aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/ComputeClosure.cpp
blob: 9fd7d607e146667bab5a7731103fe94f62a5dc8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
//
// Compute the interprocedural closure of a data structure graph
//
//===----------------------------------------------------------------------===//

// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
//#define DEBUG_IP_CLOSURE 1

#include "llvm/Analysis/DataStructure.h"
#include "llvm/iOther.h"
#include "Support/STLExtras.h"
#include <algorithm>
#ifdef DEBUG_IP_CLOSURE
#include "llvm/Assembly/Writer.h"
#endif

// copyEdgesFromTo - Make a copy of all of the edges to Node to also point
// PV.  If there are edges out of Node, the edges are added to the subgraph
// starting at PV.
//
static void copyEdgesFromTo(DSNode *Node, const PointerValSet &PVS) {
  // Make all of the pointers that pointed to Node now also point to PV...
  const vector<PointerValSet*> &PVSToUpdate(Node->getReferrers());
  for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
    for (unsigned pn = 0, pne = PVS.size(); pn != pne; ++pn)
      PVSToUpdate[i]->add(PVS[pn]);
}

static void CalculateNodeMapping(ShadowDSNode *Shadow, DSNode *Node,
                              multimap<ShadowDSNode *, DSNode *> &NodeMapping) {
#ifdef DEBUG_IP_CLOSURE
  cerr << "Mapping " << (void*)Shadow << " to " << (void*)Node << "\n";
  cerr << "Type = '" << Shadow->getType() << "' and '"
       << Node->getType() << "'\n";
  cerr << "Shadow Node:\n";
  Shadow->print(cerr);
  cerr << "\nMapped Node:\n";
  Node->print(cerr);
#endif
  assert(Shadow->getType() == Node->getType() &&
         "Shadow and mapped nodes disagree about type!");
  
  multimap<ShadowDSNode *, DSNode *>::iterator
    NI = NodeMapping.lower_bound(Shadow),
    NE = NodeMapping.upper_bound(Shadow);

  for (; NI != NE; ++NI)
    if (NI->second == Node) return;       // Already processed node, return.

  NodeMapping.insert(make_pair(Shadow, Node));   // Add a mapping...

  // Loop over all of the outgoing links in the shadow node...
  //
  assert(Node->getNumLinks() == Shadow->getNumLinks() &&
         "Same type, but different number of links?");
  for (unsigned i = 0, e = Shadow->getNumLinks(); i != e; ++i) {
    PointerValSet &Link = Shadow->getLink(i);

    // Loop over all of the values coming out of this pointer...
    for (unsigned l = 0, le = Link.size(); l != le; ++l) {
      // If the outgoing node points to a shadow node, map the shadow node to
      // all of the outgoing values in Node.
      //
      if (ShadowDSNode *ShadOut = dyn_cast<ShadowDSNode>(Link[l].Node)) {
        PointerValSet &NLink = Node->getLink(i);
        for (unsigned ol = 0, ole = NLink.size(); ol != ole; ++ol)
          CalculateNodeMapping(ShadOut, NLink[ol].Node, NodeMapping);
      }
    }
  }
}


static void ResolveNodesTo(const PointerVal &FromPtr,
                           const PointerValSet &ToVals) {
  assert(FromPtr.Index == 0 &&
         "Resolved node return pointer should be index 0!");
  if (!isa<ShadowDSNode>(FromPtr.Node)) return;
  
  ShadowDSNode *Shadow = cast<ShadowDSNode>(FromPtr.Node);
  Shadow->resetCriticalMark();

  typedef multimap<ShadowDSNode *, DSNode *> ShadNodeMapTy;
  ShadNodeMapTy NodeMapping;
  for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
    CalculateNodeMapping(Shadow, ToVals[i].Node, NodeMapping);

  // Now loop through the shadow node graph, mirroring the edges in the shadow
  // graph onto the realized graph...
  //
  for (ShadNodeMapTy::iterator I = NodeMapping.begin(),
         E = NodeMapping.end(); I != E; ++I) {
    DSNode *Node = I->second;
    ShadowDSNode *ShadNode = I->first;
    PointerValSet PVSx;
    PVSx.add(Node);
    copyEdgesFromTo(ShadNode, PVSx);

    // Must loop over edges in the shadow graph, adding edges in the real graph
    // that correspond to to the edges, but are mapped into real values by the
    // NodeMapping.
    //
    for (unsigned i = 0, e = Node->getNumLinks(); i != e; ++i) {
      const PointerValSet &ShadLinks = ShadNode->getLink(i);
      PointerValSet &NewLinks = Node->getLink(i);

      // Add a link to all of the nodes pointed to by the shadow field...
      for (unsigned l = 0, le = ShadLinks.size(); l != le; ++l) {
        DSNode *ShadLink = ShadLinks[l].Node;

        if (ShadowDSNode *SL = dyn_cast<ShadowDSNode>(ShadLink)) {
          // Loop over all of the values in the range 
          ShadNodeMapTy::iterator St = NodeMapping.lower_bound(SL),
                                  En = NodeMapping.upper_bound(SL);
          if (St != En) {
            for (; St != En; ++St)
              NewLinks.add(PointerVal(St->second, ShadLinks[l].Index));
          } else {
            // We must retain the shadow node...
            NewLinks.add(ShadLinks[l]);
          }
        } else {
          // Otherwise, add a direct link to the data structure pointed to by
          // the shadow node...
          NewLinks.add(ShadLinks[l]);
        }
      }
    }
  }
}


// ResolveNodeTo - The specified node is now known to point to the set of values
// in ToVals, instead of the old shadow node subgraph that it was pointing to.
//
static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
  assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");

  PointerValSet PVS = Node->getLink(0);

  for (unsigned i = 0, e = PVS.size(); i != e; ++i)
    ResolveNodesTo(PVS[i], ToVals);
}

// isResolvableCallNode - Return true if node is a call node and it is a call
// node that we can inline...
//
static bool isResolvableCallNode(DSNode *N) {
  // Only operate on call nodes...
  CallDSNode *CN = dyn_cast<CallDSNode>(N);
  if (CN == 0) return false;

  // Only operate on call nodes with direct method calls
  Function *F = CN->getCall()->getCalledFunction();
  if (F == 0) return false;

  // Only work on call nodes with direct calls to methods with bodies.
  return !F->isExternal();
}


// computeClosure - Replace all of the resolvable call nodes with the contents
// of their corresponding method data structure graph...
//
void FunctionDSGraph::computeClosure(const DataStructure &DS) {
  vector<DSNode*>::iterator NI = std::find_if(Nodes.begin(), Nodes.end(),
                                              isResolvableCallNode);

  map<Function*, unsigned> InlineCount; // FIXME

  // Loop over the resolvable call nodes...
  while (NI != Nodes.end()) {
    CallDSNode *CN = cast<CallDSNode>(*NI);
    Function *F = CN->getCall()->getCalledFunction();
    //if (F == Func) return;  // Do not do self inlining

    // FIXME: Gross hack to prevent explosions when inlining a recursive func.
    if (InlineCount[F]++ > 2) return;

    Nodes.erase(NI);                     // Remove the call node from the graph

    unsigned CallNodeOffset = NI-Nodes.begin();

    // StartNode - The first node of the incorporated graph, last node of the
    // preexisting data structure graph...
    //
    unsigned StartNode = Nodes.size();

    // Hold the set of values that correspond to the incorporated methods
    // return set.
    //
    PointerValSet RetVals;

    if (F != Func) {  // If this is not a recursive call...
      // Get the datastructure graph for the new method.  Note that we are not
      // allowed to modify this graph because it will be the cached graph that
      // is returned by other users that want the local datastructure graph for
      // a method.
      //
      const FunctionDSGraph &NewFunction = DS.getDSGraph(F);

      unsigned StartShadowNodes = ShadowNodes.size();

      // Incorporate a copy of the called function graph into the current graph,
      // allowing us to do local transformations to local graph to link
      // arguments to call values, and call node to return value...
      //
      RetVals = cloneFunctionIntoSelf(NewFunction, false);

      // Only detail is that we need to reset all of the critical shadow nodes
      // in the incorporated graph, because they are now no longer critical.
      //
      for (unsigned i = StartShadowNodes, e = ShadowNodes.size(); i != e; ++i)
        ShadowNodes[i]->resetCriticalMark();

    } else {     // We are looking at a recursive function!
      StartNode = 0;  // Arg nodes start at 0 now...
      RetVals = RetNode;
    }

    // If the function returns a pointer value...  Resolve values pointing to
    // the shadow nodes pointed to by CN to now point the values in RetVals...
    //
    if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);

    // If the call node has arguments, process them now!
    if (CN->getNumArgs()) {
      // The ArgNodes of the incorporated graph should be the nodes starting at
      // StartNode, ordered the same way as the call arguments.  The arg nodes
      // are seperated by a single shadow node, but that shadow node might get
      // eliminated in the process of optimization.
      //
      unsigned ArgOffset = StartNode;
      for (unsigned i = 0, e = CN->getNumArgs(); i != e; ++i) {
        // Get the arg node of the incorporated method...
        while (!isa<ArgDSNode>(Nodes[ArgOffset]))  // Scan for next arg node
          ArgOffset++;
        ArgDSNode *ArgNode = cast<ArgDSNode>(Nodes[ArgOffset]);

        // Now we make all of the nodes inside of the incorporated method point
        // to the real arguments values, not to the shadow nodes for the
        // argument.
        //
        ResolveNodeTo(ArgNode, CN->getArgValues(i));

        if (StartNode) {        // Not Self recursion?
          // Remove the argnode from the set of nodes in this method...
          Nodes.erase(Nodes.begin()+ArgOffset);

          // ArgNode is no longer useful, delete now!
          delete ArgNode;
        } else {
          ArgOffset++;  // Step to the next argument...
        }
      }
    }

    // Loop through the nodes, deleting alloc nodes in the inlined function...
    // Since the memory has been released, we cannot access their pointer
    // fields (with defined results at least), so it is not possible to use any
    // pointers to the alloca.  Drop them now, and remove the alloca's since
    // they are dead (we just removed all links to them).  Only do this if we
    // are not self recursing though.  :)
    //
    if (StartNode)  // Don't do this if self recursing...
      for (unsigned i = StartNode; i != Nodes.size(); ++i)
        if (NewDSNode *NDS = dyn_cast<NewDSNode>(Nodes[i]))
          if (NDS->isAllocaNode()) {
            NDS->removeAllIncomingEdges();  // These edges are invalid now!
            delete NDS;                     // Node is dead
            Nodes.erase(Nodes.begin()+i);   // Remove slot in Nodes array
            --i;                            // Don't skip the next node
          }


    // Now the call node is completely destructable.  Eliminate it now.
    delete CN;

    bool Changed = true;
    while (Changed) {
      // Eliminate shadow nodes that are not distinguishable from some other
      // node in the graph...
      //
      Changed = UnlinkUndistinguishableShadowNodes();

      // Eliminate shadow nodes that are now extraneous due to linking...
      Changed |= RemoveUnreachableShadowNodes();
    }

    //if (F == Func) return;  // Only do one self inlining
    
    // Move on to the next call node...
    NI = std::find_if(Nodes.begin(), Nodes.end(), isResolvableCallNode);
  }
}