aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/AliasAnalysis.cpp
blob: 73cc9037216a83e7b69f0333ac398c4405817c28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified.  This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation.  Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;

// Register the AliasAnalysis interface, providing a nice name to refer to.
INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
char AliasAnalysis::ID = 0;

//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//

AliasAnalysis::AliasResult
AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
  return AA->alias(LocA, LocB);
}

bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
                                           bool OrLocal) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
  return AA->pointsToConstantMemory(Loc, OrLocal);
}

void AliasAnalysis::deleteValue(Value *V) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
  AA->deleteValue(V);
}

void AliasAnalysis::copyValue(Value *From, Value *To) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
  AA->copyValue(From, To);
}

void AliasAnalysis::addEscapingUse(Use &U) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
  AA->addEscapingUse(U);
}


AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
                             const Location &Loc) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");

  ModRefBehavior MRB = getModRefBehavior(CS);
  if (MRB == DoesNotAccessMemory)
    return NoModRef;

  ModRefResult Mask = ModRef;
  if (onlyReadsMemory(MRB))
    Mask = Ref;

  if (onlyAccessesArgPointees(MRB)) {
    bool doesAlias = false;
    if (doesAccessArgPointees(MRB)) {
      MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
           AI != AE; ++AI) {
        const Value *Arg = *AI;
        if (!Arg->getType()->isPointerTy())
          continue;
        Location CSLoc(Arg, UnknownSize, CSTag);
        if (!isNoAlias(CSLoc, Loc)) {
          doesAlias = true;
          break;
        }
      }
    }
    if (!doesAlias)
      return NoModRef;
  }

  // If Loc is a constant memory location, the call definitely could not
  // modify the memory location.
  if ((Mask & Mod) && pointsToConstantMemory(Loc))
    Mask = ModRefResult(Mask & ~Mod);

  // If this is the end of the chain, don't forward.
  if (!AA) return Mask;

  // Otherwise, fall back to the next AA in the chain. But we can merge
  // in any mask we've managed to compute.
  return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
}

AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");

  // If CS1 or CS2 are readnone, they don't interact.
  ModRefBehavior CS1B = getModRefBehavior(CS1);
  if (CS1B == DoesNotAccessMemory) return NoModRef;

  ModRefBehavior CS2B = getModRefBehavior(CS2);
  if (CS2B == DoesNotAccessMemory) return NoModRef;

  // If they both only read from memory, there is no dependence.
  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
    return NoModRef;

  AliasAnalysis::ModRefResult Mask = ModRef;

  // If CS1 only reads memory, the only dependence on CS2 can be
  // from CS1 reading memory written by CS2.
  if (onlyReadsMemory(CS1B))
    Mask = ModRefResult(Mask & Ref);

  // If CS2 only access memory through arguments, accumulate the mod/ref
  // information from CS1's references to the memory referenced by
  // CS2's arguments.
  if (onlyAccessesArgPointees(CS2B)) {
    AliasAnalysis::ModRefResult R = NoModRef;
    if (doesAccessArgPointees(CS2B)) {
      MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
      for (ImmutableCallSite::arg_iterator
           I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
        const Value *Arg = *I;
        if (!Arg->getType()->isPointerTy())
          continue;
        Location CS2Loc(Arg, UnknownSize, CS2Tag);
        R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
        if (R == Mask)
          break;
      }
    }
    return R;
  }

  // If CS1 only accesses memory through arguments, check if CS2 references
  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
  if (onlyAccessesArgPointees(CS1B)) {
    AliasAnalysis::ModRefResult R = NoModRef;
    if (doesAccessArgPointees(CS1B)) {
      MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
      for (ImmutableCallSite::arg_iterator
           I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
        const Value *Arg = *I;
        if (!Arg->getType()->isPointerTy())
          continue;
        Location CS1Loc(Arg, UnknownSize, CS1Tag);
        if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
          R = Mask;
          break;
        }
      }
    }
    if (R == NoModRef)
      return R;
  }

  // If this is the end of the chain, don't forward.
  if (!AA) return Mask;

  // Otherwise, fall back to the next AA in the chain. But we can merge
  // in any mask we've managed to compute.
  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
}

AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");

  ModRefBehavior Min = UnknownModRefBehavior;

  // Call back into the alias analysis with the other form of getModRefBehavior
  // to see if it can give a better response.
  if (const Function *F = CS.getCalledFunction())
    Min = getModRefBehavior(F);

  // If this is the end of the chain, don't forward.
  if (!AA) return Min;

  // Otherwise, fall back to the next AA in the chain. But we can merge
  // in any result we've managed to compute.
  return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
}

AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(const Function *F) {
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
  return AA->getModRefBehavior(F);
}

//===----------------------------------------------------------------------===//
// AliasAnalysis non-virtual helper method implementation
//===----------------------------------------------------------------------===//

AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
  return Location(LI->getPointerOperand(),
                  getTypeStoreSize(LI->getType()),
                  LI->getMetadata(LLVMContext::MD_tbaa));
}

AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
  return Location(SI->getPointerOperand(),
                  getTypeStoreSize(SI->getValueOperand()->getType()),
                  SI->getMetadata(LLVMContext::MD_tbaa));
}

AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
  return Location(VI->getPointerOperand(),
                  UnknownSize,
                  VI->getMetadata(LLVMContext::MD_tbaa));
}


AliasAnalysis::Location 
AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
  uint64_t Size = UnknownSize;
  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    Size = C->getValue().getZExtValue();

  // memcpy/memmove can have TBAA tags. For memcpy, they apply
  // to both the source and the destination.
  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);

  return Location(MTI->getRawSource(), Size, TBAATag);
}

AliasAnalysis::Location 
AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
  uint64_t Size = UnknownSize;
  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    Size = C->getValue().getZExtValue();

  // memcpy/memmove can have TBAA tags. For memcpy, they apply
  // to both the source and the destination.
  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
  
  return Location(MTI->getRawDest(), Size, TBAATag);
}



AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
  // Be conservative in the face of volatile/atomic.
  if (!L->isUnordered())
    return ModRef;

  // If the load address doesn't alias the given address, it doesn't read
  // or write the specified memory.
  if (!alias(getLocation(L), Loc))
    return NoModRef;

  // Otherwise, a load just reads.
  return Ref;
}

AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
  // Be conservative in the face of volatile/atomic.
  if (!S->isUnordered())
    return ModRef;

  // If the store address cannot alias the pointer in question, then the
  // specified memory cannot be modified by the store.
  if (!alias(getLocation(S), Loc))
    return NoModRef;

  // If the pointer is a pointer to constant memory, then it could not have been
  // modified by this store.
  if (pointsToConstantMemory(Loc))
    return NoModRef;

  // Otherwise, a store just writes.
  return Mod;
}

AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
  // If the va_arg address cannot alias the pointer in question, then the
  // specified memory cannot be accessed by the va_arg.
  if (!alias(getLocation(V), Loc))
    return NoModRef;

  // If the pointer is a pointer to constant memory, then it could not have been
  // modified by this va_arg.
  if (pointsToConstantMemory(Loc))
    return NoModRef;

  // Otherwise, a va_arg reads and writes.
  return ModRef;
}

// AliasAnalysis destructor: DO NOT move this to the header file for
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
// the AliasAnalysis.o file in the current .a file, causing alias analysis
// support to not be included in the tool correctly!
//
AliasAnalysis::~AliasAnalysis() {}

/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
/// AliasAnalysis interface before any other methods are called.
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
  TD = P->getAnalysisIfAvailable<TargetData>();
  AA = &P->getAnalysis<AliasAnalysis>();
}

// getAnalysisUsage - All alias analysis implementations should invoke this
// directly (using AliasAnalysis::getAnalysisUsage(AU)).
void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<AliasAnalysis>();         // All AA's chain
}

/// getTypeStoreSize - Return the TargetData store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
  return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
}

/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
///
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
                                        const Location &Loc) {
  return canInstructionRangeModify(BB.front(), BB.back(), Loc);
}

/// canInstructionRangeModify - Return true if it is possible for the execution
/// of the specified instructions to modify the value pointed to by Ptr.  The
/// instructions to consider are all of the instructions in the range of [I1,I2]
/// INCLUSIVE.  I1 and I2 must be in the same basic block.
///
bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
                                              const Instruction &I2,
                                              const Location &Loc) {
  assert(I1.getParent() == I2.getParent() &&
         "Instructions not in same basic block!");
  BasicBlock::const_iterator I = &I1;
  BasicBlock::const_iterator E = &I2;
  ++E;  // Convert from inclusive to exclusive range.

  for (; I != E; ++I) // Check every instruction in range
    if (getModRefInfo(I, Loc) & Mod)
      return true;
  return false;
}

/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool llvm::isNoAliasCall(const Value *V) {
  if (isa<CallInst>(V) || isa<InvokeInst>(V))
    return ImmutableCallSite(cast<Instruction>(V))
      .paramHasAttr(0, Attribute::NoAlias);
  return false;
}

/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object.  This returns true for:
///    Global Variables and Functions (but not Global Aliases)
///    Allocas and Mallocs
///    ByVal and NoAlias Arguments
///    NoAlias returns
///
bool llvm::isIdentifiedObject(const Value *V) {
  if (isa<AllocaInst>(V))
    return true;
  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    return true;
  if (isNoAliasCall(V))
    return true;
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr() || A->hasByValAttr();
  return false;
}