1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
|
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic IR ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// DataLayout information. These functions cannot go in IR due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cerrno>
#include <cmath>
#ifdef HAVE_FENV_H
#include <fenv.h>
#endif
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
/// This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy())
return Constant::getNullValue(DestTy);
if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
!DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
return Constant::getAllOnesValue(DestTy);
// Handle a vector->integer cast.
if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
VectorType *VTy = dyn_cast<VectorType>(C->getType());
if (!VTy)
return ConstantExpr::getBitCast(C, DestTy);
unsigned NumSrcElts = VTy->getNumElements();
Type *SrcEltTy = VTy->getElementType();
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
Type *SrcIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
}
ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
if (!CDV)
return ConstantExpr::getBitCast(C, DestTy);
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
APInt Result(IT->getBitWidth(), 0);
for (unsigned i = 0; i != NumSrcElts; ++i) {
Result <<= BitShift;
if (DL.isLittleEndian())
Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
else
Result |= CDV->getElementAsInteger(i);
}
return ConstantInt::get(IT, Result);
}
// The code below only handles casts to vectors currently.
VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
if (!DestVTy)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
}
// If this is a bitcast from constant vector -> vector, fold it.
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, IR can fold it.
unsigned NumDstElt = DestVTy->getNumElements();
unsigned NumSrcElt = C->getType()->getVectorNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = C->getType()->getVectorElementType();
Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
Type *DestIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, DL);
// Finally, IR can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
Type *SrcIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
// If IR wasn't able to fold it, bail out.
if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
!isa<ConstantDataVector>(C))
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = DL.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
// Build each element of the result.
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
Result.push_back(Elt);
}
return ConstantVector::get(Result);
}
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate the element to an integer with the same pointer size and
// convert the element back to a pointer using a inttoptr.
if (DstEltTy->isPointerTy()) {
IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
continue;
}
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
return ConstantVector::get(Result);
}
/// If this constant is a constant offset from a global, return the global and
/// the constant. Because of constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &DL) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast ||
CE->getOpcode() == Instruction::AddrSpaceCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
if (!GEP)
return false;
unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
APInt TmpOffset(BitWidth, 0);
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
return false;
// Otherwise, add any offset that our operands provide.
if (!GEP->accumulateConstantOffset(DL, TmpOffset))
return false;
Offset = TmpOffset;
return true;
}
/// Recursive helper to read bits out of global. C is the constant being copied
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
/// results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. DL is the DataLayout.
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
unsigned char *CurPtr, unsigned BytesLeft,
const DataLayout &DL) {
assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
int n = ByteOffset;
if (!DL.isLittleEndian())
n = IntBytes - n - 1;
CurPtr[i] = (unsigned char)(Val >> (n * 8));
++ByteOffset;
}
return true;
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isHalfTy()){
C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
return false;
}
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = DL.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (1) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, DL))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
return true;
// Move to the next element of the struct.
CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
// not reached.
}
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
Type *EltTy = C->getType()->getSequentialElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
uint64_t NumElts;
if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
NumElts = AT->getNumElements();
else
NumElts = C->getType()->getVectorNumElements();
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
BytesLeft, DL))
return false;
uint64_t BytesWritten = EltSize - Offset;
assert(BytesWritten <= EltSize && "Not indexing into this element?");
if (BytesWritten >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= BytesWritten;
CurPtr += BytesWritten;
}
return true;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, DL);
}
}
// Otherwise, unknown initializer type.
return false;
}
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const DataLayout &DL) {
PointerType *PTy = cast<PointerType>(C->getType());
Type *LoadTy = PTy->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
unsigned AS = PTy->getAddressSpace();
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
if (LoadTy->isHalfTy())
MapTy = Type::getInt16PtrTy(C->getContext(), AS);
else if (LoadTy->isFloatTy())
MapTy = Type::getInt32PtrTy(C->getContext(), AS);
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64PtrTy(C->getContext(), AS);
else if (LoadTy->isVectorTy()) {
MapTy = PointerType::getIntNPtrTy(C->getContext(),
DL.getTypeAllocSizeInBits(LoadTy), AS);
} else
return nullptr;
C = FoldBitCast(C, MapTy, DL);
if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
return FoldBitCast(Res, LoadTy, DL);
return nullptr;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0)
return nullptr;
GlobalValue *GVal;
APInt Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
return nullptr;
GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
return nullptr;
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
if (Offset.isNegative())
return nullptr;
// If we're not accessing anything in this constant, the result is undefined.
if (Offset.getZExtValue() >=
DL.getTypeAllocSize(GV->getInitializer()->getType()))
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
BytesLoaded, DL))
return nullptr;
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
if (DL.isLittleEndian()) {
ResultVal = RawBytes[BytesLoaded - 1];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[BytesLoaded - 1 - i];
}
} else {
ResultVal = RawBytes[0];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[i];
}
}
return ConstantInt::get(IntType->getContext(), ResultVal);
}
static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
const DataLayout &DL) {
auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
if (!DestPtrTy)
return nullptr;
Type *DestTy = DestPtrTy->getElementType();
Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
if (!C)
return nullptr;
do {
Type *SrcTy = C->getType();
// If the type sizes are the same and a cast is legal, just directly
// cast the constant.
if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
Instruction::CastOps Cast = Instruction::BitCast;
// If we are going from a pointer to int or vice versa, we spell the cast
// differently.
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
Cast = Instruction::IntToPtr;
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
Cast = Instruction::PtrToInt;
if (CastInst::castIsValid(Cast, C, DestTy))
return ConstantExpr::getCast(Cast, C, DestTy);
}
// If this isn't an aggregate type, there is nothing we can do to drill down
// and find a bitcastable constant.
if (!SrcTy->isAggregateType())
return nullptr;
// We're simulating a load through a pointer that was bitcast to point to
// a different type, so we can try to walk down through the initial
// elements of an aggregate to see if some part of th e aggregate is
// castable to implement the "load" semantic model.
C = C->getAggregateElement(0u);
} while (C);
return nullptr;
}
/// Return the value that a load from C would produce if it is constant and
/// determinable. If this is not determinable, return null.
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
const DataLayout &DL) {
// First, try the easy cases:
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return GV->getInitializer();
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE)
return nullptr;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
}
}
}
if (CE->getOpcode() == Instruction::BitCast)
if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
return LoadedC;
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
StringRef Str;
if (getConstantStringInfo(CE, Str) && !Str.empty()) {
unsigned StrLen = Str.size();
Type *Ty = cast<PointerType>(CE->getType())->getElementType();
unsigned NumBits = Ty->getPrimitiveSizeInBits();
// Replace load with immediate integer if the result is an integer or fp
// value.
if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
(isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
APInt StrVal(NumBits, 0);
APInt SingleChar(NumBits, 0);
if (DL.isLittleEndian()) {
for (signed i = StrLen-1; i >= 0; i--) {
SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
StrVal = (StrVal << 8) | SingleChar;
}
} else {
for (unsigned i = 0; i < StrLen; i++) {
SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
StrVal = (StrVal << 8) | SingleChar;
}
// Append NULL at the end.
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
}
}
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (GlobalVariable *GV =
dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
Type *ResTy = cast<PointerType>(C->getType())->getElementType();
if (GV->getInitializer()->isNullValue())
return Constant::getNullValue(ResTy);
if (isa<UndefValue>(GV->getInitializer()))
return UndefValue::get(ResTy);
}
}
// Try hard to fold loads from bitcasted strange and non-type-safe things.
return FoldReinterpretLoadFromConstPtr(CE, DL);
}
static Constant *ConstantFoldLoadInst(const LoadInst *LI,
const DataLayout &DL) {
if (LI->isVolatile()) return nullptr;
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, DL);
return nullptr;
}
/// One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as DL,
/// otherwise DL is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1,
const DataLayout &DL) {
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
if (Opc == Instruction::And) {
unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
// All the bits of Op0 that the 'and' could be masking are already zero.
return Op0;
}
if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
// All the bits of Op1 that the 'and' could be masking are already zero.
return Op1;
}
APInt KnownZero = KnownZero0 | KnownZero1;
APInt KnownOne = KnownOne0 & KnownOne1;
if ((KnownZero | KnownOne).isAllOnesValue()) {
return ConstantInt::get(Op0->getType(), KnownOne);
}
}
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub) {
GlobalValue *GV1, *GV2;
APInt Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
// PtrToInt may change the bitwidth so we have convert to the right size
// first.
return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
Offs2.zextOrTrunc(OpSize));
}
}
return nullptr;
}
/// If array indices are not pointer-sized integers, explicitly cast them so
/// that they aren't implicitly casted by the getelementptr.
static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
Type *IntPtrTy = DL.getIntPtrType(ResultTy);
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(
cast<PointerType>(Ops[0]->getType()->getScalarType())
->getElementType(),
Ops.slice(1, i - 1)))) &&
Ops[i]->getType() != IntPtrTy) {
Any = true;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
IntPtrTy,
true),
Ops[i], IntPtrTy));
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any)
return nullptr;
Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
C = Folded;
}
return C;
}
/// Strip the pointer casts, but preserve the address space information.
static Constant* StripPtrCastKeepAS(Constant* Ptr) {
assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
Ptr = Ptr->stripPointerCasts();
PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
// Preserve the address space number of the pointer.
if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
OldPtrTy->getAddressSpace());
Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
}
return Ptr;
}
/// If we can symbolically evaluate the GEP constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
Constant *Ptr = Ops[0];
if (!Ptr->getType()->getPointerElementType()->isSized() ||
!Ptr->getType()->isPointerTy())
return nullptr;
Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
Type *ResultElementTy = ResultTy->getPointerElementType();
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i])) {
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
assert((!CE || CE->getType() == IntPtrTy) &&
"CastGEPIndices didn't canonicalize index types!");
if (CE && CE->getOpcode() == Instruction::Sub &&
CE->getOperand(0)->isNullValue()) {
Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
Res = ConstantExpr::getSub(Res, CE->getOperand(1));
Res = ConstantExpr::getIntToPtr(Res, ResultTy);
if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
return Res;
}
}
return nullptr;
}
unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
APInt Offset =
APInt(BitWidth,
DL.getIndexedOffset(
Ptr->getType(),
makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
Ptr = StripPtrCastKeepAS(Ptr);
// If this is a GEP of a GEP, fold it all into a single GEP.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
if (!isa<ConstantInt>(NestedOps[i])) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
Ptr = cast<Constant>(GEP->getOperand(0));
Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
Ptr = StripPtrCastKeepAS(Ptr);
}
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
}
}
if (Ptr->isNullValue() || BasePtr != 0) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
return ConstantExpr::getIntToPtr(C, ResultTy);
}
// Otherwise form a regular getelementptr. Recompute the indices so that
// we eliminate over-indexing of the notional static type array bounds.
// This makes it easy to determine if the getelementptr is "inbounds".
// Also, this helps GlobalOpt do SROA on GlobalVariables.
Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
SmallVector<Constant *, 32> NewIdxs;
do {
if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
if (ATy->isPointerTy()) {
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
// Only handle pointers to sized types, not pointers to functions.
if (!ATy->getElementType()->isSized())
return nullptr;
}
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
if (ElemSize == 0)
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
// accommodate the offset.
NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
else {
// The element size is non-zero divide the offset by the element
// size (rounding down), to compute the index at this level.
APInt NewIdx = Offset.udiv(ElemSize);
Offset -= NewIdx * ElemSize;
NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
}
Ty = ATy->getElementType();
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
// If we end up with an offset that isn't valid for this struct type, we
// can't re-form this GEP in a regular form, so bail out. The pointer
// operand likely went through casts that are necessary to make the GEP
// sensible.
const StructLayout &SL = *DL.getStructLayout(STy);
if (Offset.uge(SL.getSizeInBytes()))
break;
// Determine which field of the struct the offset points into. The
// getZExtValue is fine as we've already ensured that the offset is
// within the range representable by the StructLayout API.
unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
ElIdx));
Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
Ty = STy->getTypeAtIndex(ElIdx);
} else {
// We've reached some non-indexable type.
break;
}
} while (Ty != ResultElementTy);
// If we haven't used up the entire offset by descending the static
// type, then the offset is pointing into the middle of an indivisible
// member, so we can't simplify it.
if (Offset != 0)
return nullptr;
// Create a GEP.
Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
assert(C->getType()->getPointerElementType() == Ty &&
"Computed GetElementPtr has unexpected type!");
// If we ended up indexing a member with a type that doesn't match
// the type of what the original indices indexed, add a cast.
if (Ty != ResultElementTy)
C = FoldBitCast(C, ResultTy, DL);
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
/// Try to constant fold the specified instruction.
/// If successful, the constant result is returned, if not, null is returned.
/// Note that this fails if not all of the operands are constant. Otherwise,
/// this function can only fail when attempting to fold instructions like loads
/// and stores, which have no constant expression form.
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (PHINode *PN = dyn_cast<PHINode>(I)) {
Constant *CommonValue = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PN->getIncomingValue(i);
// If the incoming value is undef then skip it. Note that while we could
// skip the value if it is equal to the phi node itself we choose not to
// because that would break the rule that constant folding only applies if
// all operands are constants.
if (isa<UndefValue>(Incoming))
continue;
// If the incoming value is not a constant, then give up.
Constant *C = dyn_cast<Constant>(Incoming);
if (!C)
return nullptr;
// Fold the PHI's operands.
if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
C = ConstantFoldConstantExpression(NewC, DL, TLI);
// If the incoming value is a different constant to
// the one we saw previously, then give up.
if (CommonValue && C != CommonValue)
return nullptr;
CommonValue = C;
}
// If we reach here, all incoming values are the same constant or undef.
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperands.
SmallVector<Constant*, 8> Ops;
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
Constant *Op = dyn_cast<Constant>(*i);
if (!Op)
return nullptr; // All operands not constant!
// Fold the Instruction's operands.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
Ops.push_back(Op);
}
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
DL, TLI);
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, DL);
if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
return ConstantExpr::getInsertValue(
cast<Constant>(IVI->getAggregateOperand()),
cast<Constant>(IVI->getInsertedValueOperand()),
IVI->getIndices());
}
if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
return ConstantExpr::getExtractValue(
cast<Constant>(EVI->getAggregateOperand()),
EVI->getIndices());
}
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
}
static Constant *
ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
const TargetLibraryInfo *TLI,
SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
SmallVector<Constant *, 8> Ops;
for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
++i) {
Constant *NewC = cast<Constant>(*i);
// Recursively fold the ConstantExpr's operands. If we have already folded
// a ConstantExpr, we don't have to process it again.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
if (FoldedOps.insert(NewCE).second)
NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
}
Ops.push_back(NewC);
}
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
DL, TLI);
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
}
/// Attempt to fold the constant expression
/// using the specified DataLayout. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
SmallPtrSet<ConstantExpr *, 4> FoldedOps;
return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
}
/// Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
/// information, due to only being passed an opcode and operands. Constant
/// folding using this function strips this information.
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
return C;
}
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
switch (Opcode) {
default: return nullptr;
case Instruction::ICmp:
case Instruction::FCmp: llvm_unreachable("Invalid for compares");
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops.back()))
if (canConstantFoldCallTo(F))
return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
return nullptr;
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
if (CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
if (PtrWidth < InWidth) {
Constant *Mask =
ConstantInt::get(CE->getContext(),
APInt::getLowBitsSet(InWidth, PtrWidth));
Input = ConstantExpr::getAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, DestTy, false);
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size and the address spaces are the same.
// This requires knowing the width of a pointer, so it can't be done in
// ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *SrcPtr = CE->getOperand(0);
unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
if (MidIntSize >= SrcPtrSize) {
unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
if (SrcAS == DestTy->getPointerAddressSpace())
return FoldBitCast(CE->getOperand(0), DestTy, DL);
}
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
return FoldBitCast(Ops[0], DestTy, DL);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr: {
Type *SrcTy = nullptr;
if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
return C;
if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
return C;
return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
}
}
}
/// Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
/// returns a constant expression of the specified operands.
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// FIXME: The following comment is out of data and the DataLayout is here now.
// ConstantExpr::getCompare cannot do this, because it doesn't have DL
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (Ops1->isNullValue()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (CE0->getOpcode() == CE1->getOpcode()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
return ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
}
}
}
}
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), Ops1, DL, TLI);
Constant *RHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(1), Ops1, DL, TLI);
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
Constant *Ops[] = { LHS, RHS };
return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
}
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
/// Given a constant and a getelementptr constantexpr, return the constant value
/// being addressed by the constant expression, or null if something is funny
/// and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (!CE->getOperand(1)->isNullValue())
return nullptr; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing.
for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
C = C->getAggregateElement(CE->getOperand(i));
if (!C)
return nullptr;
}
return C;
}
/// Given a constant and getelementptr indices (with an *implied* zero pointer
/// index that is not in the list), return the constant value being addressed by
/// a virtual load, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
ArrayRef<Constant*> Indices) {
// Loop over all of the operands, tracking down which value we are
// addressing.
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
C = C->getAggregateElement(Indices[i]);
if (!C)
return nullptr;
}
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
/// Return true if it's even possible to fold a call to the specified function.
bool llvm::canConstantFoldCallTo(const Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::fabs:
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::sqrt:
case Intrinsic::pow:
case Intrinsic::powi:
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::copysign:
case Intrinsic::round:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
return true;
default:
return false;
case 0: break;
}
if (!F->hasName())
return false;
StringRef Name = F->getName();
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
switch (Name[0]) {
default: return false;
case 'a':
return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
case 'c':
return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
case 'e':
return Name == "exp" || Name == "exp2";
case 'f':
return Name == "fabs" || Name == "fmod" || Name == "floor";
case 'l':
return Name == "log" || Name == "log10";
case 'p':
return Name == "pow";
case 's':
return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
Name == "sinf" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanh";
}
}
static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy()) {
APFloat APF(V);
bool unused;
APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
return ConstantFP::get(Ty->getContext(), APF);
}
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold half/float/double");
}
namespace {
/// Clear the floating-point exception state.
static inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
errno = 0;
}
/// Test if a floating-point exception was raised.
static inline bool llvm_fenv_testexcept() {
int errno_val = errno;
if (errno_val == ERANGE || errno_val == EDOM)
return true;
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
return true;
#endif
return false;
}
} // End namespace
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
Type *Ty) {
llvm_fenv_clearexcept();
V = NativeFP(V);
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(V, Ty);
}
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W, Type *Ty) {
llvm_fenv_clearexcept();
V = NativeFP(V, W);
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(V, Ty);
}
/// Attempt to fold an SSE floating point to integer conversion of a constant
/// floating point. If roundTowardZero is false, the default IEEE rounding is
/// used (toward nearest, ties to even). This matches the behavior of the
/// non-truncating SSE instructions in the default rounding mode. The desired
/// integer type Ty is used to select how many bits are available for the
/// result. Returns null if the conversion cannot be performed, otherwise
/// returns the Constant value resulting from the conversion.
static Constant *ConstantFoldConvertToInt(const APFloat &Val,
bool roundTowardZero, Type *Ty) {
// All of these conversion intrinsics form an integer of at most 64bits.
unsigned ResultWidth = Ty->getIntegerBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
uint64_t UIntVal;
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
/*isSigned=*/true, mode,
&isExact);
if (status != APFloat::opOK && status != APFloat::opInexact)
return nullptr;
return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
}
static double getValueAsDouble(ConstantFP *Op) {
Type *Ty = Op->getType();
if (Ty->isFloatTy())
return Op->getValueAPF().convertToFloat();
if (Ty->isDoubleTy())
return Op->getValueAPF().convertToDouble();
bool unused;
APFloat APF = Op->getValueAPF();
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
return APF.convertToDouble();
}
static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
Type *Ty, ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (Operands.size() == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (IntrinsicID == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
if (IntrinsicID == Intrinsic::round) {
APFloat V = Op->getValueAPF();
V.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), V);
}
/// We only fold functions with finite arguments. Folding NaN and inf is
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
return nullptr;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
double V = getValueAsDouble(Op);
switch (IntrinsicID) {
default: break;
case Intrinsic::fabs:
return ConstantFoldFP(fabs, V, Ty);
case Intrinsic::log2:
return ConstantFoldFP(log2, V, Ty);
case Intrinsic::log:
return ConstantFoldFP(log, V, Ty);
case Intrinsic::log10:
return ConstantFoldFP(log10, V, Ty);
case Intrinsic::exp:
return ConstantFoldFP(exp, V, Ty);
case Intrinsic::exp2:
return ConstantFoldFP(exp2, V, Ty);
case Intrinsic::floor:
return ConstantFoldFP(floor, V, Ty);
case Intrinsic::ceil:
return ConstantFoldFP(ceil, V, Ty);
}
if (!TLI)
return nullptr;
switch (Name[0]) {
case 'a':
if (Name == "acos" && TLI->has(LibFunc::acos))
return ConstantFoldFP(acos, V, Ty);
else if (Name == "asin" && TLI->has(LibFunc::asin))
return ConstantFoldFP(asin, V, Ty);
else if (Name == "atan" && TLI->has(LibFunc::atan))
return ConstantFoldFP(atan, V, Ty);
break;
case 'c':
if (Name == "ceil" && TLI->has(LibFunc::ceil))
return ConstantFoldFP(ceil, V, Ty);
else if (Name == "cos" && TLI->has(LibFunc::cos))
return ConstantFoldFP(cos, V, Ty);
else if (Name == "cosh" && TLI->has(LibFunc::cosh))
return ConstantFoldFP(cosh, V, Ty);
else if (Name == "cosf" && TLI->has(LibFunc::cosf))
return ConstantFoldFP(cos, V, Ty);
break;
case 'e':
if (Name == "exp" && TLI->has(LibFunc::exp))
return ConstantFoldFP(exp, V, Ty);
if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
// Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
// C99 library.
return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
}
break;
case 'f':
if (Name == "fabs" && TLI->has(LibFunc::fabs))
return ConstantFoldFP(fabs, V, Ty);
else if (Name == "floor" && TLI->has(LibFunc::floor))
return ConstantFoldFP(floor, V, Ty);
break;
case 'l':
if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
return ConstantFoldFP(log, V, Ty);
else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
return ConstantFoldFP(log10, V, Ty);
else if (IntrinsicID == Intrinsic::sqrt &&
(Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
else {
// Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
// all guarantee or favor returning NaN - the square root of a
// negative number is not defined for the LLVM sqrt intrinsic.
// This is because the intrinsic should only be emitted in place of
// libm's sqrt function when using "no-nans-fp-math".
return UndefValue::get(Ty);
}
}
break;
case 's':
if (Name == "sin" && TLI->has(LibFunc::sin))
return ConstantFoldFP(sin, V, Ty);
else if (Name == "sinh" && TLI->has(LibFunc::sinh))
return ConstantFoldFP(sinh, V, Ty);
else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
return ConstantFoldFP(sqrt, V, Ty);
else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
return ConstantFoldFP(sqrt, V, Ty);
else if (Name == "sinf" && TLI->has(LibFunc::sinf))
return ConstantFoldFP(sin, V, Ty);
break;
case 't':
if (Name == "tan" && TLI->has(LibFunc::tan))
return ConstantFoldFP(tan, V, Ty);
else if (Name == "tanh" && TLI->has(LibFunc::tanh))
return ConstantFoldFP(tanh, V, Ty);
break;
default:
break;
}
return nullptr;
}
if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
switch (IntrinsicID) {
case Intrinsic::bswap:
return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::convert_from_fp16: {
APFloat Val(APFloat::IEEEhalf, Op->getValue());
bool lost = false;
APFloat::opStatus status =
Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
(void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(Ty->getContext(), Val);
}
default:
return nullptr;
}
}
// Support ConstantVector in case we have an Undef in the top.
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
Constant *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty);
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty);
}
}
if (isa<UndefValue>(Operands[0])) {
if (IntrinsicID == Intrinsic::bswap)
return Operands[0];
return nullptr;
}
return nullptr;
}
if (Operands.size() == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
double Op1V = getValueAsDouble(Op1);
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return nullptr;
double Op2V = getValueAsDouble(Op2);
if (IntrinsicID == Intrinsic::pow) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
}
if (IntrinsicID == Intrinsic::copysign) {
APFloat V1 = Op1->getValueAPF();
APFloat V2 = Op2->getValueAPF();
V1.copySign(V2);
return ConstantFP::get(Ty->getContext(), V1);
}
if (IntrinsicID == Intrinsic::minnum) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
}
if (IntrinsicID == Intrinsic::maxnum) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
}
if (!TLI)
return nullptr;
if (Name == "pow" && TLI->has(LibFunc::pow))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
if (Name == "fmod" && TLI->has(LibFunc::fmod))
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
if (Name == "atan2" && TLI->has(LibFunc::atan2))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
return ConstantFP::get(Ty->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(),
APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
return nullptr;
}
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
switch (IntrinsicID) {
default: break;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
APInt Res;
bool Overflow;
switch (IntrinsicID) {
default: llvm_unreachable("Invalid case");
case Intrinsic::sadd_with_overflow:
Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::uadd_with_overflow:
Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::ssub_with_overflow:
Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::usub_with_overflow:
Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::smul_with_overflow:
Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::umul_with_overflow:
Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
break;
}
Constant *Ops[] = {
ConstantInt::get(Ty->getContext(), Res),
ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
};
return ConstantStruct::get(cast<StructType>(Ty), Ops);
}
case Intrinsic::cttz:
if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
return UndefValue::get(Ty);
return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
case Intrinsic::ctlz:
if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
return UndefValue::get(Ty);
return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
}
}
return nullptr;
}
return nullptr;
}
if (Operands.size() != 3)
return nullptr;
if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
switch (IntrinsicID) {
default: break;
case Intrinsic::fma:
case Intrinsic::fmuladd: {
APFloat V = Op1->getValueAPF();
APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
Op3->getValueAPF(),
APFloat::rmNearestTiesToEven);
if (s != APFloat::opInvalidOp)
return ConstantFP::get(Ty->getContext(), V);
return nullptr;
}
}
}
}
}
return nullptr;
}
static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
VectorType *VTy,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
SmallVector<Constant *, 4> Result(VTy->getNumElements());
SmallVector<Constant *, 4> Lane(Operands.size());
Type *Ty = VTy->getElementType();
for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
// Gather a column of constants.
for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
Constant *Agg = Operands[J]->getAggregateElement(I);
if (!Agg)
return nullptr;
Lane[J] = Agg;
}
// Use the regular scalar folding to simplify this column.
Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
if (!Folded)
return nullptr;
Result[I] = Folded;
}
return ConstantVector::get(Result);
}
/// Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (!F->hasName())
return nullptr;
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
}
|