aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Target/TargetInstrInfo.h
blob: 2fdcf8b660c9dadf1860b2bb0a12083c65a23a82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instruction set to the code generator.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H

#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/CodeGen/MachineFunction.h"

namespace llvm {

class TargetRegisterClass;
class LiveVariables;
class CalleeSavedInfo;
class SDNode;
class SelectionDAG;

template<class T> class SmallVectorImpl;


//---------------------------------------------------------------------------
///
/// TargetInstrInfo - Interface to description of machine instruction set
///
class TargetInstrInfo {
  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
  unsigned NumOpcodes;                // Number of entries in the desc array

  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
public:
  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
  virtual ~TargetInstrInfo();

  // Invariant opcodes: All instruction sets have these as their low opcodes.
  enum { 
    PHI = 0,
    INLINEASM = 1,
    DBG_LABEL = 2,
    EH_LABEL = 3,
    GC_LABEL = 4,
    DECLARE = 5,
    EXTRACT_SUBREG = 6,
    INSERT_SUBREG = 7,
    IMPLICIT_DEF = 8,
    SUBREG_TO_REG = 9
  };

  unsigned getNumOpcodes() const { return NumOpcodes; }

  /// get - Return the machine instruction descriptor that corresponds to the
  /// specified instruction opcode.
  ///
  const TargetInstrDesc &get(unsigned Opcode) const {
    assert(Opcode < NumOpcodes && "Invalid opcode!");
    return Descriptors[Opcode];
  }

  /// isTriviallyReMaterializable - Return true if the instruction is trivially
  /// rematerializable, meaning it has no side effects and requires no operands
  /// that aren't always available.
  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
    return MI->getDesc().isRematerializable() &&
           isReallyTriviallyReMaterializable(MI);
  }

protected:
  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
  /// instruction itself is actually trivially rematerializable, considering
  /// its operands.  This is used for targets that have instructions that are
  /// only trivially rematerializable for specific uses.  This predicate must
  /// return false if the instruction has any side effects other than
  /// producing a value, or if it requres any address registers that are not
  /// always available.
  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
    return true;
  }

public:
  /// Return true if the instruction is a register to register move
  /// and leave the source and dest operands in the passed parameters.
  virtual bool isMoveInstr(const MachineInstr& MI,
                           unsigned& sourceReg,
                           unsigned& destReg) const {
    return false;
  }
  
  /// isLoadFromStackSlot - If the specified machine instruction is a direct
  /// load from a stack slot, return the virtual or physical register number of
  /// the destination along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than loading from the stack slot.
  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
    return 0;
  }
  
  /// isStoreToStackSlot - If the specified machine instruction is a direct
  /// store to a stack slot, return the virtual or physical register number of
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than storing to the stack slot.
  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
    return 0;
  }

  /// reMaterialize - Re-issue the specified 'original' instruction at the
  /// specific location targeting a new destination register.
  virtual void reMaterialize(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator MI,
                             unsigned DestReg,
                             const MachineInstr *Orig) const = 0;

  /// isInvariantLoad - Return true if the specified instruction (which is
  /// marked mayLoad) is loading from a location whose value is invariant across
  /// the function.  For example, loading a value from the constant pool or from
  /// from the argument area of a function if it does not change.  This should
  /// only return true of *all* loads the instruction does are invariant (if it
  /// does multiple loads).
  virtual bool isInvariantLoad(MachineInstr *MI) const {
    return false;
  }
  
  /// convertToThreeAddress - This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into one or more true
  /// three-address instructions on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the last new instruction.
  ///
  virtual MachineInstr *
  convertToThreeAddress(MachineFunction::iterator &MFI,
                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    return 0;
  }

  /// commuteInstruction - If a target has any instructions that are commutable,
  /// but require converting to a different instruction or making non-trivial
  /// changes to commute them, this method can overloaded to do this.  The
  /// default implementation of this method simply swaps the first two operands
  /// of MI and returns it.
  ///
  /// If a target wants to make more aggressive changes, they can construct and
  /// return a new machine instruction.  If an instruction cannot commute, it
  /// can also return null.
  ///
  /// If NewMI is true, then a new machine instruction must be created.
  ///
  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
                                           bool NewMI = false) const = 0;

  /// CommuteChangesDestination - Return true if commuting the specified
  /// instruction will also changes the destination operand. Also return the
  /// current operand index of the would be new destination register by
  /// reference. This can happen when the commutable instruction is also a
  /// two-address instruction.
  virtual bool CommuteChangesDestination(MachineInstr *MI,
                                         unsigned &OpIdx) const = 0;

  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  /// implemented for a target).  Upon success, this returns false and returns
  /// with the following information in various cases:
  ///
  /// 1. If this block ends with no branches (it just falls through to its succ)
  ///    just return false, leaving TBB/FBB null.
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  ///    the destination block.
  /// 3. If this block ends with an conditional branch and it falls through to
  ///    an successor block, it sets TBB to be the branch destination block and a
  ///    list of operands that evaluate the condition. These
  ///    operands can be passed to other TargetInstrInfo methods to create new
  ///    branches.
  /// 4. If this block ends with an conditional branch and an unconditional
  ///    block, it returns the 'true' destination in TBB, the 'false' destination
  ///    in FBB, and a list of operands that evaluate the condition. These
  ///    operands can be passed to other TargetInstrInfo methods to create new
  ///    branches.
  ///
  /// Note that RemoveBranch and InsertBranch must be implemented to support
  /// cases where this method returns success.
  ///
  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                             MachineBasicBlock *&FBB,
                             SmallVectorImpl<MachineOperand> &Cond) const {
    return true;
  }
  
  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
  /// This is only invoked in cases where AnalyzeBranch returns success. It
  /// returns the number of instructions that were removed.
  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); 
    return 0;
  }
  
  /// InsertBranch - Insert a branch into the end of the specified
  /// MachineBasicBlock.  This operands to this method are the same as those
  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
  /// returns success and when an unconditional branch (TBB is non-null, FBB is
  /// null, Cond is empty) needs to be inserted. It returns the number of
  /// instructions inserted.
  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                            MachineBasicBlock *FBB,
                            const SmallVectorImpl<MachineOperand> &Cond) const {
    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); 
    return 0;
  }
  
  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
  /// returns false if the target does not how to copy between the specified
  /// registers.
  virtual bool copyRegToReg(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI,
                            unsigned DestReg, unsigned SrcReg,
                            const TargetRegisterClass *DestRC,
                            const TargetRegisterClass *SrcRC) const {
    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
    return false;
  }
  
  /// storeRegToStackSlot - Store the specified register of the given register
  /// class to the specified stack frame index. The store instruction is to be
  /// added to the given machine basic block before the specified machine
  /// instruction. If isKill is true, the register operand is the last use and
  /// must be marked kill.
  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MI,
                                   unsigned SrcReg, bool isKill, int FrameIndex,
                                   const TargetRegisterClass *RC) const {
    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
  }

  /// storeRegToAddr - Store the specified register of the given register class
  /// to the specified address. The store instruction is to be added to the
  /// given machine basic block before the specified machine instruction. If
  /// isKill is true, the register operand is the last use and must be marked
  /// kill.
  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
                              SmallVectorImpl<MachineOperand> &Addr,
                              const TargetRegisterClass *RC,
                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
  }

  /// loadRegFromStackSlot - Load the specified register of the given register
  /// class from the specified stack frame index. The load instruction is to be
  /// added to the given machine basic block before the specified machine
  /// instruction.
  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator MI,
                                    unsigned DestReg, int FrameIndex,
                                    const TargetRegisterClass *RC) const {
    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
  }

  /// loadRegFromAddr - Load the specified register of the given register class
  /// class from the specified address. The load instruction is to be added to
  /// the given machine basic block before the specified machine instruction.
  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
                               SmallVectorImpl<MachineOperand> &Addr,
                               const TargetRegisterClass *RC,
                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
  }
  
  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
  /// saved registers and returns true if it isn't possible / profitable to do
  /// so by issuing a series of store instructions via
  /// storeRegToStackSlot(). Returns false otherwise.
  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator MI,
                                const std::vector<CalleeSavedInfo> &CSI) const {
    return false;
  }

  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
  /// saved registers and returns true if it isn't possible / profitable to do
  /// so by issuing a series of load instructions via loadRegToStackSlot().
  /// Returns false otherwise.
  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
                                           MachineBasicBlock::iterator MI,
                                const std::vector<CalleeSavedInfo> &CSI) const {
    return false;
  }
  
  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
  /// slot into the specified machine instruction for the specified operand(s).
  /// If this is possible, a new instruction is returned with the specified
  /// operand folded, otherwise NULL is returned. The client is responsible for
  /// removing the old instruction and adding the new one in the instruction
  /// stream.
  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
                                          MachineInstr* MI,
                                          const SmallVectorImpl<unsigned> &Ops,
                                          int FrameIndex) const {
    return 0;
  }

  /// foldMemoryOperand - Same as the previous version except it allows folding
  /// of any load and store from / to any address, not just from a specific
  /// stack slot.
  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
                                          MachineInstr* MI,
                                          const SmallVectorImpl<unsigned> &Ops,
                                          MachineInstr* LoadMI) const {
    return 0;
  }

  /// canFoldMemoryOperand - Returns true if the specified load / store is
  /// folding is possible.
  virtual
  bool canFoldMemoryOperand(const MachineInstr *MI,
                            const SmallVectorImpl<unsigned> &Ops) const {
    return false;
  }

  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
  /// a store or a load and a store into two or more instruction. If this is
  /// possible, returns true as well as the new instructions by reference.
  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    return false;
  }

  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                                   SmallVectorImpl<SDNode*> &NewNodes) const {
    return false;
  }

  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
  /// instruction after load / store are unfolded from an instruction of the
  /// specified opcode. It returns zero if the specified unfolding is not
  /// possible.
  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
                                      bool UnfoldLoad, bool UnfoldStore) const {
    return 0;
  }
  
  /// BlockHasNoFallThrough - Return true if the specified block does not
  /// fall-through into its successor block.  This is primarily used when a
  /// branch is unanalyzable.  It is useful for things like unconditional
  /// indirect branches (jump tables).
  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
    return false;
  }
  
  /// ReverseBranchCondition - Reverses the branch condition of the specified
  /// condition list, returning false on success and true if it cannot be
  /// reversed.
  virtual
  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    return true;
  }
  
  /// insertNoop - Insert a noop into the instruction stream at the specified
  /// point.
  virtual void insertNoop(MachineBasicBlock &MBB, 
                          MachineBasicBlock::iterator MI) const {
    assert(0 && "Target didn't implement insertNoop!");
    abort();
  }

  /// isPredicated - Returns true if the instruction is already predicated.
  ///
  virtual bool isPredicated(const MachineInstr *MI) const {
    return false;
  }

  /// isUnpredicatedTerminator - Returns true if the instruction is a
  /// terminator instruction that has not been predicated.
  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;

  /// PredicateInstruction - Convert the instruction into a predicated
  /// instruction. It returns true if the operation was successful.
  virtual
  bool PredicateInstruction(MachineInstr *MI,
                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;

  /// SubsumesPredicate - Returns true if the first specified predicate
  /// subsumes the second, e.g. GE subsumes GT.
  virtual
  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
                         const SmallVectorImpl<MachineOperand> &Pred2) const {
    return false;
  }

  /// DefinesPredicate - If the specified instruction defines any predicate
  /// or condition code register(s) used for predication, returns true as well
  /// as the definition predicate(s) by reference.
  virtual bool DefinesPredicate(MachineInstr *MI,
                                std::vector<MachineOperand> &Pred) const {
    return false;
  }

  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
  /// values.
  virtual const TargetRegisterClass *getPointerRegClass() const {
    assert(0 && "Target didn't implement getPointerRegClass!");
    abort();
    return 0; // Must return a value in order to compile with VS 2005
  }

  /// GetInstSize - Returns the size of the specified Instruction.
  /// 
  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
    return 0;
  }

  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
  /// 
  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;

};

/// TargetInstrInfoImpl - This is the default implementation of
/// TargetInstrInfo, which just provides a couple of default implementations
/// for various methods.  This separated out because it is implemented in
/// libcodegen, not in libtarget.
class TargetInstrInfoImpl : public TargetInstrInfo {
protected:
  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
  : TargetInstrInfo(desc, NumOpcodes) {}
public:
  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
                                           bool NewMI = false) const;
  virtual bool CommuteChangesDestination(MachineInstr *MI,
                                         unsigned &OpIdx) const;
  virtual bool PredicateInstruction(MachineInstr *MI,
                            const SmallVectorImpl<MachineOperand> &Pred) const;
  virtual void reMaterialize(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator MI,
                             unsigned DestReg,
                             const MachineInstr *Orig) const;
  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
};

} // End llvm namespace

#endif