1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
//===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
"Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
"Branch Probability Analysis", false, true)
char BranchProbabilityInfo::ID = 0;
namespace {
// Please note that BranchProbabilityAnalysis is not a FunctionPass.
// It is created by BranchProbabilityInfo (which is a FunctionPass), which
// provides a clear interface. Thanks to that, all heuristics and other
// private methods are hidden in the .cpp file.
class BranchProbabilityAnalysis {
typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
BranchProbabilityInfo *BP;
LoopInfo *LI;
// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
// ...
// |
// V
// BB1<-+
// | |
// | | (Weight = 124)
// V |
// BB2--+
// |
// | (Weight = 4)
// V
// BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
static const uint32_t RH_TAKEN_WEIGHT = 24;
static const uint32_t RH_NONTAKEN_WEIGHT = 8;
static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
// Standard weight value. Used when none of the heuristics set weight for
// the edge.
static const uint32_t NORMAL_WEIGHT = 16;
// Minimum weight of an edge. Please note, that weight is NEVER 0.
static const uint32_t MIN_WEIGHT = 1;
// Return TRUE if BB leads directly to a Return Instruction.
static bool isReturningBlock(BasicBlock *BB) {
SmallPtrSet<BasicBlock *, 8> Visited;
while (true) {
TerminatorInst *TI = BB->getTerminator();
if (isa<ReturnInst>(TI))
return true;
if (TI->getNumSuccessors() > 1)
break;
// It is unreachable block which we can consider as a return instruction.
if (TI->getNumSuccessors() == 0)
return true;
Visited.insert(BB);
BB = TI->getSuccessor(0);
// Stop if cycle is detected.
if (Visited.count(BB))
return false;
}
return false;
}
uint32_t getMaxWeightFor(BasicBlock *BB) const {
return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
}
public:
BranchProbabilityAnalysis(BranchProbabilityInfo *BP, LoopInfo *LI)
: BP(BP), LI(LI) {
}
// Metadata Weights
bool calcMetadataWeights(BasicBlock *BB);
// Return Heuristics
bool calcReturnHeuristics(BasicBlock *BB);
// Pointer Heuristics
bool calcPointerHeuristics(BasicBlock *BB);
// Loop Branch Heuristics
bool calcLoopBranchHeuristics(BasicBlock *BB);
// Zero Heurestics
bool calcZeroHeuristics(BasicBlock *BB);
bool runOnFunction(Function &F);
};
} // end anonymous namespace
// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing.
// FIXME: This doesn't correctly extract probabilities for switches.
bool BranchProbabilityAnalysis::calcMetadataWeights(BasicBlock *BB) {
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
MDNode *WeightsNode = BI->getMetadata(LLVMContext::MD_prof);
if (!WeightsNode || WeightsNode->getNumOperands() < 3)
return false;
// Pull the weights out of the metadata. Note that the zero operand is the
// name.
ConstantInt *Weights[] = {
dyn_cast<ConstantInt>(WeightsNode->getOperand(1)),
dyn_cast<ConstantInt>(WeightsNode->getOperand(2))
};
if (!Weights[0] || !Weights[1])
return false;
uint32_t WeightLimit = getMaxWeightFor(BB);
BP->setEdgeWeight(BB, BI->getSuccessor(0),
Weights[0]->getLimitedValue(WeightLimit));
BP->setEdgeWeight(BB, BI->getSuccessor(1),
Weights[1]->getLimitedValue(WeightLimit));
return true;
}
// Calculate Edge Weights using "Return Heuristics". Predict a successor which
// leads directly to Return Instruction will not be taken.
bool BranchProbabilityAnalysis::calcReturnHeuristics(BasicBlock *BB){
if (BB->getTerminator()->getNumSuccessors() == 1)
return false;
SmallPtrSet<BasicBlock *, 4> ReturningEdges;
SmallPtrSet<BasicBlock *, 4> StayEdges;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
if (isReturningBlock(Succ))
ReturningEdges.insert(Succ);
else
StayEdges.insert(Succ);
}
if (uint32_t numStayEdges = StayEdges.size()) {
uint32_t stayWeight = RH_TAKEN_WEIGHT / numStayEdges;
if (stayWeight < NORMAL_WEIGHT)
stayWeight = NORMAL_WEIGHT;
for (SmallPtrSet<BasicBlock *, 4>::iterator I = StayEdges.begin(),
E = StayEdges.end(); I != E; ++I)
BP->setEdgeWeight(BB, *I, stayWeight);
}
if (uint32_t numRetEdges = ReturningEdges.size()) {
uint32_t retWeight = RH_NONTAKEN_WEIGHT / numRetEdges;
if (retWeight < MIN_WEIGHT)
retWeight = MIN_WEIGHT;
for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReturningEdges.begin(),
E = ReturningEdges.end(); I != E; ++I) {
BP->setEdgeWeight(BB, *I, retWeight);
}
}
return ReturningEdges.size() > 0;
}
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityAnalysis::calcPointerHeuristics(BasicBlock *BB) {
BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI || !CI->isEquality())
return false;
Value *LHS = CI->getOperand(0);
if (!LHS->getType()->isPointerTy())
return false;
assert(CI->getOperand(1)->getType()->isPointerTy());
BasicBlock *Taken = BI->getSuccessor(0);
BasicBlock *NonTaken = BI->getSuccessor(1);
// p != 0 -> isProb = true
// p == 0 -> isProb = false
// p != q -> isProb = true
// p == q -> isProb = false;
bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
if (!isProb)
std::swap(Taken, NonTaken);
BP->setEdgeWeight(BB, Taken, PH_TAKEN_WEIGHT);
BP->setEdgeWeight(BB, NonTaken, PH_NONTAKEN_WEIGHT);
return true;
}
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityAnalysis::calcLoopBranchHeuristics(BasicBlock *BB) {
uint32_t numSuccs = BB->getTerminator()->getNumSuccessors();
Loop *L = LI->getLoopFor(BB);
if (!L)
return false;
SmallPtrSet<BasicBlock *, 8> BackEdges;
SmallPtrSet<BasicBlock *, 8> ExitingEdges;
SmallPtrSet<BasicBlock *, 8> InEdges; // Edges from header to the loop.
bool isHeader = BB == L->getHeader();
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
Loop *SuccL = LI->getLoopFor(Succ);
if (SuccL != L)
ExitingEdges.insert(Succ);
else if (Succ == L->getHeader())
BackEdges.insert(Succ);
else if (isHeader)
InEdges.insert(Succ);
}
if (uint32_t numBackEdges = BackEdges.size()) {
uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
if (backWeight < NORMAL_WEIGHT)
backWeight = NORMAL_WEIGHT;
for (SmallPtrSet<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
EE = BackEdges.end(); EI != EE; ++EI) {
BasicBlock *Back = *EI;
BP->setEdgeWeight(BB, Back, backWeight);
}
}
if (uint32_t numInEdges = InEdges.size()) {
uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
if (inWeight < NORMAL_WEIGHT)
inWeight = NORMAL_WEIGHT;
for (SmallPtrSet<BasicBlock *, 8>::iterator EI = InEdges.begin(),
EE = InEdges.end(); EI != EE; ++EI) {
BasicBlock *Back = *EI;
BP->setEdgeWeight(BB, Back, inWeight);
}
}
uint32_t numExitingEdges = ExitingEdges.size();
if (uint32_t numNonExitingEdges = numSuccs - numExitingEdges) {
uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numNonExitingEdges;
if (exitWeight < MIN_WEIGHT)
exitWeight = MIN_WEIGHT;
for (SmallPtrSet<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
EE = ExitingEdges.end(); EI != EE; ++EI) {
BasicBlock *Exiting = *EI;
BP->setEdgeWeight(BB, Exiting, exitWeight);
}
}
return true;
}
bool BranchProbabilityAnalysis::calcZeroHeuristics(BasicBlock *BB) {
BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI)
return false;
Value *RHS = CI->getOperand(1);
ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
if (!CV)
return false;
bool isProb;
if (CV->isZero()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != 0 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SLT:
// X < 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_SGT:
// X > 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
// InstCombine canonicalizes X <= 0 into X < 1.
// X <= 0 -> Unlikely
isProb = false;
} else if (CV->isAllOnesValue() && CI->getPredicate() == CmpInst::ICMP_SGT) {
// InstCombine canonicalizes X >= 0 into X > -1.
// X >= 0 -> Likely
isProb = true;
} else {
return false;
}
BasicBlock *Taken = BI->getSuccessor(0);
BasicBlock *NonTaken = BI->getSuccessor(1);
if (!isProb)
std::swap(Taken, NonTaken);
BP->setEdgeWeight(BB, Taken, ZH_TAKEN_WEIGHT);
BP->setEdgeWeight(BB, NonTaken, ZH_NONTAKEN_WEIGHT);
return true;
}
bool BranchProbabilityAnalysis::runOnFunction(Function &F) {
for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
BasicBlock *BB = I++;
if (calcMetadataWeights(BB))
continue;
if (calcLoopBranchHeuristics(BB))
continue;
if (calcReturnHeuristics(BB))
continue;
if (calcPointerHeuristics(BB))
continue;
calcZeroHeuristics(BB);
}
return false;
}
void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool BranchProbabilityInfo::runOnFunction(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfo>();
BranchProbabilityAnalysis BPA(this, &LI);
return BPA.runOnFunction(F);
}
uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
uint32_t Sum = 0;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
const BasicBlock *Succ = *I;
uint32_t Weight = getEdgeWeight(BB, Succ);
uint32_t PrevSum = Sum;
Sum += Weight;
assert(Sum > PrevSum); (void) PrevSum;
}
return Sum;
}
bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
// Hot probability is at least 4/5 = 80%
uint32_t Weight = getEdgeWeight(Src, Dst);
uint32_t Sum = getSumForBlock(Src);
// FIXME: Implement BranchProbability::compare then change this code to
// compare this BranchProbability against a static "hot" BranchProbability.
return (uint64_t)Weight * 5 > (uint64_t)Sum * 4;
}
BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
uint32_t Sum = 0;
uint32_t MaxWeight = 0;
BasicBlock *MaxSucc = 0;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
uint32_t Weight = getEdgeWeight(BB, Succ);
uint32_t PrevSum = Sum;
Sum += Weight;
assert(Sum > PrevSum); (void) PrevSum;
if (Weight > MaxWeight) {
MaxWeight = Weight;
MaxSucc = Succ;
}
}
// FIXME: Use BranchProbability::compare.
if ((uint64_t)MaxWeight * 5 > (uint64_t)Sum * 4)
return MaxSucc;
return 0;
}
// Return edge's weight. If can't find it, return DEFAULT_WEIGHT value.
uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
Edge E(Src, Dst);
DenseMap<Edge, uint32_t>::const_iterator I = Weights.find(E);
if (I != Weights.end())
return I->second;
return DEFAULT_WEIGHT;
}
void BranchProbabilityInfo::
setEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst, uint32_t Weight) {
Weights[std::make_pair(Src, Dst)] = Weight;
DEBUG(dbgs() << "set edge " << Src->getNameStr() << " -> "
<< Dst->getNameStr() << " weight to " << Weight
<< (isEdgeHot(Src, Dst) ? " [is HOT now]\n" : "\n"));
}
BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
uint32_t N = getEdgeWeight(Src, Dst);
uint32_t D = getSumForBlock(Src);
return BranchProbability(N, D);
}
raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, BasicBlock *Src,
BasicBlock *Dst) const {
const BranchProbability Prob = getEdgeProbability(Src, Dst);
OS << "edge " << Src->getNameStr() << " -> " << Dst->getNameStr()
<< " probability is " << Prob
<< (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
return OS;
}
|