aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ConstantFolding.cpp
blob: 6c828fa0042bf10bbfaefec099c425af5abac9bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions determines the possibility of performing constant
// folding.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <cerrno>
#include <cmath>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//

/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
/// from a global, return the global and the constant.  Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
                                       int64_t &Offset, const TargetData &TD) {
  // Trivial case, constant is the global.
  if ((GV = dyn_cast<GlobalValue>(C))) {
    Offset = 0;
    return true;
  }
  
  // Otherwise, if this isn't a constant expr, bail out.
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
  if (!CE) return false;
  
  // Look through ptr->int and ptr->ptr casts.
  if (CE->getOpcode() == Instruction::PtrToInt ||
      CE->getOpcode() == Instruction::BitCast)
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
  
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
  if (CE->getOpcode() == Instruction::GetElementPtr) {
    // Cannot compute this if the element type of the pointer is missing size
    // info.
    if (!cast<PointerType>(CE->getOperand(0)->getType())->getElementType()->isSized())
      return false;
    
    // If the base isn't a global+constant, we aren't either.
    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
      return false;
    
    // Otherwise, add any offset that our operands provide.
    gep_type_iterator GTI = gep_type_begin(CE);
    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i, ++GTI) {
      ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(i));
      if (!CI) return false;  // Index isn't a simple constant?
      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
      
      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
        // N = N + Offset
        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
      } else {
        const SequentialType *SQT = cast<SequentialType>(*GTI);
        Offset += TD.getTypeSize(SQT->getElementType())*CI->getSExtValue();
      }
    }
    return true;
  }
  
  return false;
}


/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of  a binary operator merging
/// these together.  If target data info is available, it is provided as TD, 
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
                                           Constant *Op1, const TargetData *TD){
  // SROA
  
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
  // bits.
  
  
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
  // constant.  This happens frequently when iterating over a global array.
  if (Opc == Instruction::Sub && TD) {
    GlobalValue *GV1, *GV2;
    int64_t Offs1, Offs2;
    
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
          GV1 == GV2) {
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
      }
  }
    
  // TODO: Fold icmp setne/seteq as well.
  return 0;
}

/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant** Ops, unsigned NumOps,
                                         const Type *ResultTy,
                                         const TargetData *TD) {
  Constant *Ptr = Ops[0];
  if (!cast<PointerType>(Ptr->getType())->getElementType()->isSized())
    return 0;
  
  if (TD && Ptr->isNullValue()) {
    // If this is a constant expr gep that is effectively computing an
    // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    bool isFoldableGEP = true;
    for (unsigned i = 1; i != NumOps; ++i)
      if (!isa<ConstantInt>(Ops[i])) {
        isFoldableGEP = false;
        break;
      }
    if (isFoldableGEP) {
      uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
                                             (Value**)Ops+1, NumOps-1);
      Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset);
      return ConstantExpr::getIntToPtr(C, ResultTy);
    }
  }
  
  return 0;
}


//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//


/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction.  If successful, the constant result is returned, if not, null
/// is returned.  Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    if (PN->getNumIncomingValues() == 0)
      return Constant::getNullValue(PN->getType());

    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
    if (Result == 0) return 0;

    // Handle PHI nodes specially here...
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
        return 0;   // Not all the same incoming constants...

    // If we reach here, all incoming values are the same constant.
    return Result;
  }

  // Scan the operand list, checking to see if they are all constants, if so,
  // hand off to ConstantFoldInstOperands.
  SmallVector<Constant*, 8> Ops;
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (Constant *Op = dyn_cast<Constant>(I->getOperand(i)))
      Ops.push_back(Op);
    else
      return 0;  // All operands not constant!

  return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
}

/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
/// specified opcode and operands.  If successful, the constant result is
/// returned, if not, null is returned.  Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
Constant *llvm::ConstantFoldInstOperands(const Instruction* I, 
                                         Constant** Ops, unsigned NumOps,
                                         const TargetData *TD) {
  unsigned Opc = I->getOpcode();
  const Type *DestTy = I->getType();

  // Handle easy binops first.
  if (isa<BinaryOperator>(I)) {
    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
      if (Constant *C = SymbolicallyEvaluateBinop(I->getOpcode(), Ops[0],
                                                  Ops[1], TD))
        return C;
    
    return ConstantExpr::get(Opc, Ops[0], Ops[1]);
  }
  
  switch (Opc) {
  default: return 0;
  case Instruction::Call:
    if (Function *F = dyn_cast<Function>(Ops[0]))
      if (canConstantFoldCallTo(F))
        return ConstantFoldCall(F, Ops+1, NumOps-1);
    return 0;
  case Instruction::ICmp:
  case Instruction::FCmp:
    return ConstantExpr::getCompare(cast<CmpInst>(I)->getPredicate(), Ops[0], 
                                    Ops[1]);
  case Instruction::PtrToInt:
    // If the input is a inttoptr, eliminate the pair.  This requires knowing
    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
        Constant *Input = CE->getOperand(0);
        unsigned InWidth = Input->getType()->getPrimitiveSizeInBits();
        Constant *Mask = 
          ConstantInt::get(APInt::getLowBitsSet(InWidth,
                                                TD->getPointerSizeInBits()));
        Input = ConstantExpr::getAnd(Input, Mask);
        // Do a zext or trunc to get to the dest size.
        return ConstantExpr::getIntegerCast(Input, I->getType(), false);
      }
    }
    // FALL THROUGH.
  case Instruction::IntToPtr:
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::BitCast:
    return ConstantExpr::getCast(Opc, Ops[0], DestTy);
  case Instruction::Select:
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
  case Instruction::ExtractElement:
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
  case Instruction::InsertElement:
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
  case Instruction::ShuffleVector:
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
  case Instruction::GetElementPtr:
    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, I->getType(), TD))
      return C;
    
    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
  }
}

/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
                                                       ConstantExpr *CE) {
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
    return 0;  // Do not allow stepping over the value!
  
  // Loop over all of the operands, tracking down which value we are
  // addressing...
  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
  for (++I; I != E; ++I)
    if (const StructType *STy = dyn_cast<StructType>(*I)) {
      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
      assert(CU->getZExtValue() < STy->getNumElements() &&
             "Struct index out of range!");
      unsigned El = (unsigned)CU->getZExtValue();
      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
        C = CS->getOperand(El);
      } else if (isa<ConstantAggregateZero>(C)) {
        C = Constant::getNullValue(STy->getElementType(El));
      } else if (isa<UndefValue>(C)) {
        C = UndefValue::get(STy->getElementType(El));
      } else {
        return 0;
      }
    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
        if (CI->getZExtValue() >= ATy->getNumElements())
         return 0;
        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
          C = CA->getOperand(CI->getZExtValue());
        else if (isa<ConstantAggregateZero>(C))
          C = Constant::getNullValue(ATy->getElementType());
        else if (isa<UndefValue>(C))
          C = UndefValue::get(ATy->getElementType());
        else
          return 0;
      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
        if (CI->getZExtValue() >= PTy->getNumElements())
          return 0;
        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
          C = CP->getOperand(CI->getZExtValue());
        else if (isa<ConstantAggregateZero>(C))
          C = Constant::getNullValue(PTy->getElementType());
        else if (isa<UndefValue>(C))
          C = UndefValue::get(PTy->getElementType());
        else
          return 0;
      } else {
        return 0;
      }
    } else {
      return 0;
    }
  return C;
}


//===----------------------------------------------------------------------===//
//  Constant Folding for Calls
//

/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool
llvm::canConstantFoldCallTo(Function *F) {
  switch (F->getIntrinsicID()) {
  case Intrinsic::sqrt_f32:
  case Intrinsic::sqrt_f64:
  case Intrinsic::powi_f32:
  case Intrinsic::powi_f64:
  case Intrinsic::bswap:
  case Intrinsic::ctpop:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
    return true;
  default: break;
  }

  const ValueName *NameVal = F->getValueName();
  if (NameVal == 0) return false;
  const char *Str = NameVal->getKeyData();
  unsigned Len = NameVal->getKeyLength();
  
  // In these cases, the check of the length is required.  We don't want to
  // return true for a name like "cos\0blah" which strcmp would return equal to
  // "cos", but has length 8.
  switch (Str[0]) {
  default: return false;
  case 'a':
    if (Len == 4)
      return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
             !strcmp(Str, "atan");
    else if (Len == 5)
      return !strcmp(Str, "atan2");
    return false;
  case 'c':
    if (Len == 3)
      return !strcmp(Str, "cos");
    else if (Len == 4)
      return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
             !strcmp(Str, "cosh");
    return false;
  case 'e':
    if (Len == 3)
      return !strcmp(Str, "exp");
    return false;
  case 'f':
    if (Len == 4)
      return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
    else if (Len == 5)
      return !strcmp(Str, "floor");
    return false;
    break;
  case 'l':
    if (Len == 3 && !strcmp(Str, "log"))
      return true;
    if (Len == 5 && !strcmp(Str, "log10"))
      return true;
    return false;
  case 'p':
    if (Len == 3 && !strcmp(Str, "pow"))
      return true;
    return false;
  case 's':
    if (Len == 3)
      return !strcmp(Str, "sin");
    if (Len == 4)
      return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt");
    if (Len == 5)
      return !strcmp(Str, "sqrtf");
    return false;
  case 't':
    if (Len == 3 && !strcmp(Str, "tan"))
      return true;
    else if (Len == 4 && !strcmp(Str, "tanh"))
      return true;
    return false;
  }
}

static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
                                const Type *Ty) {
  errno = 0;
  V = NativeFP(V);
  if (errno == 0) {
    if (Ty==Type::FloatTy)
      return ConstantFP::get(Ty, APFloat((float)V));
    else if (Ty==Type::DoubleTy)
      return ConstantFP::get(Ty, APFloat(V));
    else
      assert(0);
  }
  errno = 0;
  return 0;
}

static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
                                      double V, double W,
                                      const Type *Ty) {
  errno = 0;
  V = NativeFP(V, W);
  if (errno == 0) {
    if (Ty==Type::FloatTy)
      return ConstantFP::get(Ty, APFloat((float)V));
    else if (Ty==Type::DoubleTy)
      return ConstantFP::get(Ty, APFloat(V));
    else
      assert(0);
  }
  errno = 0;
  return 0;
}

/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.

Constant *
llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
  const ValueName *NameVal = F->getValueName();
  if (NameVal == 0) return 0;
  const char *Str = NameVal->getKeyData();
  unsigned Len = NameVal->getKeyLength();
  
  const Type *Ty = F->getReturnType();
  if (NumOperands == 1) {
    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
        return 0;
      /// Currently APFloat versions of these functions do not exist, so we use
      /// the host native double versions.  Float versions are not called
      /// directly but for all these it is true (float)(f((double)arg)) ==
      /// f(arg).  Long double not supported yet.
      double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
                                     Op->getValueAPF().convertToDouble();
      switch (Str[0]) {
      case 'a':
        if (Len == 4 && !strcmp(Str, "acos"))
          return ConstantFoldFP(acos, V, Ty);
        else if (Len == 4 && !strcmp(Str, "asin"))
          return ConstantFoldFP(asin, V, Ty);
        else if (Len == 4 && !strcmp(Str, "atan"))
          return ConstantFoldFP(atan, V, Ty);
        break;
      case 'c':
        if (Len == 4 && !strcmp(Str, "ceil"))
          return ConstantFoldFP(ceil, V, Ty);
        else if (Len == 3 && !strcmp(Str, "cos"))
          return ConstantFoldFP(cos, V, Ty);
        else if (Len == 4 && !strcmp(Str, "cosh"))
          return ConstantFoldFP(cosh, V, Ty);
        break;
      case 'e':
        if (Len == 3 && !strcmp(Str, "exp"))
          return ConstantFoldFP(exp, V, Ty);
        break;
      case 'f':
        if (Len == 4 && !strcmp(Str, "fabs"))
          return ConstantFoldFP(fabs, V, Ty);
        else if (Len == 5 && !strcmp(Str, "floor"))
          return ConstantFoldFP(floor, V, Ty);
        break;
      case 'l':
        if (Len == 3 && !strcmp(Str, "log") && V > 0)
          return ConstantFoldFP(log, V, Ty);
        else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
          return ConstantFoldFP(log10, V, Ty);
        else if (!strcmp(Str, "llvm.sqrt.f32") ||
                 !strcmp(Str, "llvm.sqrt.f64")) {
          if (V >= -0.0)
            return ConstantFoldFP(sqrt, V, Ty);
          else // Undefined
            return ConstantFP::get(Ty, Ty==Type::FloatTy ? APFloat(0.0f) :
                                       APFloat(0.0));
        }
        break;
      case 's':
        if (Len == 3 && !strcmp(Str, "sin"))
          return ConstantFoldFP(sin, V, Ty);
        else if (Len == 4 && !strcmp(Str, "sinh"))
          return ConstantFoldFP(sinh, V, Ty);
        else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
          return ConstantFoldFP(sqrt, V, Ty);
        else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
          return ConstantFoldFP(sqrt, V, Ty);
        break;
      case 't':
        if (Len == 3 && !strcmp(Str, "tan"))
          return ConstantFoldFP(tan, V, Ty);
        else if (Len == 4 && !strcmp(Str, "tanh"))
          return ConstantFoldFP(tanh, V, Ty);
        break;
      default:
        break;
      }
    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
      if (Len > 11 && !memcmp(Str, "llvm.bswap", 10)) {
        return ConstantInt::get(Op->getValue().byteSwap());
      } else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10)) {
        uint64_t ctpop = Op->getValue().countPopulation();
        return ConstantInt::get(Ty, ctpop);
      } else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9)) {
        uint64_t cttz = Op->getValue().countTrailingZeros();
        return ConstantInt::get(Ty, cttz);
      } else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9)) {
        uint64_t ctlz = Op->getValue().countLeadingZeros();
        return ConstantInt::get(Ty, ctlz);
      }
    }
  } else if (NumOperands == 2) {
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
      double Op1V = Ty==Type::FloatTy ? 
                      (double)Op1->getValueAPF().convertToFloat():
                      Op1->getValueAPF().convertToDouble();
      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
        if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
          return 0;
        double Op2V = Ty==Type::FloatTy ? 
                      (double)Op2->getValueAPF().convertToFloat():
                      Op2->getValueAPF().convertToDouble();

        if (Len == 3 && !strcmp(Str, "pow")) {
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
        } else if (Len == 4 && !strcmp(Str, "fmod")) {
          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
        } else if (Len == 5 && !strcmp(Str, "atan2")) {
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
        }
      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
        if (!strcmp(Str, "llvm.powi.f32")) {
          return ConstantFP::get(Ty, APFloat((float)std::pow((float)Op1V,
                                              (int)Op2C->getZExtValue())));
        } else if (!strcmp(Str, "llvm.powi.f64")) {
          return ConstantFP::get(Ty, APFloat((double)std::pow((double)Op1V,
                                              (int)Op2C->getZExtValue())));
        }
      }
    }
  }
  return 0;
}