1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=//
//
// This file defines the very important Value class. This is subclassed by a
// bunch of other important classes, like Def, Method, Module, Type, etc...
//
// This file also defines the Use<> template for users of value.
//
// This file also defines the isa<X>(), cast<X>(), and dyn_cast<X>() templates.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H
#include <vector>
#include "llvm/Annotation.h"
#include "llvm/AbstractTypeUser.h"
class User;
class Type;
class Constant;
class MethodArgument;
class Instruction;
class BasicBlock;
class GlobalValue;
class Function;
typedef Function Method;
class GlobalVariable;
class Module;
class SymbolTable;
template<class ValueSubclass, class ItemParentType, class SymTabType>
class ValueHolder;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
class Value : public Annotable, // Values are annotable
public AbstractTypeUser { // Values use potentially abstract types
public:
enum ValueTy {
TypeVal, // This is an instance of Type
ConstantVal, // This is an instance of Constant
MethodArgumentVal, // This is an instance of MethodArgument
InstructionVal, // This is an instance of Instruction
BasicBlockVal, // This is an instance of BasicBlock
MethodVal, // This is an instance of Method
GlobalVariableVal, // This is an instance of GlobalVariable
ModuleVal, // This is an instance of Module
};
private:
std::vector<User *> Uses;
std::string Name;
PATypeHandle<Type> Ty;
ValueTy VTy;
Value(const Value &); // Do not implement
protected:
inline void setType(const Type *ty) { Ty = ty; }
public:
Value(const Type *Ty, ValueTy vty, const std::string &name = "");
virtual ~Value();
// Support for debugging
void dump() const;
// All values can potentially be typed
inline const Type *getType() const { return Ty; }
// All values can potentially be named...
inline bool hasName() const { return Name != ""; }
inline const std::string &getName() const { return Name; }
virtual void setName(const std::string &name, SymbolTable * = 0) {
Name = name;
}
// Methods for determining the subtype of this Value. The getValueType()
// method returns the type of the value directly. The cast*() methods are
// equivalent to using dynamic_cast<>... if the cast is successful, this is
// returned, otherwise you get a null pointer.
//
// The family of functions Val->cast<type>Asserting() is used in the same
// way as the Val->cast<type>() instructions, but they assert the expected
// type instead of checking it at runtime.
//
inline ValueTy getValueType() const { return VTy; }
// replaceAllUsesWith - Go through the uses list for this definition and make
// each use point to "D" instead of "this". After this completes, 'this's
// use list should be empty.
//
void replaceAllUsesWith(Value *D);
// refineAbstractType - This function is implemented because we use
// potentially abstract types, and these types may be resolved to more
// concrete types after we are constructed.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
//----------------------------------------------------------------------
// Methods for handling the vector of uses of this Value.
//
typedef std::vector<User*>::iterator use_iterator;
typedef std::vector<User*>::const_iterator use_const_iterator;
inline unsigned use_size() const { return Uses.size(); }
inline bool use_empty() const { return Uses.empty(); }
inline use_iterator use_begin() { return Uses.begin(); }
inline use_const_iterator use_begin() const { return Uses.begin(); }
inline use_iterator use_end() { return Uses.end(); }
inline use_const_iterator use_end() const { return Uses.end(); }
inline User *use_back() { return Uses.back(); }
inline const User *use_back() const { return Uses.back(); }
inline void use_push_back(User *I) { Uses.push_back(I); }
User *use_remove(use_iterator &I);
inline void addUse(User *I) { Uses.push_back(I); }
void killUse(User *I);
};
//===----------------------------------------------------------------------===//
// UseTy Class
//===----------------------------------------------------------------------===//
// UseTy and it's friendly typedefs (Use) are here to make keeping the "use"
// list of a definition node up-to-date really easy.
//
template<class ValueSubclass>
class UseTy {
ValueSubclass *Val;
User *U;
public:
inline UseTy<ValueSubclass>(ValueSubclass *v, User *user) {
Val = v; U = user;
if (Val) Val->addUse(U);
}
inline ~UseTy<ValueSubclass>() { if (Val) Val->killUse(U); }
inline operator ValueSubclass *() const { return Val; }
inline UseTy<ValueSubclass>(const UseTy<ValueSubclass> &user) {
Val = 0;
U = user.U;
operator=(user.Val);
}
inline ValueSubclass *operator=(ValueSubclass *V) {
if (Val) Val->killUse(U);
Val = V;
if (V) V->addUse(U);
return V;
}
inline ValueSubclass *operator->() { return Val; }
inline const ValueSubclass *operator->() const { return Val; }
inline ValueSubclass *get() { return Val; }
inline const ValueSubclass *get() const { return Val; }
inline UseTy<ValueSubclass> &operator=(const UseTy<ValueSubclass> &user) {
if (Val) Val->killUse(U);
Val = user.Val;
Val->addUse(U);
return *this;
}
};
typedef UseTy<Value> Use; // Provide Use as a common UseTy type
// real_type - Provide a macro to get the real type of a value that might be
// a use. This provides a typedef 'Type' that is the argument type for all
// non UseTy types, and is the contained pointer type of the use if it is a
// UseTy.
//
template <class X> class real_type { typedef X Type; };
template <class X> class real_type <class UseTy<X> > { typedef X *Type; };
//===----------------------------------------------------------------------===//
// Type Checking Templates
//===----------------------------------------------------------------------===//
// isa<X> - Return true if the parameter to the template is an instance of the
// template type argument. Used like this:
//
// if (isa<Type>(myVal)) { ... }
//
template <class X, class Y>
inline bool isa(Y Val) {
assert(Val && "isa<Ty>(NULL) invoked!");
return X::classof(Val);
}
// cast<X> - Return the argument parameter cast to the specified type. This
// casting operator asserts that the type is correct, so it does not return null
// on failure. But it will correctly return NULL when the input is NULL.
// Used Like this:
//
// cast< Instruction>(myVal)->getParent()
// cast<const Instruction>(myVal)->getParent()
//
template <class X, class Y>
inline X *cast(Y Val) {
assert(isa<X>(Val) && "cast<Ty>() argument of uncompatible type!");
return (X*)(real_type<Y>::Type)Val;
}
// cast_or_null<X> - Functionally identical to cast, except that a null value is
// accepted.
//
template <class X, class Y>
inline X *cast_or_null(Y Val) {
assert((Val == 0 || isa<X>(Val)) &&
"cast_or_null<Ty>() argument of uncompatible type!");
return (X*)(real_type<Y>::Type)Val;
}
// dyn_cast<X> - Return the argument parameter cast to the specified type. This
// casting operator returns null if the argument is of the wrong type, so it can
// be used to test for a type as well as cast if successful. This should be
// used in the context of an if statement like this:
//
// if (const Instruction *I = dyn_cast<const Instruction>(myVal)) { ... }
//
template <class X, class Y>
inline X *dyn_cast(Y Val) {
return isa<X>(Val) ? cast<X>(Val) : 0;
}
// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
// value is accepted.
//
template <class X, class Y>
inline X *dyn_cast_or_null(Y Val) {
return (Val && isa<X>(Val)) ? cast<X>(Val) : 0;
}
// isa - Provide some specializations of isa so that we have to include the
// subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa<Type, const Value*>(const Value *Val) {
return Val->getValueType() == Value::TypeVal;
}
template <> inline bool isa<Type, Value*>(Value *Val) {
return Val->getValueType() == Value::TypeVal;
}
template <> inline bool isa<Constant, const Value*>(const Value *Val) {
return Val->getValueType() == Value::ConstantVal;
}
template <> inline bool isa<Constant, Value*>(Value *Val) {
return Val->getValueType() == Value::ConstantVal;
}
template <> inline bool isa<MethodArgument, const Value*>(const Value *Val) {
return Val->getValueType() == Value::MethodArgumentVal;
}
template <> inline bool isa<MethodArgument, Value*>(Value *Val) {
return Val->getValueType() == Value::MethodArgumentVal;
}
template <> inline bool isa<Instruction, const Value*>(const Value *Val) {
return Val->getValueType() == Value::InstructionVal;
}
template <> inline bool isa<Instruction, Value*>(Value *Val) {
return Val->getValueType() == Value::InstructionVal;
}
template <> inline bool isa<BasicBlock, const Value*>(const Value *Val) {
return Val->getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa<BasicBlock, Value*>(Value *Val) {
return Val->getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa<Function, const Value*>(const Value *Val) {
return Val->getValueType() == Value::MethodVal;
}
template <> inline bool isa<Function, Value*>(Value *Val) {
return Val->getValueType() == Value::MethodVal;
}
template <> inline bool isa<GlobalVariable, const Value*>(const Value *Val) {
return Val->getValueType() == Value::GlobalVariableVal;
}
template <> inline bool isa<GlobalVariable, Value*>(Value *Val) {
return Val->getValueType() == Value::GlobalVariableVal;
}
template <> inline bool isa<GlobalValue, const Value*>(const Value *Val) {
return isa<GlobalVariable>(Val) || isa<Function>(Val);
}
template <> inline bool isa<GlobalValue, Value*>(Value *Val) {
return isa<GlobalVariable>(Val) || isa<Function>(Val);
}
template <> inline bool isa<Module, const Value*>(const Value *Val) {
return Val->getValueType() == Value::ModuleVal;
}
template <> inline bool isa<Module, Value*>(Value *Val) {
return Val->getValueType() == Value::ModuleVal;
}
#endif
|