aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Target/TargetInstrInfo.h
blob: 312e6c33dd8c3183784b884fb0b2392fe4af1aff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the target machine instructions to the code generator.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETINSTRINFO_H
#define LLVM_TARGET_TARGETINSTRINFO_H

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Support/DataTypes.h"
#include <vector>
#include <cassert>

namespace llvm {

class MachineInstr;
class TargetMachine;
class Value;
class Type;
class Instruction;
class Constant;
class Function;
class MachineCodeForInstruction;
class TargetRegisterClass;
class LiveVariables;

//---------------------------------------------------------------------------
// Data types used to define information about a single machine instruction
//---------------------------------------------------------------------------

typedef short MachineOpCode;
typedef unsigned InstrSchedClass;

//---------------------------------------------------------------------------
// struct TargetInstrDescriptor:
//  Predefined information about each machine instruction.
//  Designed to initialized statically.
//

const unsigned M_BRANCH_FLAG           = 1 << 0;
const unsigned M_CALL_FLAG             = 1 << 1;
const unsigned M_RET_FLAG              = 1 << 2;
const unsigned M_BARRIER_FLAG          = 1 << 3;
const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
const unsigned M_LOAD_FLAG             = 1 << 5;
const unsigned M_STORE_FLAG            = 1 << 6;

// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
// changed into a 3-address instruction if the first two operands cannot be
// assigned to the same register.  The target must implement the
// TargetInstrInfo::convertToThreeAddress method for this instruction.
const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7;

// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
// Z), which produces the same result if Y and Z are exchanged.
const unsigned M_COMMUTABLE            = 1 << 8;

// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
// block?  Typically this is things like return and branch instructions.
// Various passes use this to insert code into the bottom of a basic block, but
// before control flow occurs.
const unsigned M_TERMINATOR_FLAG       = 1 << 9;

// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
// insertion support when the DAG scheduler is inserting it into a machine basic
// block.
const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10;

// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
// operands in addition to the minimum number operands specified.
const unsigned M_VARIABLE_OPS = 1 << 11;

// M_PREDICATED - Set if this instruction has a predicate that controls its
// execution.
const unsigned M_PREDICATED = 1 << 12;


// Machine operand flags
// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
// requires a callback to look up its register class.
const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;

/// M_PREDICATE_OPERAND - Set if this is the first operand of a predicate
/// operand that controls an M_PREDICATED instruction.
const unsigned M_PREDICATE_OPERAND = 1 << 1;

namespace TOI {
  // Operand constraints: only "tied_to" for now.
  enum OperandConstraint {
    TIED_TO = 0  // Must be allocated the same register as.
  };
}

/// TargetOperandInfo - This holds information about one operand of a machine
/// instruction, indicating the register class for register operands, etc.
///
class TargetOperandInfo {
public:
  /// RegClass - This specifies the register class enumeration of the operand 
  /// if the operand is a register.  If not, this contains 0.
  unsigned short RegClass;
  unsigned short Flags;
  /// Lower 16 bits are used to specify which constraints are set. The higher 16
  /// bits are used to specify the value of constraints (4 bits each).
  unsigned int Constraints;
  /// Currently no other information.
};


class TargetInstrDescriptor {
public:
  MachineOpCode   Opcode;        // The opcode.
  unsigned short  numOperands;   // Num of args (may be more if variable_ops).
  const char *    Name;          // Assembly language mnemonic for the opcode.
  InstrSchedClass schedClass;    // enum  identifying instr sched class
  unsigned        Flags;         // flags identifying machine instr class
  unsigned        TSFlags;       // Target Specific Flag values
  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.

  /// getOperandConstraint - Returns the value of the specific constraint if
  /// it is set. Returns -1 if it is not set.
  int getOperandConstraint(unsigned OpNum,
                           TOI::OperandConstraint Constraint) const {
    assert(OpNum < numOperands && "Invalid operand # of TargetInstrInfo");
    if (OpInfo[OpNum].Constraints & (1 << Constraint)) {
      unsigned Pos = 16 + Constraint * 4;
      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    }
    return -1;
  }
};


//---------------------------------------------------------------------------
///
/// TargetInstrInfo - Interface to description of machine instructions
///
class TargetInstrInfo {
  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
  unsigned NumOpcodes;                  // number of entries in the desc array
  unsigned numRealOpCodes;              // number of non-dummy op codes

  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
public:
  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
  virtual ~TargetInstrInfo();

  // Invariant opcodes: All instruction sets have these as their low opcodes.
  enum { 
    PHI = 0,
    INLINEASM = 1
  };

  unsigned getNumOpcodes() const { return NumOpcodes; }

  /// get - Return the machine instruction descriptor that corresponds to the
  /// specified instruction opcode.
  ///
  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
    assert((unsigned)Opcode < NumOpcodes);
    return desc[Opcode];
  }

  const char *getName(MachineOpCode Opcode) const {
    return get(Opcode).Name;
  }

  int getNumOperands(MachineOpCode Opcode) const {
    return get(Opcode).numOperands;
  }

  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
    return get(Opcode).schedClass;
  }

  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
    return get(Opcode).ImplicitUses;
  }

  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
    return get(Opcode).ImplicitDefs;
  }


  //
  // Query instruction class flags according to the machine-independent
  // flags listed above.
  //
  bool isReturn(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_RET_FLAG;
  }

  bool isPredicated(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_PREDICATED;
  }
  bool isCommutableInstr(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_COMMUTABLE;
  }
  bool isTerminatorInstr(unsigned Opcode) const {
    return get(Opcode).Flags & M_TERMINATOR_FLAG;
  }
  
  bool isBranch(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_BRANCH_FLAG;
  }
  
  /// isBarrier - Returns true if the specified instruction stops control flow
  /// from executing the instruction immediately following it.  Examples include
  /// unconditional branches and return instructions.
  bool isBarrier(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_BARRIER_FLAG;
  }
  
  bool isCall(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_CALL_FLAG;
  }
  bool isLoad(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_LOAD_FLAG;
  }
  bool isStore(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_STORE_FLAG;
  }
  
  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
  /// which must be filled by the code generator.
  bool hasDelaySlot(unsigned Opcode) const {
    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
  }
  
  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
  /// custom insertion support when the DAG scheduler is inserting it into a
  /// machine basic block.
  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
  }

  bool hasVariableOperands(MachineOpCode Opcode) const {
    return get(Opcode).Flags & M_VARIABLE_OPS;
  }

  /// getOperandConstraint - Returns the value of the specific constraint if
  /// it is set. Returns -1 if it is not set.
  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
                           TOI::OperandConstraint Constraint) const {
    return get(Opcode).getOperandConstraint(OpNum, Constraint);
  }

  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
  /// dest operand. Returns -1 if there isn't one.
  int findTiedToSrcOperand(const TargetInstrDescriptor *TID,
                           unsigned OpNum) const;

  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
  /// instruction if it has one.  This is used by codegen passes that update
  /// DWARF line number info as they modify the code.
  virtual unsigned getDWARF_LABELOpcode() const {
    return 0;
  }
  
  /// Return true if the instruction is a register to register move
  /// and leave the source and dest operands in the passed parameters.
  virtual bool isMoveInstr(const MachineInstr& MI,
                           unsigned& sourceReg,
                           unsigned& destReg) const {
    return false;
  }
  
  /// isLoadFromStackSlot - If the specified machine instruction is a direct
  /// load from a stack slot, return the virtual or physical register number of
  /// the destination along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than loading from the stack slot.
  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
    return 0;
  }
  
  /// isStoreToStackSlot - If the specified machine instruction is a direct
  /// store to a stack slot, return the virtual or physical register number of
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
  /// not, return 0.  This predicate must return 0 if the instruction has
  /// any side effects other than storing to the stack slot.
  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
    return 0;
  }

  /// convertToThreeAddress - This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into one or moretrue
  /// three-address instructions on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the last new instruction.
  ///
  virtual MachineInstr *
  convertToThreeAddress(MachineFunction::iterator &MFI,
                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
    return 0;
  }

  /// commuteInstruction - If a target has any instructions that are commutable,
  /// but require converting to a different instruction or making non-trivial
  /// changes to commute them, this method can overloaded to do this.  The
  /// default implementation of this method simply swaps the first two operands
  /// of MI and returns it.
  ///
  /// If a target wants to make more aggressive changes, they can construct and
  /// return a new machine instruction.  If an instruction cannot commute, it
  /// can also return null.
  ///
  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;

  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  /// implemented for a target).  Upon success, this returns false and returns
  /// with the following information in various cases:
  ///
  /// 1. If this block ends with no branches (it just falls through to its succ)
  ///    just return false, leaving TBB/FBB null.
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  ///    the destination block.
  /// 3. If this block ends with an conditional branch, it returns the 'true'
  ///    destination in TBB, the 'false' destination in FBB, and a list of
  ///    operands that evaluate the condition.  These operands can be passed to
  ///    other TargetInstrInfo methods to create new branches.
  ///
  /// Note that RemoveBranch and InsertBranch must be implemented to support
  /// cases where this method returns success.
  ///
  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                             MachineBasicBlock *&FBB,
                             std::vector<MachineOperand> &Cond) const {
    return true;
  }
  
  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
  /// this is only invoked in cases where AnalyzeBranch returns success.
  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); 
  }
  
  /// InsertBranch - Insert a branch into the end of the specified
  /// MachineBasicBlock.  This operands to this method are the same as those
  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
  /// returns success and when an unconditional branch (TBB is non-null, FBB is
  /// null, Cond is empty) needs to be inserted.
  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                            MachineBasicBlock *FBB,
                            const std::vector<MachineOperand> &Cond) const {
    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); 
  }
  
  /// BlockHasNoFallThrough - Return true if the specified block does not
  /// fall-through into its successor block.  This is primarily used when a
  /// branch is unanalyzable.  It is useful for things like unconditional
  /// indirect branches (jump tables).
  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
    return false;
  }
  
  /// ReverseBranchCondition - Reverses the branch condition of the specified
  /// condition list, returning false on success and true if it cannot be
  /// reversed.
  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
    return true;
  }
  
  /// insertNoop - Insert a noop into the instruction stream at the specified
  /// point.
  virtual void insertNoop(MachineBasicBlock &MBB, 
                          MachineBasicBlock::iterator MI) const {
    assert(0 && "Target didn't implement insertNoop!");
    abort();
  }

  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
  /// values.
  virtual const TargetRegisterClass *getPointerRegClass() const {
    assert(0 && "Target didn't implement getPointerRegClass!");
    abort();
  }
};

} // End llvm namespace

#endif