aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/BasicAliasAnalysis.cpp
blob: 16bb53f63b7c7004a6c3046c16ceadd658f2a70c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the default implementation of the Alias Analysis interface
// that simply implements a few identities (two different globals cannot alias,
// etc), but otherwise does no analysis.
//
// FIXME: This could be extended for a very simple form of mod/ref information.
// If a pointer is locally allocated (either malloc or alloca) and never passed
// into a call or stored to memory, then we know that calls will not mod/ref the
// memory.  This can be important for tailcallelim, and can support CSE of loads
// and dead store elimination across calls.  This is particularly important for
// stack allocated arrays.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Pass.h"
#include "llvm/Argument.h"
#include "llvm/iOther.h"
#include "llvm/iMemory.h"
#include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
using namespace llvm;

// Make sure that anything that uses AliasAnalysis pulls in this file...
void llvm::BasicAAStub() {}

namespace {
  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
    }
    
    virtual void initializePass();

    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);

    /// pointsToConstantMemory - Chase pointers until we find a (constant
    /// global) or not.
    bool pointsToConstantMemory(const Value *P);

  private:
    // CheckGEPInstructions - Check two GEP instructions with known
    // must-aliasing base pointers.  This checks to see if the index expressions
    // preclude the pointers from aliasing...
    AliasResult
    CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
                         unsigned G1Size,
                         const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
                         unsigned G2Size);
  };
 
  // Register this pass...
  RegisterOpt<BasicAliasAnalysis>
  X("basicaa", "Basic Alias Analysis (default AA impl)");

  // Declare that we implement the AliasAnalysis interface
  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
}  // End of anonymous namespace

void BasicAliasAnalysis::initializePass() {
  InitializeAliasAnalysis(this);
}

// hasUniqueAddress - Return true if the specified value points to something
// with a unique, discernable, address.
static inline bool hasUniqueAddress(const Value *V) {
  return isa<GlobalValue>(V) || isa<AllocationInst>(V);
}

// getUnderlyingObject - This traverses the use chain to figure out what object
// the specified value points to.  If the value points to, or is derived from, a
// unique object or an argument, return it.
static const Value *getUnderlyingObject(const Value *V) {
  if (!isa<PointerType>(V->getType())) return 0;

  // If we are at some type of object... return it.
  if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
  
  // Traverse through different addressing mechanisms...
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
      return getUnderlyingObject(I->getOperand(0));
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() == Instruction::Cast ||
        CE->getOpcode() == Instruction::GetElementPtr)
      return getUnderlyingObject(CE->getOperand(0));
  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
    return CPR->getValue();
  }
  return 0;
}

static const User *isGEP(const Value *V) {
  if (isa<GetElementPtrInst>(V) ||
      (isa<ConstantExpr>(V) &&
       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
    return cast<User>(V);
  return 0;
}

static const Value *GetGEPOperands(const Value *V, std::vector<Value*> &GEPOps){
  assert(GEPOps.empty() && "Expect empty list to populate!");
  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
                cast<User>(V)->op_end());

  // Accumulate all of the chained indexes into the operand array
  V = cast<User>(V)->getOperand(0);

  while (const User *G = isGEP(V)) {
    if (!isa<Constant>(GEPOps[0]) ||
        !cast<Constant>(GEPOps[0])->isNullValue())
      break;  // Don't handle folding arbitrary pointer offsets yet...
    GEPOps.erase(GEPOps.begin());   // Drop the zero index
    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
    V = G->getOperand(0);
  }
  return V;
}

/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
  if (const Value *V = getUnderlyingObject(P))
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
      return GV->isConstant();
  return false;
}

// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
// as array references.  Note that this function is heavily tail recursive.
// Hopefully we have a smart C++ compiler.  :)
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
                          const Value *V2, unsigned V2Size) {
  // Strip off any constant expression casts if they exist
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
    if (CE->getOpcode() == Instruction::Cast)
      V1 = CE->getOperand(0);
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
    if (CE->getOpcode() == Instruction::Cast)
      V2 = CE->getOperand(0);

  // Strip off constant pointer refs if they exist
  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
    V1 = CPR->getValue();
  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
    V2 = CPR->getValue();

  // Are we checking for alias of the same value?
  if (V1 == V2) return MustAlias;

  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
    return NoAlias;  // Scalars cannot alias each other

  // Strip off cast instructions...
  if (const Instruction *I = dyn_cast<CastInst>(V1))
    return alias(I->getOperand(0), V1Size, V2, V2Size);
  if (const Instruction *I = dyn_cast<CastInst>(V2))
    return alias(V1, V1Size, I->getOperand(0), V2Size);

  // Figure out what objects these things are pointing to if we can...
  const Value *O1 = getUnderlyingObject(V1);
  const Value *O2 = getUnderlyingObject(V2);

  // Pointing at a discernible object?
  if (O1 && O2) {
    if (isa<Argument>(O1)) {
      // Incoming argument cannot alias locally allocated object!
      if (isa<AllocationInst>(O2)) return NoAlias;
      // Otherwise, nothing is known...
    } else if (isa<Argument>(O2)) {
      // Incoming argument cannot alias locally allocated object!
      if (isa<AllocationInst>(O1)) return NoAlias;
      // Otherwise, nothing is known...
    } else {
      // If they are two different objects, we know that we have no alias...
      if (O1 != O2) return NoAlias;
    }

    // If they are the same object, they we can look at the indexes.  If they
    // index off of the object is the same for both pointers, they must alias.
    // If they are provably different, they must not alias.  Otherwise, we can't
    // tell anything.
  } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) {
    return NoAlias;                    // Unique values don't alias null
  } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) {
    return NoAlias;                    // Unique values don't alias null
  }

  // If we have two gep instructions with must-alias'ing base pointers, figure
  // out if the indexes to the GEP tell us anything about the derived pointer.
  // Note that we also handle chains of getelementptr instructions as well as
  // constant expression getelementptrs here.
  //
  if (isGEP(V1) && isGEP(V2)) {
    // Drill down into the first non-gep value, to test for must-aliasing of
    // the base pointers.
    const Value *BasePtr1 = V1, *BasePtr2 = V2;
    do {
      BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
    } while (isGEP(BasePtr1) &&
             cast<User>(BasePtr1)->getOperand(1) == 
       Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
    do {
      BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
    } while (isGEP(BasePtr2) &&
             cast<User>(BasePtr2)->getOperand(1) == 
       Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));

    // Do the base pointers alias?
    AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
    if (BaseAlias == NoAlias) return NoAlias;
    if (BaseAlias == MustAlias) {
      // If the base pointers alias each other exactly, check to see if we can
      // figure out anything about the resultant pointers, to try to prove
      // non-aliasing.

      // Collect all of the chained GEP operands together into one simple place
      std::vector<Value*> GEP1Ops, GEP2Ops;
      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
      BasePtr2 = GetGEPOperands(V2, GEP2Ops);

      AliasResult GAlias =
        CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
                             BasePtr2->getType(), GEP2Ops, V2Size);
      if (GAlias != MayAlias)
        return GAlias;
    }
  }

  // Check to see if these two pointers are related by a getelementptr
  // instruction.  If one pointer is a GEP with a non-zero index of the other
  // pointer, we know they cannot alias.
  //
  if (isGEP(V2)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
  }

  if (V1Size != ~0U && V2Size != ~0U)
    if (const User *GEP = isGEP(V1)) {
      std::vector<Value*> GEPOperands;
      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);

      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
      if (R == MustAlias) {
        // If there is at least one non-zero constant index, we know they cannot
        // alias.
        bool ConstantFound = false;
        bool AllZerosFound = true;
        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
            if (!C->isNullValue()) {
              ConstantFound = true;
              AllZerosFound = false;
              break;
            }
          } else {
            AllZerosFound = false;
          }

        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
        // the ptr, the end result is a must alias also.
        if (AllZerosFound)
          return MustAlias;

        if (ConstantFound) {
          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
            return NoAlias;
          
          // Otherwise we have to check to see that the distance is more than
          // the size of the argument... build an index vector that is equal to
          // the arguments provided, except substitute 0's for any variable
          // indexes we find...
          for (unsigned i = 0; i != GEPOperands.size(); ++i)
            if (!isa<Constant>(GEPOperands[i]) ||
                isa<ConstantExpr>(GEPOperands[i]))
              GEPOperands[i] =Constant::getNullValue(GEPOperands[i]->getType());
          int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(),
                                                            GEPOperands);
          if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
            return NoAlias;
        }
      }
    }
  
  return MayAlias;
}

/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
/// base pointers.  This checks to see if the index expressions preclude the
/// pointers from aliasing...
AliasAnalysis::AliasResult BasicAliasAnalysis::
CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
                     unsigned G1S,
                     const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
                     unsigned G2S) {
  // We currently can't handle the case when the base pointers have different
  // primitive types.  Since this is uncommon anyway, we are happy being
  // extremely conservative.
  if (BasePtr1Ty != BasePtr2Ty)
    return MayAlias;

  const Type *GEPPointerTy = BasePtr1Ty;

  // Find the (possibly empty) initial sequence of equal values... which are not
  // necessarily constants.
  unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
  unsigned UnequalOper = 0;
  while (UnequalOper != MinOperands &&
         GEP1Ops[UnequalOper] == GEP2Ops[UnequalOper]) {
    // Advance through the type as we go...
    ++UnequalOper;
    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
    else {
      // If all operands equal each other, then the derived pointers must
      // alias each other...
      BasePtr1Ty = 0;
      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
             "Ran out of type nesting, but not out of operands?");
      return MustAlias;
    }
  }

  // If we have seen all constant operands, and run out of indexes on one of the
  // getelementptrs, check to see if the tail of the leftover one is all zeros.
  // If so, return mustalias.
  if (UnequalOper == MinOperands) {
    if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
    
    bool AllAreZeros = true;
    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
      if (!isa<Constant>(GEP1Ops[i]) ||
          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
        AllAreZeros = false;
        break;
      }
    if (AllAreZeros) return MustAlias;
  }

    
  // So now we know that the indexes derived from the base pointers,
  // which are known to alias, are different.  We can still determine a
  // no-alias result if there are differing constant pairs in the index
  // chain.  For example:
  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
  //
  unsigned SizeMax = std::max(G1S, G2S);
  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...

  // Scan for the first operand that is constant and unequal in the
  // two getelemenptrs...
  unsigned FirstConstantOper = UnequalOper;
  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
    const Value *G1Oper = GEP1Ops[FirstConstantOper];
    const Value *G2Oper = GEP2Ops[FirstConstantOper];
    
    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
      if (Constant *G1OC = dyn_cast<Constant>(const_cast<Value*>(G1Oper)))
        if (Constant *G2OC = dyn_cast<Constant>(const_cast<Value*>(G2Oper))) {
          // Make sure they are comparable (ie, not constant expressions)...
          // and make sure the GEP with the smaller leading constant is GEP1.
          Constant *Compare = ConstantExpr::get(Instruction::SetGT, G1OC, G2OC);
          if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
            if (CV->getValue())   // If they are comparable and G2 > G1
              std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
            break;
          }
        }
    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
  }
  
  // No shared constant operands, and we ran out of common operands.  At this
  // point, the GEP instructions have run through all of their operands, and we
  // haven't found evidence that there are any deltas between the GEP's.
  // However, one GEP may have more operands than the other.  If this is the
  // case, there may still be hope.  This this now.
  if (FirstConstantOper == MinOperands) {
    // Make GEP1Ops be the longer one if there is a longer one.
    if (GEP1Ops.size() < GEP2Ops.size())
      std::swap(GEP1Ops, GEP2Ops);

    // Is there anything to check?
    if (GEP1Ops.size() > MinOperands) {
      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
        if (isa<Constant>(GEP1Ops[i]) && !isa<ConstantExpr>(GEP1Ops[i]) &&
            !cast<Constant>(GEP1Ops[i])->isNullValue()) {
          // Yup, there's a constant in the tail.  Set all variables to
          // constants in the GEP instruction to make it suiteable for
          // TargetData::getIndexedOffset.
          for (i = 0; i != MaxOperands; ++i)
            if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]))
              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
          // Okay, now get the offset.  This is the relative offset for the full
          // instruction.
          const TargetData &TD = getTargetData();
          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);

          // Now crop off any constants from the end...
          GEP1Ops.resize(MinOperands);
          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
        
          // If the tail provided a bit enough offset, return noalias!
          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
            return NoAlias;
        }
    }
    
    // Couldn't find anything useful.
    return MayAlias;
  }

  // If there are non-equal constants arguments, then we can figure
  // out a minimum known delta between the two index expressions... at
  // this point we know that the first constant index of GEP1 is less
  // than the first constant index of GEP2.

  // Advance BasePtr[12]Ty over this first differing constant operand.
  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP2Ops[FirstConstantOper]);
  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP1Ops[FirstConstantOper]);
  
  // We are going to be using TargetData::getIndexedOffset to determine the
  // offset that each of the GEP's is reaching.  To do this, we have to convert
  // all variable references to constant references.  To do this, we convert the
  // initial equal sequence of variables into constant zeros to start with.
  for (unsigned i = 0; i != FirstConstantOper; ++i) {
    if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]) ||
        !isa<Constant>(GEP2Ops[i]) || isa<ConstantExpr>(GEP2Ops[i])) {
      GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
      GEP2Ops[i] = Constant::getNullValue(GEP2Ops[i]->getType());
    }
  }

  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
  
  // Loop over the rest of the operands...
  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
    const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
    const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
    // If they are equal, use a zero index...
    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
      if (!isa<Constant>(Op1) || isa<ConstantExpr>(Op1))
        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
      // Otherwise, just keep the constants we have.
    } else {
      if (Op1) {
        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
          // If this is an array index, make sure the array element is in range.
          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
            if (Op1C->getRawValue() >= AT->getNumElements())
              return MayAlias;  // Be conservative with out-of-range accesses
          
        } else {
          // GEP1 is known to produce a value less than GEP2.  To be
          // conservatively correct, we must assume the largest possible
          // constant is used in this position.  This cannot be the initial
          // index to the GEP instructions (because we know we have at least one
          // element before this one with the different constant arguments), so
          // we know that the current index must be into either a struct or
          // array.  Because we know it's not constant, this cannot be a
          // structure index.  Because of this, we can calculate the maximum
          // value possible.
          //
          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
            GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1);
        }
      }
      
      if (Op2) {
        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
          // If this is an array index, make sure the array element is in range.
          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
            if (Op2C->getRawValue() >= AT->getNumElements())
              return MayAlias;  // Be conservative with out-of-range accesses
        } else {  // Conservatively assume the minimum value for this index
          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
        }
      }
    }

    if (BasePtr1Ty && Op1) {
      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
      else
        BasePtr1Ty = 0;
    }

    if (BasePtr2Ty && Op2) {
      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
      else
        BasePtr2Ty = 0;
    }
  }
  
  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
  assert(Offset1 < Offset2 &&"There is at least one different constant here!");

  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
    //std::cerr << "Determined that these two GEP's don't alias [" 
    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
    return NoAlias;
  }
  return MayAlias;
}