &MF,
                                MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MI) const {
    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
           "eliminateCallFramePseudoInstr must be implemented if using"
           " call frame setup/destroy pseudo instructions!");
    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
  }

  /// processFunctionBeforeFrameFinalized - This method is called immediately
  /// before the specified functions frame layout (MF.getFrameInfo()) is
  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
  /// replaced with direct constants.  This method is optional. The return value
  /// is the number of instructions added to (negative if removed from) the
  /// basic block
  ///
  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
  }

  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
  /// frame indices from instructions which may use them.  The instruction
  /// referenced by the iterator contains an MO_FrameIndex operand which must be
  /// eliminated by this method.  This method may modify or replace the
  /// specified instruction, as long as it keeps the iterator pointing the the
  /// finished product. The return value is the number of instructions
  /// added to (negative if removed from) the basic block.
  ///
  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI) const = 0;

  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
  /// the function. The return value is the number of instructions
  /// added to (negative if removed from) the basic block (entry for prologue).
  ///
  virtual void emitPrologue(MachineFunction &MF) const = 0;
  virtual void emitEpilogue(MachineFunction &MF,
                            MachineBasicBlock &MBB) const = 0;
};

// This is useful when building DenseMaps keyed on virtual registers
struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
  unsigned operator()(unsigned Reg) const {
    return Reg - MRegisterInfo::FirstVirtualRegister;
  }
};

} // End llvm namespace

#endif