aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Target/TargetLowering.h
blob: 5ab04f794452e1106201bc2a327edaf7b33fb95f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file describes how to lower LLVM code to machine code.  This has two
/// main components:
///
///  1. Which ValueTypes are natively supported by the target.
///  2. Which operations are supported for supported ValueTypes.
///  3. Cost thresholds for alternative implementations of certain operations.
///
/// In addition it has a few other components, like information about FP
/// immediates.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_TARGETLOWERING_H
#define LLVM_TARGET_TARGETLOWERING_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Target/TargetCallingConv.h"
#include "llvm/Target/TargetMachine.h"
#include <climits>
#include <map>
#include <vector>

namespace llvm {
  class CallInst;
  class CCState;
  class FastISel;
  class FunctionLoweringInfo;
  class ImmutableCallSite;
  class IntrinsicInst;
  class MachineBasicBlock;
  class MachineFunction;
  class MachineInstr;
  class MachineJumpTableInfo;
  class MCContext;
  class MCExpr;
  template<typename T> class SmallVectorImpl;
  class DataLayout;
  class TargetRegisterClass;
  class TargetLibraryInfo;
  class TargetLoweringObjectFile;
  class Value;

  namespace Sched {
    enum Preference {
      None,             // No preference
      Source,           // Follow source order.
      RegPressure,      // Scheduling for lowest register pressure.
      Hybrid,           // Scheduling for both latency and register pressure.
      ILP,              // Scheduling for ILP in low register pressure mode.
      VLIW              // Scheduling for VLIW targets.
    };
  }

/// This base class for TargetLowering contains the SelectionDAG-independent
/// parts that can be used from the rest of CodeGen.
class TargetLoweringBase {
  TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
  void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;

public:
  /// This enum indicates whether operations are valid for a target, and if not,
  /// what action should be used to make them valid.
  enum LegalizeAction {
    Legal,      // The target natively supports this operation.
    Promote,    // This operation should be executed in a larger type.
    Expand,     // Try to expand this to other ops, otherwise use a libcall.
    Custom      // Use the LowerOperation hook to implement custom lowering.
  };

  /// This enum indicates whether a types are legal for a target, and if not,
  /// what action should be used to make them valid.
  enum LegalizeTypeAction {
    TypeLegal,           // The target natively supports this type.
    TypePromoteInteger,  // Replace this integer with a larger one.
    TypeExpandInteger,   // Split this integer into two of half the size.
    TypeSoftenFloat,     // Convert this float to a same size integer type.
    TypeExpandFloat,     // Split this float into two of half the size.
    TypeScalarizeVector, // Replace this one-element vector with its element.
    TypeSplitVector,     // Split this vector into two of half the size.
    TypeWidenVector      // This vector should be widened into a larger vector.
  };

  /// LegalizeKind holds the legalization kind that needs to happen to EVT
  /// in order to type-legalize it.
  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;

  /// Enum that describes how the target represents true/false values.
  enum BooleanContent {
    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
  };

  /// Enum that describes what type of support for selects the target has.
  enum SelectSupportKind {
    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    ScalarCondVectorVal,  // The target supports selects with a scalar condition
                          // and vector values (ex: cmov).
    VectorMaskSelect      // The target supports vector selects with a vector
                          // mask (ex: x86 blends).
  };

  static ISD::NodeType getExtendForContent(BooleanContent Content) {
    switch (Content) {
    case UndefinedBooleanContent:
      // Extend by adding rubbish bits.
      return ISD::ANY_EXTEND;
    case ZeroOrOneBooleanContent:
      // Extend by adding zero bits.
      return ISD::ZERO_EXTEND;
    case ZeroOrNegativeOneBooleanContent:
      // Extend by copying the sign bit.
      return ISD::SIGN_EXTEND;
    }
    llvm_unreachable("Invalid content kind");
  }

  /// NOTE: The constructor takes ownership of TLOF.
  explicit TargetLoweringBase(const TargetMachine &TM,
                              const TargetLoweringObjectFile *TLOF);
  virtual ~TargetLoweringBase();

protected:
  /// \brief Initialize all of the actions to default values.
  void initActions();

public:
  const TargetMachine &getTargetMachine() const { return TM; }
  const DataLayout *getDataLayout() const { return TD; }
  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }

  bool isBigEndian() const { return !IsLittleEndian; }
  bool isLittleEndian() const { return IsLittleEndian; }

  /// Return the pointer type for the given address space, defaults to
  /// the pointer type from the data layout.
  /// FIXME: The default needs to be removed once all the code is updated.
  virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
  unsigned getPointerSizeInBits(uint32_t AS = 0) const;
  unsigned getPointerTypeSizeInBits(Type *Ty) const;
  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;

  EVT getShiftAmountTy(EVT LHSTy) const;

  /// Returns the type to be used for the index operand of:
  /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
  /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
  virtual MVT getVectorIdxTy() const {
    return getPointerTy();
  }

  /// Return true if the select operation is expensive for this target.
  bool isSelectExpensive() const { return SelectIsExpensive; }

  virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
    return true;
  }

  /// Return true if a vector of the given type should be split
  /// (TypeSplitVector) instead of promoted (TypePromoteInteger) during type
  /// legalization.
  virtual bool shouldSplitVectorElementType(EVT /*VT*/) const { return false; }

  /// Return true if integer divide is usually cheaper than a sequence of
  /// several shifts, adds, and multiplies for this target.
  bool isIntDivCheap() const { return IntDivIsCheap; }

  /// Returns true if target has indicated at least one type should be bypassed.
  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }

  /// Returns map of slow types for division or remainder with corresponding
  /// fast types
  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
    return BypassSlowDivWidths;
  }

  /// Return true if pow2 div is cheaper than a chain of srl/add/sra.
  bool isPow2DivCheap() const { return Pow2DivIsCheap; }

  /// Return true if Flow Control is an expensive operation that should be
  /// avoided.
  bool isJumpExpensive() const { return JumpIsExpensive; }

  /// Return true if selects are only cheaper than branches if the branch is
  /// unlikely to be predicted right.
  bool isPredictableSelectExpensive() const {
    return PredictableSelectIsExpensive;
  }

  /// isLoadBitCastBeneficial() - Return true if the following transform
  /// is beneficial.
  /// fold (conv (load x)) -> (load (conv*)x)
  /// On architectures that don't natively support some vector loads efficiently,
  /// casting the load to a smaller vector of larger types and loading
  /// is more efficient, however, this can be undone by optimizations in
  /// dag combiner.
  virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
    return true;
  }

  /// Return the ValueType of the result of SETCC operations.  Also used to
  /// obtain the target's preferred type for the condition operand of SELECT and
  /// BRCOND nodes.  In the case of BRCOND the argument passed is MVT::Other
  /// since there are no other operands to get a type hint from.
  virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;

  /// Return the ValueType for comparison libcalls. Comparions libcalls include
  /// floating point comparion calls, and Ordered/Unordered check calls on
  /// floating point numbers.
  virtual
  MVT::SimpleValueType getCmpLibcallReturnType() const;

  /// For targets without i1 registers, this gives the nature of the high-bits
  /// of boolean values held in types wider than i1.
  ///
  /// "Boolean values" are special true/false values produced by nodes like
  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
  /// Not to be confused with general values promoted from i1.  Some cpus
  /// distinguish between vectors of boolean and scalars; the isVec parameter
  /// selects between the two kinds.  For example on X86 a scalar boolean should
  /// be zero extended from i1, while the elements of a vector of booleans
  /// should be sign extended from i1.
  BooleanContent getBooleanContents(bool isVec) const {
    return isVec ? BooleanVectorContents : BooleanContents;
  }

  /// Return target scheduling preference.
  Sched::Preference getSchedulingPreference() const {
    return SchedPreferenceInfo;
  }

  /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
  /// for different nodes. This function returns the preference (or none) for
  /// the given node.
  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    return Sched::None;
  }

  /// Return the register class that should be used for the specified value
  /// type.
  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    assert(RC && "This value type is not natively supported!");
    return RC;
  }

  /// Return the 'representative' register class for the specified value
  /// type.
  ///
  /// The 'representative' register class is the largest legal super-reg
  /// register class for the register class of the value type.  For example, on
  /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
  /// register class is GR64 on x86_64.
  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
    return RC;
  }

  /// Return the cost of the 'representative' register class for the specified
  /// value type.
  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
    return RepRegClassCostForVT[VT.SimpleTy];
  }

  /// Return true if the target has native support for the specified value type.
  /// This means that it has a register that directly holds it without
  /// promotions or expansions.
  bool isTypeLegal(EVT VT) const {
    assert(!VT.isSimple() ||
           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
  }

  class ValueTypeActionImpl {
    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    /// that indicates how instruction selection should deal with the type.
    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];

  public:
    ValueTypeActionImpl() {
      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
    }

    LegalizeTypeAction getTypeAction(MVT VT) const {
      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    }

    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
      unsigned I = VT.SimpleTy;
      ValueTypeActions[I] = Action;
    }
  };

  const ValueTypeActionImpl &getValueTypeActions() const {
    return ValueTypeActions;
  }

  /// Return how we should legalize values of this type, either it is already
  /// legal (return 'Legal') or we need to promote it to a larger type (return
  /// 'Promote'), or we need to expand it into multiple registers of smaller
  /// integer type (return 'Expand').  'Custom' is not an option.
  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    return getTypeConversion(Context, VT).first;
  }
  LegalizeTypeAction getTypeAction(MVT VT) const {
    return ValueTypeActions.getTypeAction(VT);
  }

  /// For types supported by the target, this is an identity function.  For
  /// types that must be promoted to larger types, this returns the larger type
  /// to promote to.  For integer types that are larger than the largest integer
  /// register, this contains one step in the expansion to get to the smaller
  /// register. For illegal floating point types, this returns the integer type
  /// to transform to.
  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    return getTypeConversion(Context, VT).second;
  }

  /// For types supported by the target, this is an identity function.  For
  /// types that must be expanded (i.e. integer types that are larger than the
  /// largest integer register or illegal floating point types), this returns
  /// the largest legal type it will be expanded to.
  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    assert(!VT.isVector());
    while (true) {
      switch (getTypeAction(Context, VT)) {
      case TypeLegal:
        return VT;
      case TypeExpandInteger:
        VT = getTypeToTransformTo(Context, VT);
        break;
      default:
        llvm_unreachable("Type is not legal nor is it to be expanded!");
      }
    }
  }

  /// Vector types are broken down into some number of legal first class types.
  /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
  /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
  /// turns into 4 EVT::i32 values with both PPC and X86.
  ///
  /// This method returns the number of registers needed, and the VT for each
  /// register.  It also returns the VT and quantity of the intermediate values
  /// before they are promoted/expanded.
  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
                                  EVT &IntermediateVT,
                                  unsigned &NumIntermediates,
                                  MVT &RegisterVT) const;

  struct IntrinsicInfo {
    unsigned     opc;         // target opcode
    EVT          memVT;       // memory VT
    const Value* ptrVal;      // value representing memory location
    int          offset;      // offset off of ptrVal
    unsigned     align;       // alignment
    bool         vol;         // is volatile?
    bool         readMem;     // reads memory?
    bool         writeMem;    // writes memory?
  };

  /// Given an intrinsic, checks if on the target the intrinsic will need to map
  /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
  /// true and store the intrinsic information into the IntrinsicInfo that was
  /// passed to the function.
  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
                                  unsigned /*Intrinsic*/) const {
    return false;
  }

  /// Returns true if the target can instruction select the specified FP
  /// immediate natively. If false, the legalizer will materialize the FP
  /// immediate as a load from a constant pool.
  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    return false;
  }

  /// Targets can use this to indicate that they only support *some*
  /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
  /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
  /// legal.
  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
                                  EVT /*VT*/) const {
    return true;
  }

  /// Returns true if the operation can trap for the value type.
  ///
  /// VT must be a legal type. By default, we optimistically assume most
  /// operations don't trap except for divide and remainder.
  virtual bool canOpTrap(unsigned Op, EVT VT) const;

  /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
  /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
  /// a VAND with a constant pool entry.
  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
                                      EVT /*VT*/) const {
    return false;
  }

  /// Return how this operation should be treated: either it is legal, needs to
  /// be promoted to a larger size, needs to be expanded to some other code
  /// sequence, or the target has a custom expander for it.
  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    if (VT.isExtended()) return Expand;
    // If a target-specific SDNode requires legalization, require the target
    // to provide custom legalization for it.
    if (Op > array_lengthof(OpActions[0])) return Custom;
    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    return (LegalizeAction)OpActions[I][Op];
  }

  /// Return true if the specified operation is legal on this target or can be
  /// made legal with custom lowering. This is used to help guide high-level
  /// lowering decisions.
  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    return (VT == MVT::Other || isTypeLegal(VT)) &&
      (getOperationAction(Op, VT) == Legal ||
       getOperationAction(Op, VT) == Custom);
  }

  /// Return true if the specified operation is legal on this target or can be
  /// made legal using promotion. This is used to help guide high-level lowering
  /// decisions.
  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
    return (VT == MVT::Other || isTypeLegal(VT)) &&
      (getOperationAction(Op, VT) == Legal ||
       getOperationAction(Op, VT) == Promote);
  }

  /// Return true if the specified operation is illegal on this target or
  /// unlikely to be made legal with custom lowering. This is used to help guide
  /// high-level lowering decisions.
  bool isOperationExpand(unsigned Op, EVT VT) const {
    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
  }

  /// Return true if the specified operation is legal on this target.
  bool isOperationLegal(unsigned Op, EVT VT) const {
    return (VT == MVT::Other || isTypeLegal(VT)) &&
           getOperationAction(Op, VT) == Legal;
  }

  /// Return how this load with extension should be treated: either it is legal,
  /// needs to be promoted to a larger size, needs to be expanded to some other
  /// code sequence, or the target has a custom expander for it.
  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
           "Table isn't big enough!");
    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
  }

  /// Return true if the specified load with extension is legal on this target.
  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
    return VT.isSimple() &&
      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
  }

  /// Return how this store with truncation should be treated: either it is
  /// legal, needs to be promoted to a larger size, needs to be expanded to some
  /// other code sequence, or the target has a custom expander for it.
  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
           "Table isn't big enough!");
    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
                                            [MemVT.SimpleTy];
  }

  /// Return true if the specified store with truncation is legal on this
  /// target.
  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    return isTypeLegal(ValVT) && MemVT.isSimple() &&
      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
  }

  /// Return how the indexed load should be treated: either it is legal, needs
  /// to be promoted to a larger size, needs to be expanded to some other code
  /// sequence, or the target has a custom expander for it.
  LegalizeAction
  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
           "Table isn't big enough!");
    unsigned Ty = (unsigned)VT.SimpleTy;
    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
  }

  /// Return true if the specified indexed load is legal on this target.
  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    return VT.isSimple() &&
      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
  }

  /// Return how the indexed store should be treated: either it is legal, needs
  /// to be promoted to a larger size, needs to be expanded to some other code
  /// sequence, or the target has a custom expander for it.
  LegalizeAction
  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
           "Table isn't big enough!");
    unsigned Ty = (unsigned)VT.SimpleTy;
    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
  }

  /// Return true if the specified indexed load is legal on this target.
  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    return VT.isSimple() &&
      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
  }

  /// Return how the condition code should be treated: either it is legal, needs
  /// to be expanded to some other code sequence, or the target has a custom
  /// expander for it.
  LegalizeAction
  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
           ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
           "Table isn't big enough!");
    // See setCondCodeAction for how this is encoded.
    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
    uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
    LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
    assert(Action != Promote && "Can't promote condition code!");
    return Action;
  }

  /// Return true if the specified condition code is legal on this target.
  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
    return
      getCondCodeAction(CC, VT) == Legal ||
      getCondCodeAction(CC, VT) == Custom;
  }


  /// If the action for this operation is to promote, this method returns the
  /// ValueType to promote to.
  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
    assert(getOperationAction(Op, VT) == Promote &&
           "This operation isn't promoted!");

    // See if this has an explicit type specified.
    std::map<std::pair<unsigned, MVT::SimpleValueType>,
             MVT::SimpleValueType>::const_iterator PTTI =
      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
    if (PTTI != PromoteToType.end()) return PTTI->second;

    assert((VT.isInteger() || VT.isFloatingPoint()) &&
           "Cannot autopromote this type, add it with AddPromotedToType.");

    MVT NVT = VT;
    do {
      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
             "Didn't find type to promote to!");
    } while (!isTypeLegal(NVT) ||
              getOperationAction(Op, NVT) == Promote);
    return NVT;
  }

  /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
  /// operations except for the pointer size.  If AllowUnknown is true, this
  /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
  /// otherwise it will assert.
  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    // Lower scalar pointers to native pointer types.
    if (PointerType *PTy = dyn_cast<PointerType>(Ty))
      return getPointerTy(PTy->getAddressSpace());

    if (Ty->isVectorTy()) {
      VectorType *VTy = cast<VectorType>(Ty);
      Type *Elm = VTy->getElementType();
      // Lower vectors of pointers to native pointer types.
      if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
        EVT PointerTy(getPointerTy(PT->getAddressSpace()));
        Elm = PointerTy.getTypeForEVT(Ty->getContext());
      }

      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
                       VTy->getNumElements());
    }
    return EVT::getEVT(Ty, AllowUnknown);
  }

  /// Return the MVT corresponding to this LLVM type. See getValueType.
  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
    return getValueType(Ty, AllowUnknown).getSimpleVT();
  }

  /// Return the desired alignment for ByVal aggregate function arguments in the
  /// caller parameter area.  This is the actual alignment, not its logarithm.
  virtual unsigned getByValTypeAlignment(Type *Ty) const;

  /// Return the type of registers that this ValueType will eventually require.
  MVT getRegisterType(MVT VT) const {
    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    return RegisterTypeForVT[VT.SimpleTy];
  }

  /// Return the type of registers that this ValueType will eventually require.
  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
    if (VT.isSimple()) {
      assert((unsigned)VT.getSimpleVT().SimpleTy <
                array_lengthof(RegisterTypeForVT));
      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    }
    if (VT.isVector()) {
      EVT VT1;
      MVT RegisterVT;
      unsigned NumIntermediates;
      (void)getVectorTypeBreakdown(Context, VT, VT1,
                                   NumIntermediates, RegisterVT);
      return RegisterVT;
    }
    if (VT.isInteger()) {
      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    }
    llvm_unreachable("Unsupported extended type!");
  }

  /// Return the number of registers that this ValueType will eventually
  /// require.
  ///
  /// This is one for any types promoted to live in larger registers, but may be
  /// more than one for types (like i64) that are split into pieces.  For types
  /// like i140, which are first promoted then expanded, it is the number of
  /// registers needed to hold all the bits of the original type.  For an i140
  /// on a 32 bit machine this means 5 registers.
  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    if (VT.isSimple()) {
      assert((unsigned)VT.getSimpleVT().SimpleTy <
                array_lengthof(NumRegistersForVT));
      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    }
    if (VT.isVector()) {
      EVT VT1;
      MVT VT2;
      unsigned NumIntermediates;
      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    }
    if (VT.isInteger()) {
      unsigned BitWidth = VT.getSizeInBits();
      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
      return (BitWidth + RegWidth - 1) / RegWidth;
    }
    llvm_unreachable("Unsupported extended type!");
  }

  /// If true, then instruction selection should seek to shrink the FP constant
  /// of the specified type to a smaller type in order to save space and / or
  /// reduce runtime.
  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }

  /// If true, the target has custom DAG combine transformations that it can
  /// perform for the specified node.
  bool hasTargetDAGCombine(ISD::NodeType NT) const {
    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
  }

  /// \brief Get maximum # of store operations permitted for llvm.memset
  ///
  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memset. The value is set by the target at the
  /// performance threshold for such a replacement. If OptSize is true,
  /// return the limit for functions that have OptSize attribute.
  unsigned getMaxStoresPerMemset(bool OptSize) const {
    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
  }

  /// \brief Get maximum # of store operations permitted for llvm.memcpy
  ///
  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memcpy. The value is set by the target at the
  /// performance threshold for such a replacement. If OptSize is true,
  /// return the limit for functions that have OptSize attribute.
  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
  }

  /// \brief Get maximum # of store operations permitted for llvm.memmove
  ///
  /// This function returns the maximum number of store operations permitted
  /// to replace a call to llvm.memmove. The value is set by the target at the
  /// performance threshold for such a replacement. If OptSize is true,
  /// return the limit for functions that have OptSize attribute.
  unsigned getMaxStoresPerMemmove(bool OptSize) const {
    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
  }

  /// \brief Determine if the target supports unaligned memory accesses.
  ///
  /// This function returns true if the target allows unaligned memory accesses.
  /// of the specified type. If true, it also returns whether the unaligned
  /// memory access is "fast" in the second argument by reference. This is used,
  /// for example, in situations where an array copy/move/set is converted to a
  /// sequence of store operations. It's use helps to ensure that such
  /// replacements don't generate code that causes an alignment error (trap) on
  /// the target machine.
  virtual bool allowsUnalignedMemoryAccesses(EVT, bool * /*Fast*/ = 0) const {
    return false;
  }

  /// Returns the target specific optimal type for load and store operations as
  /// a result of memset, memcpy, and memmove lowering.
  ///
  /// If DstAlign is zero that means it's safe to destination alignment can
  /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
  /// a need to check it against alignment requirement, probably because the
  /// source does not need to be loaded. If 'IsMemset' is true, that means it's
  /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
  /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
  /// does not need to be loaded.  It returns EVT::Other if the type should be
  /// determined using generic target-independent logic.
  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
                                  bool /*IsMemset*/,
                                  bool /*ZeroMemset*/,
                                  bool /*MemcpyStrSrc*/,
                                  MachineFunction &/*MF*/) const {
    return MVT::Other;
  }

  /// Returns true if it's safe to use load / store of the specified type to
  /// expand memcpy / memset inline.
  ///
  /// This is mostly true for all types except for some special cases. For
  /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
  /// fstpl which also does type conversion. Note the specified type doesn't
  /// have to be legal as the hook is used before type legalization.
  virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }

  /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
  bool usesUnderscoreSetJmp() const {
    return UseUnderscoreSetJmp;
  }

  /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
  bool usesUnderscoreLongJmp() const {
    return UseUnderscoreLongJmp;
  }

  /// Return whether the target can generate code for jump tables.
  bool supportJumpTables() const {
    return SupportJumpTables;
  }

  /// Return integer threshold on number of blocks to use jump tables rather
  /// than if sequence.
  int getMinimumJumpTableEntries() const {
    return MinimumJumpTableEntries;
  }

  /// If a physical register, this specifies the register that
  /// llvm.savestack/llvm.restorestack should save and restore.
  unsigned getStackPointerRegisterToSaveRestore() const {
    return StackPointerRegisterToSaveRestore;
  }

  /// If a physical register, this returns the register that receives the
  /// exception address on entry to a landing pad.
  unsigned getExceptionPointerRegister() const {
    return ExceptionPointerRegister;
  }

  /// If a physical register, this returns the register that receives the
  /// exception typeid on entry to a landing pad.
  unsigned getExceptionSelectorRegister() const {
    return ExceptionSelectorRegister;
  }

  /// Returns the target's jmp_buf size in bytes (if never set, the default is
  /// 200)
  unsigned getJumpBufSize() const {
    return JumpBufSize;
  }

  /// Returns the target's jmp_buf alignment in bytes (if never set, the default
  /// is 0)
  unsigned getJumpBufAlignment() const {
    return JumpBufAlignment;
  }

  /// Return the minimum stack alignment of an argument.
  unsigned getMinStackArgumentAlignment() const {
    return MinStackArgumentAlignment;
  }

  /// Return the minimum function alignment.
  unsigned getMinFunctionAlignment() const {
    return MinFunctionAlignment;
  }

  /// Return the preferred function alignment.
  unsigned getPrefFunctionAlignment() const {
    return PrefFunctionAlignment;
  }

  /// Return the preferred loop alignment.
  unsigned getPrefLoopAlignment() const {
    return PrefLoopAlignment;
  }

  /// Return whether the DAG builder should automatically insert fences and
  /// reduce ordering for atomics.
  bool getInsertFencesForAtomic() const {
    return InsertFencesForAtomic;
  }

  /// Return true if the target stores stack protector cookies at a fixed offset
  /// in some non-standard address space, and populates the address space and
  /// offset as appropriate.
  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
                                      unsigned &/*Offset*/) const {
    return false;
  }

  /// Returns the maximal possible offset which can be used for loads / stores
  /// from the global.
  virtual unsigned getMaximalGlobalOffset() const {
    return 0;
  }

  /// Returns true if a cast between SrcAS and DestAS is a noop.
  virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
    return false;
  }

  //===--------------------------------------------------------------------===//
  /// \name Helpers for TargetTransformInfo implementations
  /// @{

  /// Get the ISD node that corresponds to the Instruction class opcode.
  int InstructionOpcodeToISD(unsigned Opcode) const;

  /// Estimate the cost of type-legalization and the legalized type.
  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;

  /// @}

  //===--------------------------------------------------------------------===//
  // TargetLowering Configuration Methods - These methods should be invoked by
  // the derived class constructor to configure this object for the target.
  //

  /// \brief Reset the operation actions based on target options.
  virtual void resetOperationActions() {}

protected:
  /// Specify how the target extends the result of a boolean value from i1 to a
  /// wider type.  See getBooleanContents.
  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }

  /// Specify how the target extends the result of a vector boolean value from a
  /// vector of i1 to a wider type.  See getBooleanContents.
  void setBooleanVectorContents(BooleanContent Ty) {
    BooleanVectorContents = Ty;
  }

  /// Specify the target scheduling preference.
  void setSchedulingPreference(Sched::Preference Pref) {
    SchedPreferenceInfo = Pref;
  }

  /// Indicate whether this target prefers to use _setjmp to implement
  /// llvm.setjmp or the non _ version.  Defaults to false.
  void setUseUnderscoreSetJmp(bool Val) {
    UseUnderscoreSetJmp = Val;
  }

  /// Indicate whether this target prefers to use _longjmp to implement
  /// llvm.longjmp or the non _ version.  Defaults to false.
  void setUseUnderscoreLongJmp(bool Val) {
    UseUnderscoreLongJmp = Val;
  }

  /// Indicate whether the target can generate code for jump tables.
  void setSupportJumpTables(bool Val) {
    SupportJumpTables = Val;
  }

  /// Indicate the number of blocks to generate jump tables rather than if
  /// sequence.
  void setMinimumJumpTableEntries(int Val) {
    MinimumJumpTableEntries = Val;
  }

  /// If set to a physical register, this specifies the register that
  /// llvm.savestack/llvm.restorestack should save and restore.
  void setStackPointerRegisterToSaveRestore(unsigned R) {
    StackPointerRegisterToSaveRestore = R;
  }

  /// If set to a physical register, this sets the register that receives the
  /// exception address on entry to a landing pad.
  void setExceptionPointerRegister(unsigned R) {
    ExceptionPointerRegister = R;
  }

  /// If set to a physical register, this sets the register that receives the
  /// exception typeid on entry to a landing pad.
  void setExceptionSelectorRegister(unsigned R) {
    ExceptionSelectorRegister = R;
  }

  /// Tells the code generator not to expand operations into sequences that use
  /// the select operations if possible.
  void setSelectIsExpensive(bool isExpensive = true) {
    SelectIsExpensive = isExpensive;
  }

  /// Tells the code generator not to expand sequence of operations into a
  /// separate sequences that increases the amount of flow control.
  void setJumpIsExpensive(bool isExpensive = true) {
    JumpIsExpensive = isExpensive;
  }

  /// Tells the code generator that integer divide is expensive, and if
  /// possible, should be replaced by an alternate sequence of instructions not
  /// containing an integer divide.
  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }

  /// Tells the code generator which bitwidths to bypass.
  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
  }

  /// Tells the code generator that it shouldn't generate srl/add/sra for a
  /// signed divide by power of two, and let the target handle it.
  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }

  /// Add the specified register class as an available regclass for the
  /// specified value type. This indicates the selector can handle values of
  /// that class natively.
  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
    AvailableRegClasses.push_back(std::make_pair(VT, RC));
    RegClassForVT[VT.SimpleTy] = RC;
  }

  /// Remove all register classes.
  void clearRegisterClasses() {
    memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));

    AvailableRegClasses.clear();
  }

  /// \brief Remove all operation actions.
  void clearOperationActions() {
  }

  /// Return the largest legal super-reg register class of the register class
  /// for the specified type and its associated "cost".
  virtual std::pair<const TargetRegisterClass*, uint8_t>
  findRepresentativeClass(MVT VT) const;

  /// Once all of the register classes are added, this allows us to compute
  /// derived properties we expose.
  void computeRegisterProperties();

  /// Indicate that the specified operation does not work with the specified
  /// type and indicate what to do about it.
  void setOperationAction(unsigned Op, MVT VT,
                          LegalizeAction Action) {
    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
  }

  /// Indicate that the specified load with extension does not work with the
  /// specified type and indicate what to do about it.
  void setLoadExtAction(unsigned ExtType, MVT VT,
                        LegalizeAction Action) {
    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
           "Table isn't big enough!");
    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
  }

  /// Indicate that the specified truncating store does not work with the
  /// specified type and indicate what to do about it.
  void setTruncStoreAction(MVT ValVT, MVT MemVT,
                           LegalizeAction Action) {
    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
           "Table isn't big enough!");
    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
  }

  /// Indicate that the specified indexed load does or does not work with the
  /// specified type and indicate what to do abort it.
  ///
  /// NOTE: All indexed mode loads are initialized to Expand in
  /// TargetLowering.cpp
  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
                            LegalizeAction Action) {
    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
           (unsigned)Action < 0xf && "Table isn't big enough!");
    // Load action are kept in the upper half.
    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
  }

  /// Indicate that the specified indexed store does or does not work with the
  /// specified type and indicate what to do about it.
  ///
  /// NOTE: All indexed mode stores are initialized to Expand in
  /// TargetLowering.cpp
  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
                             LegalizeAction Action) {
    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
           (unsigned)Action < 0xf && "Table isn't big enough!");
    // Store action are kept in the lower half.
    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
  }

  /// Indicate that the specified condition code is or isn't supported on the
  /// target and indicate what to do about it.
  void setCondCodeAction(ISD::CondCode CC, MVT VT,
                         LegalizeAction Action) {
    assert(VT < MVT::LAST_VALUETYPE &&
           (unsigned)CC < array_lengthof(CondCodeActions) &&
           "Table isn't big enough!");
    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
    /// value and the upper 27 bits index into the second dimension of the array
    /// to select what 32-bit value to use.
    uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
    CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
    CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
  }

  /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
  /// to trying a larger integer/fp until it can find one that works. If that
  /// default is insufficient, this method can be used by the target to override
  /// the default.
  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
  }

  /// Targets should invoke this method for each target independent node that
  /// they want to provide a custom DAG combiner for by implementing the
  /// PerformDAGCombine virtual method.
  void setTargetDAGCombine(ISD::NodeType NT) {
    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
  }

  /// Set the target's required jmp_buf buffer size (in bytes); default is 200
  void setJumpBufSize(unsigned Size) {
    JumpBufSize = Size;
  }

  /// Set the target's required jmp_buf buffer alignment (in bytes); default is
  /// 0
  void setJumpBufAlignment(unsigned Align) {
    JumpBufAlignment = Align;
  }

  /// Set the target's minimum function alignment (in log2(bytes))
  void setMinFunctionAlignment(unsigned Align) {
    MinFunctionAlignment = Align;
  }

  /// Set the target's preferred function alignment.  This should be set if
  /// there is a performance benefit to higher-than-minimum alignment (in
  /// log2(bytes))
  void setPrefFunctionAlignment(unsigned Align) {
    PrefFunctionAlignment = Align;
  }

  /// Set the target's preferred loop alignment. Default alignment is zero, it
  /// means the target does not care about loop alignment.  The alignment is
  /// specified in log2(bytes).
  void setPrefLoopAlignment(unsigned Align) {
    PrefLoopAlignment = Align;
  }

  /// Set the minimum stack alignment of an argument (in log2(bytes)).
  void setMinStackArgumentAlignment(unsigned Align) {
    MinStackArgumentAlignment = Align;
  }

  /// Set if the DAG builder should automatically insert fences and reduce the
  /// order of atomic memory operations to Monotonic.
  void setInsertFencesForAtomic(bool fence) {
    InsertFencesForAtomic = fence;
  }

public:
  //===--------------------------------------------------------------------===//
  // Addressing mode description hooks (used by LSR etc).
  //

  /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
  /// instructions reading the address. This allows as much computation as
  /// possible to be done in the address mode for that operand. This hook lets
  /// targets also pass back when this should be done on intrinsics which
  /// load/store.
  virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
                                    SmallVectorImpl<Value*> &/*Ops*/,
                                    Type *&/*AccessTy*/) const {
    return false;
  }

  /// This represents an addressing mode of:
  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
  /// If BaseGV is null,  there is no BaseGV.
  /// If BaseOffs is zero, there is no base offset.
  /// If HasBaseReg is false, there is no base register.
  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
  /// no scale.
  struct AddrMode {
    GlobalValue *BaseGV;
    int64_t      BaseOffs;
    bool         HasBaseReg;
    int64_t      Scale;
    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
  };

  /// Return true if the addressing mode represented by AM is legal for this
  /// target, for a load/store of the specified type.
  ///
  /// The type may be VoidTy, in which case only return true if the addressing
  /// mode is legal for a load/store of any legal type.  TODO: Handle
  /// pre/postinc as well.
  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;

  /// \brief Return the cost of the scaling factor used in the addressing mode
  /// represented by AM for this target, for a load/store of the specified type.
  ///
  /// If the AM is supported, the return value must be >= 0.
  /// If the AM is not supported, it returns a negative value.
  /// TODO: Handle pre/postinc as well.
  virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
    // Default: assume that any scaling factor used in a legal AM is free.
    if (isLegalAddressingMode(AM, Ty)) return 0;
    return -1;
  }

  /// Return true if the specified immediate is legal icmp immediate, that is
  /// the target has icmp instructions which can compare a register against the
  /// immediate without having to materialize the immediate into a register.
  virtual bool isLegalICmpImmediate(int64_t) const {
    return true;
  }

  /// Return true if the specified immediate is legal add immediate, that is the
  /// target has add instructions which can add a register with the immediate
  /// without having to materialize the immediate into a register.
  virtual bool isLegalAddImmediate(int64_t) const {
    return true;
  }

  /// Return true if it's free to truncate a value of type Ty1 to type
  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
  /// by referencing its sub-register AX.
  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
    return false;
  }

  /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
  /// whether a call is in tail position. Typically this means that both results
  /// would be assigned to the same register or stack slot, but it could mean
  /// the target performs adequate checks of its own before proceeding with the
  /// tail call.
  virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
    return false;
  }

  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
    return false;
  }

  /// Return true if any actual instruction that defines a value of type Ty1
  /// implicitly zero-extends the value to Ty2 in the result register.
  ///
  /// This does not necessarily include registers defined in unknown ways, such
  /// as incoming arguments, or copies from unknown virtual registers. Also, if
  /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
  /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
  /// values implicit zero-extend the result out to 64 bits.
  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
    return false;
  }

  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
    return false;
  }

  /// Return true if the target supplies and combines to a paired load
  /// two loaded values of type LoadedType next to each other in memory.
  /// RequiredAlignment gives the minimal alignment constraints that must be met
  /// to be able to select this paired load.
  ///
  /// This information is *not* used to generate actual paired loads, but it is
  /// used to generate a sequence of loads that is easier to combine into a
  /// paired load.
  /// For instance, something like this:
  /// a = load i64* addr
  /// b = trunc i64 a to i32
  /// c = lshr i64 a, 32
  /// d = trunc i64 c to i32
  /// will be optimized into:
  /// b = load i32* addr1
  /// d = load i32* addr2
  /// Where addr1 = addr2 +/- sizeof(i32).
  ///
  /// In other words, unless the target performs a post-isel load combining,
  /// this information should not be provided because it will generate more
  /// loads.
  virtual bool hasPairedLoad(Type * /*LoadedType*/,
                             unsigned & /*RequiredAligment*/) const {
    return false;
  }

  virtual bool hasPairedLoad(EVT /*LoadedType*/,
                             unsigned & /*RequiredAligment*/) const {
    return false;
  }

  /// Return true if zero-extending the specific node Val to type VT2 is free
  /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
  /// because it's folded such as X86 zero-extending loads).
  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
    return isZExtFree(Val.getValueType(), VT2);
  }

  /// Return true if an fneg operation is free to the point where it is never
  /// worthwhile to replace it with a bitwise operation.
  virtual bool isFNegFree(EVT VT) const {
    assert(VT.isFloatingPoint());
    return false;
  }

  /// Return true if an fabs operation is free to the point where it is never
  /// worthwhile to replace it with a bitwise operation.
  virtual bool isFAbsFree(EVT VT) const {
    assert(VT.isFloatingPoint());
    return false;
  }

  /// Return true if an FMA operation is faster than a pair of fmul and fadd
  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
  ///
  /// NOTE: This may be called before legalization on types for which FMAs are
  /// not legal, but should return true if those types will eventually legalize
  /// to types that support FMAs. After legalization, it will only be called on
  /// types that support FMAs (via Legal or Custom actions)
  virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
    return false;
  }

  /// Return true if it's profitable to narrow operations of type VT1 to
  /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
  /// i32 to i16.
  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
    return false;
  }

  //===--------------------------------------------------------------------===//
  // Runtime Library hooks
  //

  /// Rename the default libcall routine name for the specified libcall.
  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
    LibcallRoutineNames[Call] = Name;
  }

  /// Get the libcall routine name for the specified libcall.
  const char *getLibcallName(RTLIB::Libcall Call) const {
    return LibcallRoutineNames[Call];
  }

  /// Override the default CondCode to be used to test the result of the
  /// comparison libcall against zero.
  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
    CmpLibcallCCs[Call] = CC;
  }

  /// Get the CondCode that's to be used to test the result of the comparison
  /// libcall against zero.
  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
    return CmpLibcallCCs[Call];
  }

  /// Set the CallingConv that should be used for the specified libcall.
  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
    LibcallCallingConvs[Call] = CC;
  }

  /// Get the CallingConv that should be used for the specified libcall.
  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
    return LibcallCallingConvs[Call];
  }

private:
  const TargetMachine &TM;
  const DataLayout *TD;
  const TargetLoweringObjectFile &TLOF;

  /// True if this is a little endian target.
  bool IsLittleEndian;

  /// Tells the code generator not to expand operations into sequences that use
  /// the select operations if possible.
  bool SelectIsExpensive;

  /// Tells the code generator not to expand integer divides by constants into a
  /// sequence of muls, adds, and shifts.  This is a hack until a real cost
  /// model is in place.  If we ever optimize for size, this will be set to true
  /// unconditionally.
  bool IntDivIsCheap;

  /// Tells the code generator to bypass slow divide or remainder
  /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
  /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
  /// div/rem when the operands are positive and less than 256.
  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;

  /// Tells the code generator that it shouldn't generate srl/add/sra for a
  /// signed divide by power of two, and let the target handle it.
  bool Pow2DivIsCheap;

  /// Tells the code generator that it shouldn't generate extra flow control
  /// instructions and should attempt to combine flow control instructions via
  /// predication.
  bool JumpIsExpensive;

  /// This target prefers to use _setjmp to implement llvm.setjmp.
  ///
  /// Defaults to false.
  bool UseUnderscoreSetJmp;

  /// This target prefers to use _longjmp to implement llvm.longjmp.
  ///
  /// Defaults to false.
  bool UseUnderscoreLongJmp;

  /// Whether the target can generate code for jumptables.  If it's not true,
  /// then each jumptable must be lowered into if-then-else's.
  bool SupportJumpTables;

  /// Number of blocks threshold to use jump tables.
  int MinimumJumpTableEntries;

  /// Information about the contents of the high-bits in boolean values held in
  /// a type wider than i1. See getBooleanContents.
  BooleanContent BooleanContents;

  /// Information about the contents of the high-bits in boolean vector values
  /// when the element type is wider than i1. See getBooleanContents.
  BooleanContent BooleanVectorContents;

  /// The target scheduling preference: shortest possible total cycles or lowest
  /// register usage.
  Sched::Preference SchedPreferenceInfo;

  /// The size, in bytes, of the target's jmp_buf buffers
  unsigned JumpBufSize;

  /// The alignment, in bytes, of the target's jmp_buf buffers
  unsigned JumpBufAlignment;

  /// The minimum alignment that any argument on the stack needs to have.
  unsigned MinStackArgumentAlignment;

  /// The minimum function alignment (used when optimizing for size, and to
  /// prevent explicitly provided alignment from leading to incorrect code).
  unsigned MinFunctionAlignment;

  /// The preferred function alignment (used when alignment unspecified and
  /// optimizing for speed).
  unsigned PrefFunctionAlignment;

  /// The preferred loop alignment.
  unsigned PrefLoopAlignment;

  /// Whether the DAG builder should automatically insert fences and reduce
  /// ordering for atomics.  (This will be set for for most architectures with
  /// weak memory ordering.)
  bool InsertFencesForAtomic;

  /// If set to a physical register, this specifies the register that
  /// llvm.savestack/llvm.restorestack should save and restore.
  unsigned StackPointerRegisterToSaveRestore;

  /// If set to a physical register, this specifies the register that receives
  /// the exception address on entry to a landing pad.
  unsigned ExceptionPointerRegister;

  /// If set to a physical register, this specifies the register that receives
  /// the exception typeid on entry to a landing pad.
  unsigned ExceptionSelectorRegister;

  /// This indicates the default register class to use for each ValueType the
  /// target supports natively.
  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];

  /// This indicates the "representative" register class to use for each
  /// ValueType the target supports natively. This information is used by the
  /// scheduler to track register pressure. By default, the representative
  /// register class is the largest legal super-reg register class of the
  /// register class of the specified type. e.g. On x86, i8, i16, and i32's
  /// representative class would be GR32.
  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];

  /// This indicates the "cost" of the "representative" register class for each
  /// ValueType. The cost is used by the scheduler to approximate register
  /// pressure.
  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];

  /// For any value types we are promoting or expanding, this contains the value
  /// type that we are changing to.  For Expanded types, this contains one step
  /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
  /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
  /// the same type (e.g. i32 -> i32).
  MVT TransformToType[MVT::LAST_VALUETYPE];

  /// For each operation and each value type, keep a LegalizeAction that
  /// indicates how instruction selection should deal with the operation.  Most
  /// operations are Legal (aka, supported natively by the target), but
  /// operations that are not should be described.  Note that operations on
  /// non-legal value types are not described here.
  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];

  /// For each load extension type and each value type, keep a LegalizeAction
  /// that indicates how instruction selection should deal with a load of a
  /// specific value type and extension type.
  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];

  /// For each value type pair keep a LegalizeAction that indicates whether a
  /// truncating store of a specific value type and truncating type is legal.
  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];

  /// For each indexed mode and each value type, keep a pair of LegalizeAction
  /// that indicates how instruction selection should deal with the load /
  /// store.
  ///
  /// The first dimension is the value_type for the reference. The second
  /// dimension represents the various modes for load store.
  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];

  /// For each condition code (ISD::CondCode) keep a LegalizeAction that
  /// indicates how instruction selection should deal with the condition code.
  ///
  /// Because each CC action takes up 2 bits, we need to have the array size be
  /// large enough to fit all of the value types. This can be done by rounding
  /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
  uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];

  ValueTypeActionImpl ValueTypeActions;

public:
  LegalizeKind
  getTypeConversion(LLVMContext &Context, EVT VT) const {
    // If this is a simple type, use the ComputeRegisterProp mechanism.
    if (VT.isSimple()) {
      MVT SVT = VT.getSimpleVT();
      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
      MVT NVT = TransformToType[SVT.SimpleTy];
      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);

      assert(
        (LA == TypeLegal ||
         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
         && "Promote may not follow Expand or Promote");

      if (LA == TypeSplitVector)
        return LegalizeKind(LA, EVT::getVectorVT(Context,
                                                 SVT.getVectorElementType(),
                                                 SVT.getVectorNumElements()/2));
      if (LA == TypeScalarizeVector)
        return LegalizeKind(LA, SVT.getVectorElementType());
      return LegalizeKind(LA, NVT);
    }

    // Handle Extended Scalar Types.
    if (!VT.isVector()) {
      assert(VT.isInteger() && "Float types must be simple");
      unsigned BitSize = VT.getSizeInBits();
      // First promote to a power-of-two size, then expand if necessary.
      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
        EVT NVT = VT.getRoundIntegerType(Context);
        assert(NVT != VT && "Unable to round integer VT");
        LegalizeKind NextStep = getTypeConversion(Context, NVT);
        // Avoid multi-step promotion.
        if (NextStep.first == TypePromoteInteger) return NextStep;
        // Return rounded integer type.
        return LegalizeKind(TypePromoteInteger, NVT);
      }

      return LegalizeKind(TypeExpandInteger,
                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
    }

    // Handle vector types.
    unsigned NumElts = VT.getVectorNumElements();
    EVT EltVT = VT.getVectorElementType();

    // Vectors with only one element are always scalarized.
    if (NumElts == 1)
      return LegalizeKind(TypeScalarizeVector, EltVT);

    // Try to widen vector elements until the element type is a power of two and
    // promote it to a legal type later on, for example:
    // <3 x i8> -> <4 x i8> -> <4 x i32>
    if (EltVT.isInteger()) {
      // Vectors with a number of elements that is not a power of two are always
      // widened, for example <3 x i8> -> <4 x i8>.
      if (!VT.isPow2VectorType()) {
        NumElts = (unsigned)NextPowerOf2(NumElts);
        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
        return LegalizeKind(TypeWidenVector, NVT);
      }

      // Examine the element type.
      LegalizeKind LK = getTypeConversion(Context, EltVT);

      // If type is to be expanded, split the vector.
      //  <4 x i140> -> <2 x i140>
      if (LK.first == TypeExpandInteger)
        return LegalizeKind(TypeSplitVector,
                            EVT::getVectorVT(Context, EltVT, NumElts / 2));

      // Promote the integer element types until a legal vector type is found
      // or until the element integer type is too big. If a legal type was not
      // found, fallback to the usual mechanism of widening/splitting the
      // vector.
      EVT OldEltVT = EltVT;
      while (1) {
        // Increase the bitwidth of the element to the next pow-of-two
        // (which is greater than 8 bits).
        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
                                 ).getRoundIntegerType(Context);

        // Stop trying when getting a non-simple element type.
        // Note that vector elements may be greater than legal vector element
        // types. Example: X86 XMM registers hold 64bit element on 32bit
        // systems.
        if (!EltVT.isSimple()) break;

        // Build a new vector type and check if it is legal.
        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
        // Found a legal promoted vector type.
        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
          return LegalizeKind(TypePromoteInteger,
                              EVT::getVectorVT(Context, EltVT, NumElts));
      }

      // Reset the type to the unexpanded type if we did not find a legal vector
      // type with a promoted vector element type.
      EltVT = OldEltVT;
    }

    // Try to widen the vector until a legal type is found.
    // If there is no wider legal type, split the vector.
    while (1) {
      // Round up to the next power of 2.
      NumElts = (unsigned)NextPowerOf2(NumElts);

      // If there is no simple vector type with this many elements then there
      // cannot be a larger legal vector type.  Note that this assumes that
      // there are no skipped intermediate vector types in the simple types.
      if (!EltVT.isSimple()) break;
      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
      if (LargerVector == MVT()) break;

      // If this type is legal then widen the vector.
      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
        return LegalizeKind(TypeWidenVector, LargerVector);
    }

    // Widen odd vectors to next power of two.
    if (!VT.isPow2VectorType()) {
      EVT NVT = VT.getPow2VectorType(Context);
      return LegalizeKind(TypeWidenVector, NVT);
    }

    // Vectors with illegal element types are expanded.
    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
    return LegalizeKind(TypeSplitVector, NVT);
  }

private:
  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;

  /// Targets can specify ISD nodes that they would like PerformDAGCombine
  /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
  /// array.
  unsigned char
  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];

  /// For operations that must be promoted to a specific type, this holds the
  /// destination type.  This map should be sparse, so don't hold it as an
  /// array.
  ///
  /// Targets add entries to this map with AddPromotedToType(..), clients access
  /// this with getTypeToPromoteTo(..).
  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
    PromoteToType;

  /// Stores the name each libcall.
  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];

  /// The ISD::CondCode that should be used to test the result of each of the
  /// comparison libcall against zero.
  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];

  /// Stores the CallingConv that should be used for each libcall.
  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];

protected:
  /// \brief Specify maximum number of store instructions per memset call.
  ///
  /// When lowering \@llvm.memset this field specifies the maximum number of
  /// store operations that may be substituted for the call to memset. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memset will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
  /// store.  This only applies to setting a constant array of a constant size.
  unsigned MaxStoresPerMemset;

  /// Maximum number of stores operations that may be substituted for the call
  /// to memset, used for functions with OptSize attribute.
  unsigned MaxStoresPerMemsetOptSize;

  /// \brief Specify maximum bytes of store instructions per memcpy call.
  ///
  /// When lowering \@llvm.memcpy this field specifies the maximum number of
  /// store operations that may be substituted for a call to memcpy. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memcpy will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
  /// and one 1-byte store. This only applies to copying a constant array of
  /// constant size.
  unsigned MaxStoresPerMemcpy;

  /// Maximum number of store operations that may be substituted for a call to
  /// memcpy, used for functions with OptSize attribute.
  unsigned MaxStoresPerMemcpyOptSize;

  /// \brief Specify maximum bytes of store instructions per memmove call.
  ///
  /// When lowering \@llvm.memmove this field specifies the maximum number of
  /// store instructions that may be substituted for a call to memmove. Targets
  /// must set this value based on the cost threshold for that target. Targets
  /// should assume that the memmove will be done using as many of the largest
  /// store operations first, followed by smaller ones, if necessary, per
  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
  /// with 8-bit alignment would result in nine 1-byte stores.  This only
  /// applies to copying a constant array of constant size.
  unsigned MaxStoresPerMemmove;

  /// Maximum number of store instructions that may be substituted for a call to
  /// memmove, used for functions with OpSize attribute.
  unsigned MaxStoresPerMemmoveOptSize;

  /// Tells the code generator that select is more expensive than a branch if
  /// the branch is usually predicted right.
  bool PredictableSelectIsExpensive;

protected:
  /// Return true if the value types that can be represented by the specified
  /// register class are all legal.
  bool isLegalRC(const TargetRegisterClass *RC) const;
};

/// This class defines information used to lower LLVM code to legal SelectionDAG
/// operators that the target instruction selector can accept natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
class TargetLowering : public TargetLoweringBase {
  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;

public:
  /// NOTE: The constructor takes ownership of TLOF.
  explicit TargetLowering(const TargetMachine &TM,
                          const TargetLoweringObjectFile *TLOF);

  /// Returns true by value, base pointer and offset pointer and addressing mode
  /// by reference if the node's address can be legally represented as
  /// pre-indexed load / store address.
  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
                                         SDValue &/*Offset*/,
                                         ISD::MemIndexedMode &/*AM*/,
                                         SelectionDAG &/*DAG*/) const {
    return false;
  }

  /// Returns true by value, base pointer and offset pointer and addressing mode
  /// by reference if this node can be combined with a load / store to form a
  /// post-indexed load / store.
  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
                                          SDValue &/*Base*/,
                                          SDValue &/*Offset*/,
                                          ISD::MemIndexedMode &/*AM*/,
                                          SelectionDAG &/*DAG*/) const {
    return false;
  }

  /// Return the entry encoding for a jump table in the current function.  The
  /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
  virtual unsigned getJumpTableEncoding() const;

  virtual const MCExpr *
  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
                            MCContext &/*Ctx*/) const {
    llvm_unreachable("Need to implement this hook if target has custom JTIs");
  }

  /// Returns relocation base for the given PIC jumptable.
  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
                                           SelectionDAG &DAG) const;

  /// This returns the relocation base for the given PIC jumptable, the same as
  /// getPICJumpTableRelocBase, but as an MCExpr.
  virtual const MCExpr *
  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                               unsigned JTI, MCContext &Ctx) const;

  /// Return true if folding a constant offset with the given GlobalAddress is
  /// legal.  It is frequently not legal in PIC relocation models.
  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;

  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
                            SDValue &Chain) const;

  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
                           SDValue &NewLHS, SDValue &NewRHS,
                           ISD::CondCode &CCCode, SDLoc DL) const;

  /// Returns a pair of (return value, chain).
  std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
                                          EVT RetVT, const SDValue *Ops,
                                          unsigned NumOps, bool isSigned,
                                          SDLoc dl, bool doesNotReturn = false,
                                          bool isReturnValueUsed = true) const;

  //===--------------------------------------------------------------------===//
  // TargetLowering Optimization Methods
  //

  /// A convenience struct that encapsulates a DAG, and two SDValues for
  /// returning information from TargetLowering to its clients that want to
  /// combine.
  struct TargetLoweringOpt {
    SelectionDAG &DAG;
    bool LegalTys;
    bool LegalOps;
    SDValue Old;
    SDValue New;

    explicit TargetLoweringOpt(SelectionDAG &InDAG,
                               bool LT, bool LO) :
      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}

    bool LegalTypes() const { return LegalTys; }
    bool LegalOperations() const { return LegalOps; }

    bool CombineTo(SDValue O, SDValue N) {
      Old = O;
      New = N;
      return true;
    }

    /// Check to see if the specified operand of the specified instruction is a
    /// constant integer.  If so, check to see if there are any bits set in the
    /// constant that are not demanded.  If so, shrink the constant and return
    /// true.
    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);

    /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
    /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
    /// generalized for targets with other types of implicit widening casts.
    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
                          SDLoc dl);
  };

  /// Look at Op.  At this point, we know that only the DemandedMask bits of the
  /// result of Op are ever used downstream.  If we can use this information to
  /// simplify Op, create a new simplified DAG node and return true, returning
  /// the original and new nodes in Old and New.  Otherwise, analyze the
  /// expression and return a mask of KnownOne and KnownZero bits for the
  /// expression (used to simplify the caller).  The KnownZero/One bits may only
  /// be accurate for those bits in the DemandedMask.
  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
                            APInt &KnownZero, APInt &KnownOne,
                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;

  /// Determine which of the bits specified in Mask are known to be either zero
  /// or one and return them in the KnownZero/KnownOne bitsets.
  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
                                              APInt &KnownZero,
                                              APInt &KnownOne,
                                              const SelectionDAG &DAG,
                                              unsigned Depth = 0) const;

  /// This method can be implemented by targets that want to expose additional
  /// information about sign bits to the DAG Combiner.
  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                                   unsigned Depth = 0) const;

  struct DAGCombinerInfo {
    void *DC;  // The DAG Combiner object.
    CombineLevel Level;
    bool CalledByLegalizer;
  public:
    SelectionDAG &DAG;

    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}

    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
    bool isAfterLegalizeVectorOps() const {
      return Level == AfterLegalizeDAG;
    }
    CombineLevel getDAGCombineLevel() { return Level; }
    bool isCalledByLegalizer() const { return CalledByLegalizer; }

    void AddToWorklist(SDNode *N);
    void RemoveFromWorklist(SDNode *N);
    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
                      bool AddTo = true);
    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);

    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
  };

  /// Try to simplify a setcc built with the specified operands and cc. If it is
  /// unable to simplify it, return a null SDValue.
  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
                          ISD::CondCode Cond, bool foldBooleans,
                          DAGCombinerInfo &DCI, SDLoc dl) const;

  /// Returns true (and the GlobalValue and the offset) if the node is a
  /// GlobalAddress + offset.
  virtual bool
  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;

  /// This method will be invoked for all target nodes and for any
  /// target-independent nodes that the target has registered with invoke it
  /// for.
  ///
  /// The semantics are as follows:
  /// Return Value:
  ///   SDValue.Val == 0   - No change was made
  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
  ///   otherwise          - N should be replaced by the returned Operand.
  ///
  /// In addition, methods provided by DAGCombinerInfo may be used to perform
  /// more complex transformations.
  ///
  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;

  /// Return true if the target has native support for the specified value type
  /// and it is 'desirable' to use the type for the given node type. e.g. On x86
  /// i16 is legal, but undesirable since i16 instruction encodings are longer
  /// and some i16 instructions are slow.
  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
    // By default, assume all legal types are desirable.
    return isTypeLegal(VT);
  }

  /// Return true if it is profitable for dag combiner to transform a floating
  /// point op of specified opcode to a equivalent op of an integer
  /// type. e.g. f32 load -> i32 load can be profitable on ARM.
  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
                                                 EVT /*VT*/) const {
    return false;
  }

  /// This method query the target whether it is beneficial for dag combiner to
  /// promote the specified node. If true, it should return the desired
  /// promotion type by reference.
  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
    return false;
  }

  //===--------------------------------------------------------------------===//
  // Lowering methods - These methods must be implemented by targets so that
  // the SelectionDAGBuilder code knows how to lower these.
  //

  /// This hook must be implemented to lower the incoming (formal) arguments,
  /// described by the Ins array, into the specified DAG. The implementation
  /// should fill in the InVals array with legal-type argument values, and
  /// return the resulting token chain value.
  ///
  virtual SDValue
    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
                         bool /*isVarArg*/,
                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
                         SDLoc /*dl*/, SelectionDAG &/*DAG*/,
                         SmallVectorImpl<SDValue> &/*InVals*/) const {
    llvm_unreachable("Not Implemented");
  }

  struct ArgListEntry {
    SDValue Node;
    Type* Ty;
    bool isSExt     : 1;
    bool isZExt     : 1;
    bool isInReg    : 1;
    bool isSRet     : 1;
    bool isNest     : 1;
    bool isByVal    : 1;
    bool isReturned : 1;
    uint16_t Alignment;

    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
      isSRet(false), isNest(false), isByVal(false), isReturned(false),
      Alignment(0) { }

    void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
  };
  typedef std::vector<ArgListEntry> ArgListTy;

  /// This structure contains all information that is necessary for lowering
  /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
  /// needs to lower a call, and targets will see this struct in their LowerCall
  /// implementation.
  struct CallLoweringInfo {
    SDValue Chain;
    Type *RetTy;
    bool RetSExt           : 1;
    bool RetZExt           : 1;
    bool IsVarArg          : 1;
    bool IsInReg           : 1;
    bool DoesNotReturn     : 1;
    bool IsReturnValueUsed : 1;

    // IsTailCall should be modified by implementations of
    // TargetLowering::LowerCall that perform tail call conversions.
    bool IsTailCall;

    unsigned NumFixedArgs;
    CallingConv::ID CallConv;
    SDValue Callee;
    ArgListTy &Args;
    SelectionDAG &DAG;
    SDLoc DL;
    ImmutableCallSite *CS;
    SmallVector<ISD::OutputArg, 32> Outs;
    SmallVector<SDValue, 32> OutVals;
    SmallVector<ISD::InputArg, 32> Ins;


    /// Constructs a call lowering context based on the ImmutableCallSite \p cs.
    CallLoweringInfo(SDValue chain, Type *retTy,
                     FunctionType *FTy, bool isTailCall, SDValue callee,
                     ArgListTy &args, SelectionDAG &dag, SDLoc dl,
                     ImmutableCallSite &cs)
    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
      DoesNotReturn(cs.doesNotReturn()),
      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
      DL(dl), CS(&cs) {}

    /// Constructs a call lowering context based on the provided call
    /// information.
    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
                     CallingConv::ID callConv, bool isTailCall,
                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
                     ArgListTy &args, SelectionDAG &dag, SDLoc dl)
    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
      Args(args), DAG(dag), DL(dl), CS(NULL) {}
  };

  /// This function lowers an abstract call to a function into an actual call.
  /// This returns a pair of operands.  The first element is the return value
  /// for the function (if RetTy is not VoidTy).  The second element is the
  /// outgoing token chain. It calls LowerCall to do the actual lowering.
  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;

  /// This hook must be implemented to lower calls into the the specified
  /// DAG. The outgoing arguments to the call are described by the Outs array,
  /// and the values to be returned by the call are described by the Ins
  /// array. The implementation should fill in the InVals array with legal-type
  /// return values from the call, and return the resulting token chain value.
  virtual SDValue
    LowerCall(CallLoweringInfo &/*CLI*/,
              SmallVectorImpl<SDValue> &/*InVals*/) const {
    llvm_unreachable("Not Implemented");
  }

  /// Target-specific cleanup for formal ByVal parameters.
  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}

  /// This hook should be implemented to check whether the return values
  /// described by the Outs array can fit into the return registers.  If false
  /// is returned, an sret-demotion is performed.
  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
                              MachineFunction &/*MF*/, bool /*isVarArg*/,
               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
               LLVMContext &/*Context*/) const
  {
    // Return true by default to get preexisting behavior.
    return true;
  }

  /// This hook must be implemented to lower outgoing return values, described
  /// by the Outs array, into the specified DAG. The implementation should
  /// return the resulting token chain value.
  virtual SDValue
    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
                bool /*isVarArg*/,
                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
                const SmallVectorImpl<SDValue> &/*OutVals*/,
                SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
    llvm_unreachable("Not Implemented");
  }

  /// Return true if result of the specified node is used by a return node
  /// only. It also compute and return the input chain for the tail call.
  ///
  /// This is used to determine whether it is possible to codegen a libcall as
  /// tail call at legalization time.
  virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
    return false;
  }

  /// Return true if the target may be able emit the call instruction as a tail
  /// call. This is used by optimization passes to determine if it's profitable
  /// to duplicate return instructions to enable tailcall optimization.
  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
    return false;
  }

  /// Return the type that should be used to zero or sign extend a
  /// zeroext/signext integer argument or return value.  FIXME: Most C calling
  /// convention requires the return type to be promoted, but this is not true
  /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
  /// calling conventions. The frontend should handle this and include all of
  /// the necessary information.
  virtual MVT getTypeForExtArgOrReturn(MVT VT,
                                       ISD::NodeType /*ExtendKind*/) const {
    MVT MinVT = getRegisterType(MVT::i32);
    return VT.bitsLT(MinVT) ? MinVT : VT;
  }

  /// Returns a 0 terminated array of registers that can be safely used as
  /// scratch registers.
  virtual const uint16_t *getScratchRegisters(CallingConv::ID CC) const {
    return NULL;
  }

  /// This callback is invoked by the type legalizer to legalize nodes with an
  /// illegal operand type but legal result types.  It replaces the
  /// LowerOperation callback in the type Legalizer.  The reason we can not do
  /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
  /// use this callback.
  ///
  /// TODO: Consider merging with ReplaceNodeResults.
  ///
  /// The target places new result values for the node in Results (their number
  /// and types must exactly match those of the original return values of
  /// the node), or leaves Results empty, which indicates that the node is not
  /// to be custom lowered after all.
  /// The default implementation calls LowerOperation.
  virtual void LowerOperationWrapper(SDNode *N,
                                     SmallVectorImpl<SDValue> &Results,
                                     SelectionDAG &DAG) const;

  /// This callback is invoked for operations that are unsupported by the
  /// target, which are registered to use 'custom' lowering, and whose defined
  /// values are all legal.  If the target has no operations that require custom
  /// lowering, it need not implement this.  The default implementation of this
  /// aborts.
  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;

  /// This callback is invoked when a node result type is illegal for the
  /// target, and the operation was registered to use 'custom' lowering for that
  /// result type.  The target places new result values for the node in Results
  /// (their number and types must exactly match those of the original return
  /// values of the node), or leaves Results empty, which indicates that the
  /// node is not to be custom lowered after all.
  ///
  /// If the target has no operations that require custom lowering, it need not
  /// implement this.  The default implementation aborts.
  virtual void ReplaceNodeResults(SDNode * /*N*/,
                                  SmallVectorImpl<SDValue> &/*Results*/,
                                  SelectionDAG &/*DAG*/) const {
    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
  }

  /// This method returns the name of a target specific DAG node.
  virtual const char *getTargetNodeName(unsigned Opcode) const;

  /// This method returns a target specific FastISel object, or null if the
  /// target does not support "fast" ISel.
  virtual FastISel *createFastISel(FunctionLoweringInfo &,
                                   const TargetLibraryInfo *) const {
    return 0;
  }

  //===--------------------------------------------------------------------===//
  // Inline Asm Support hooks
  //

  /// This hook allows the target to expand an inline asm call to be explicit
  /// llvm code if it wants to.  This is useful for turning simple inline asms
  /// into LLVM intrinsics, which gives the compiler more information about the
  /// behavior of the code.
  virtual bool ExpandInlineAsm(CallInst *) const {
    return false;
  }

  enum ConstraintType {
    C_Register,            // Constraint represents specific register(s).
    C_RegisterClass,       // Constraint represents any of register(s) in class.
    C_Memory,              // Memory constraint.
    C_Other,               // Something else.
    C_Unknown              // Unsupported constraint.
  };

  enum ConstraintWeight {
    // Generic weights.
    CW_Invalid  = -1,     // No match.
    CW_Okay     = 0,      // Acceptable.
    CW_Good     = 1,      // Good weight.
    CW_Better   = 2,      // Better weight.
    CW_Best     = 3,      // Best weight.

    // Well-known weights.
    CW_SpecificReg  = CW_Okay,    // Specific register operands.
    CW_Register     = CW_Good,    // Register operands.
    CW_Memory       = CW_Better,  // Memory operands.
    CW_Constant     = CW_Best,    // Constant operand.
    CW_Default      = CW_Okay     // Default or don't know type.
  };

  /// This contains information for each constraint that we are lowering.
  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
    /// This contains the actual string for the code, like "m".  TargetLowering
    /// picks the 'best' code from ConstraintInfo::Codes that most closely
    /// matches the operand.
    std::string ConstraintCode;

    /// Information about the constraint code, e.g. Register, RegisterClass,
    /// Memory, Other, Unknown.
    TargetLowering::ConstraintType ConstraintType;

    /// If this is the result output operand or a clobber, this is null,
    /// otherwise it is the incoming operand to the CallInst.  This gets
    /// modified as the asm is processed.
    Value *CallOperandVal;

    /// The ValueType for the operand value.
    MVT ConstraintVT;

    /// Return true of this is an input operand that is a matching constraint
    /// like "4".
    bool isMatchingInputConstraint() const;

    /// If this is an input matching constraint, this method returns the output
    /// operand it matches.
    unsigned getMatchedOperand() const;

    /// Copy constructor for copying from an AsmOperandInfo.
    AsmOperandInfo(const AsmOperandInfo &info)
      : InlineAsm::ConstraintInfo(info),
        ConstraintCode(info.ConstraintCode),
        ConstraintType(info.ConstraintType),
        CallOperandVal(info.CallOperandVal),
        ConstraintVT(info.ConstraintVT) {
    }

    /// Copy constructor for copying from a ConstraintInfo.
    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
      : InlineAsm::ConstraintInfo(info),
        ConstraintType(TargetLowering::C_Unknown),
        CallOperandVal(0), ConstraintVT(MVT::Other) {
    }
  };

  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;

  /// Split up the constraint string from the inline assembly value into the
  /// specific constraints and their prefixes, and also tie in the associated
  /// operand values.  If this returns an empty vector, and if the constraint
  /// string itself isn't empty, there was an error parsing.
  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;

  /// Examine constraint type and operand type and determine a weight value.
  /// The operand object must already have been set up with the operand type.
  virtual ConstraintWeight getMultipleConstraintMatchWeight(
      AsmOperandInfo &info, int maIndex) const;

  /// Examine constraint string and operand type and determine a weight value.
  /// The operand object must already have been set up with the operand type.
  virtual ConstraintWeight getSingleConstraintMatchWeight(
      AsmOperandInfo &info, const char *constraint) const;

  /// Determines the constraint code and constraint type to use for the specific
  /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
  /// If the actual operand being passed in is available, it can be passed in as
  /// Op, otherwise an empty SDValue can be passed.
  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
                                      SDValue Op,
                                      SelectionDAG *DAG = 0) const;

  /// Given a constraint, return the type of constraint it is for this target.
  virtual ConstraintType getConstraintType(const std::string &Constraint) const;

  /// Given a physical register constraint (e.g.  {edx}), return the register
  /// number and the register class for the register.
  ///
  /// Given a register class constraint, like 'r', if this corresponds directly
  /// to an LLVM register class, return a register of 0 and the register class
  /// pointer.
  ///
  /// This should only be used for C_Register constraints.  On error, this
  /// returns a register number of 0 and a null register class pointer..
  virtual std::pair<unsigned, const TargetRegisterClass*>
    getRegForInlineAsmConstraint(const std::string &Constraint,
                                 MVT VT) const;

  /// Try to replace an X constraint, which matches anything, with another that
  /// has more specific requirements based on the type of the corresponding
  /// operand.  This returns null if there is no replacement to make.
  virtual const char *LowerXConstraint(EVT ConstraintVT) const;

  /// Lower the specified operand into the Ops vector.  If it is invalid, don't
  /// add anything to Ops.
  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
                                            std::vector<SDValue> &Ops,
                                            SelectionDAG &DAG) const;

  //===--------------------------------------------------------------------===//
  // Div utility functions
  //
  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
                         SelectionDAG &DAG) const;
  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
                      std::vector<SDNode*> *Created) const;
  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
                      std::vector<SDNode*> *Created) const;

  //===--------------------------------------------------------------------===//
  // Instruction Emitting Hooks
  //

  /// This method should be implemented by targets that mark instructions with
  /// the 'usesCustomInserter' flag.  These instructions are special in various
  /// ways, which require special support to insert.  The specified MachineInstr
  /// is created but not inserted into any basic blocks, and this method is
  /// called to expand it into a sequence of instructions, potentially also
  /// creating new basic blocks and control flow.
  virtual MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;

  /// This method should be implemented by targets that mark instructions with
  /// the 'hasPostISelHook' flag. These instructions must be adjusted after
  /// instruction selection by target hooks.  e.g. To fill in optional defs for
  /// ARM 's' setting instructions.
  virtual void
  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
};

/// Given an LLVM IR type and return type attributes, compute the return value
/// EVTs and flags, and optionally also the offsets, if the return value is
/// being lowered to memory.
void GetReturnInfo(Type* ReturnType, AttributeSet attr,
                   SmallVectorImpl<ISD::OutputArg> &Outs,
                   const TargetLowering &TLI);

} // end llvm namespace

#endif