aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/ComputeClosure.cpp
blob: 5ea706800ba4d5cc859d095d277b25883e1f3d40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
//
// Compute the interprocedural closure of a data structure graph
//
//===----------------------------------------------------------------------===//

// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
//#define DEBUG_IP_CLOSURE 1

#include "llvm/Analysis/DataStructure.h"
#include "llvm/iOther.h"
#include "Support/STLExtras.h"
#include <algorithm>

// Make all of the pointers that point to Val also point to N.
//
static void copyEdgesFromTo(PointerVal Val, DSNode *N) {
  unsigned ValIdx = Val.Index;
  unsigned NLinks = N->getNumLinks();

  const vector<PointerValSet*> &PVSsToUpdate(Val.Node->getReferrers());
  for (unsigned i = 0, e = PVSsToUpdate.size(); i != e; ++i) {
    // Loop over all of the pointers pointing to Val...
    PointerValSet &PVS = *PVSsToUpdate[i];
    for (unsigned j = 0, je = PVS.size(); j != je; ++j) {
      if (PVS[j].Node == Val.Node && PVS[j].Index >= ValIdx && 
          PVS[j].Index < ValIdx+NLinks)
        PVS.add(PointerVal(N, PVS[j].Index-ValIdx));
    }
  }
}

static void ResolveNodesTo(const PointerVal &FromPtr,
                           const PointerValSet &ToVals) {
  assert(FromPtr.Index == 0 &&
         "Resolved node return pointer should be index 0!");
  DSNode *N = FromPtr.Node;

  // Make everything that pointed to the shadow node also point to the values in
  // ToVals...
  //
  for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
    copyEdgesFromTo(ToVals[i], N);

  // Make everything that pointed to the shadow node now also point to the
  // values it is equivalent to...
  const vector<PointerValSet*> &PVSToUpdate(N->getReferrers());
  for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
    PVSToUpdate[i]->add(ToVals);
}


// ResolveNodeTo - The specified node is now known to point to the set of values
// in ToVals, instead of the old shadow node subgraph that it was pointing to.
//
static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
  assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");

  const PointerValSet &PVS = Node->getLink(0);

  // Only resolve the first pointer, although there many be many pointers here.
  // The problem is that the inlined function might return one of the arguments
  // to the function, and if so, extra values can be added to the arg or call
  // node that point to what the other one got resolved to.  Since these will
  // be added to the end of the PVS pointed in, we just ignore them.
  //
  ResolveNodesTo(PVS[0], ToVals);
}

// isResolvableCallNode - Return true if node is a call node and it is a call
// node that we can inline...
//
static bool isResolvableCallNode(CallDSNode *CN) {
  // Only operate on call nodes with direct method calls
  Function *F = CN->getCall()->getCalledFunction();
  if (F == 0) return false;

  // Only work on call nodes with direct calls to methods with bodies.
  return !F->isExternal();
}


// computeClosure - Replace all of the resolvable call nodes with the contents
// of their corresponding method data structure graph...
//
void FunctionDSGraph::computeClosure(const DataStructure &DS) {
  // Note that this cannot be a real vector because the keys will be changing
  // as nodes are eliminated!
  //
  typedef pair<vector<PointerValSet>, CallInst *> CallDescriptor;
  vector<pair<CallDescriptor, PointerValSet> > CallMap;

  unsigned NumInlines = 0;

  // Loop over the resolvable call nodes...
  vector<CallDSNode*>::iterator NI;
  NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
  while (NI != CallNodes.end()) {
    CallDSNode *CN = *NI;
    Function *F = CN->getCall()->getCalledFunction();

    if (NumInlines++ == 100) {      // CUTE hack huh?
      cerr << "Infinite (?) recursion halted\n";
      return;
    }

    CallNodes.erase(NI);                 // Remove the call node from the graph

    unsigned CallNodeOffset = NI-CallNodes.begin();

    // Find out if we have already incorporated this node... if so, it will be
    // in the CallMap...
    //
    
#if 0
    cerr << "\nSearching for: " << (void*)CN->getCall() << ": ";
    for (unsigned X = 0; X != CN->getArgs().size(); ++X) {
      cerr << " " << X << " is\n";
      CN->getArgs().first[X].print(cerr);
    }
#endif

    const vector<PointerValSet> &Args = CN->getArgs();
    PointerValSet *CMI = 0;
    for (unsigned i = 0, e = CallMap.size(); i != e; ++i) {
#if 0
      cerr << "Found: " << (void*)CallMap[i].first.second << ": ";
      for (unsigned X = 0; X != CallMap[i].first.first.size(); ++X) {
        cerr << " " << X << " is\n"; CallMap[i].first.first[X].print(cerr);
      }
#endif

      // Look to see if the function call takes a superset of the values we are
      // providing as input
      // 
      CallDescriptor &CD = CallMap[i].first;
      if (CD.second == CN->getCall() && CD.first.size() == Args.size()) {
        bool FoundMismatch = false;
        for (unsigned j = 0, je = Args.size(); j != je; ++j) {
          PointerValSet ArgSet = CD.first[j];
          if (ArgSet.add(Args[j])) {
            FoundMismatch = true; break;
          }            
        }

        if (!FoundMismatch) { CMI = &CallMap[i].second; break; }
      }
    }

    // Hold the set of values that correspond to the incorporated methods
    // return set.
    //
    PointerValSet RetVals;

    if (CMI) {
      // We have already inlined an identical function call!
      RetVals = *CMI;
    } else {
      // Get the datastructure graph for the new method.  Note that we are not
      // allowed to modify this graph because it will be the cached graph that
      // is returned by other users that want the local datastructure graph for
      // a method.
      //
      const FunctionDSGraph &NewFunction = DS.getDSGraph(F);

      // StartNode - The first node of the incorporated graph, last node of the
      // preexisting data structure graph...
      //
      unsigned StartArgNode   = ArgNodes.size();
      unsigned StartAllocNode = AllocNodes.size();

      // Incorporate a copy of the called function graph into the current graph,
      // allowing us to do local transformations to local graph to link
      // arguments to call values, and call node to return value...
      //
      RetVals = cloneFunctionIntoSelf(NewFunction, false);
      CallMap.push_back(make_pair(CallDescriptor(CN->getArgs(), CN->getCall()),
                                  RetVals));

      // If the call node has arguments, process them now!
      if (CN->getNumArgs()) {
        // The ArgNodes of the incorporated graph should be the nodes starting
        // at StartNode, ordered the same way as the call arguments.  The arg
        // nodes are seperated by a single shadow node, but that shadow node
        // might get eliminated in the process of optimization.
        //
        for (unsigned i = 0, e = CN->getNumArgs(); i != e; ++i) {
          // Get the arg node of the incorporated method...
          ArgDSNode *ArgNode = ArgNodes[StartArgNode];
          
          // Now we make all of the nodes inside of the incorporated method
          // point to the real arguments values, not to the shadow nodes for the
          // argument.
          //
          ResolveNodeTo(ArgNode, CN->getArgValues(i));
          
          // Remove the argnode from the set of nodes in this method...
          ArgNodes.erase(ArgNodes.begin()+StartArgNode);
            
          // ArgNode is no longer useful, delete now!
          delete ArgNode;
        }
      }

      // Loop through the nodes, deleting alloca nodes in the inlined function.
      // Since the memory has been released, we cannot access their pointer
      // fields (with defined results at least), so it is not possible to use
      // any pointers to the alloca.  Drop them now, and remove the alloca's
      // since they are dead (we just removed all links to them).
      //
      for (unsigned i = StartAllocNode; i != AllocNodes.size(); ++i)
        if (AllocNodes[i]->isAllocaNode()) {
          AllocDSNode *NDS = AllocNodes[i];
          NDS->removeAllIncomingEdges();          // These edges are invalid now
          delete NDS;                             // Node is dead
          AllocNodes.erase(AllocNodes.begin()+i); // Remove slot in Nodes array
          --i;                                    // Don't skip the next node
        }
    }

    // If the function returns a pointer value...  Resolve values pointing to
    // the shadow nodes pointed to by CN to now point the values in RetVals...
    //
    if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);

    // Now the call node is completely destructable.  Eliminate it now.
    delete CN;

    bool Changed = true;
    while (Changed) {
      // Eliminate shadow nodes that are not distinguishable from some other
      // node in the graph...
      //
      Changed = UnlinkUndistinguishableNodes();

      // Eliminate shadow nodes that are now extraneous due to linking...
      Changed |= RemoveUnreachableNodes();
    }

    //if (F == Func) return;  // Only do one self inlining
    
    // Move on to the next call node...
    NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
  }
}