aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/DataStructure.cpp
blob: 683fe46b4c9a9ebcf905ced2cc5cd65670dbd8db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include "llvm/Target/TargetData.h"
#include <algorithm>
#include <set>

using std::vector;

// TODO: FIXME
namespace DataStructureAnalysis {
  // isPointerType - Return true if this first class type is big enough to hold
  // a pointer.
  //
  bool isPointerType(const Type *Ty);
  extern TargetData TD;
}
using namespace DataStructureAnalysis;

//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//

DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) {
  // If this node is big enough to have pointer fields, add space for them now.
  if (T != Type::VoidTy && !isa<FunctionType>(T))  // Avoid TargetData assert's
    LinkIndex.resize(TD.getTypeSize(T), -1);

  TypeEntries.push_back(std::make_pair(T, 0));
}

// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
  : Links(N.Links), LinkIndex(N.LinkIndex),
    TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) {
}

void DSNode::removeReferrer(DSNodeHandle *H) {
  // Search backwards, because we depopulate the list from the back for
  // efficiency (because it's a vector).
  vector<DSNodeHandle*>::reverse_iterator I =
    std::find(Referrers.rbegin(), Referrers.rend(), H);
  assert(I != Referrers.rend() && "Referrer not pointing to node!");
  Referrers.erase(I.base()-1);
}

// addGlobal - Add an entry for a global value to the Globals list.  This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
  // Keep the list sorted.
  vector<GlobalValue*>::iterator I =
    std::lower_bound(Globals.begin(), Globals.end(), GV);

  if (I == Globals.end() || *I != GV) {
    //assert(GV->getType()->getElementType() == Ty);
    Globals.insert(I, GV);
    NodeType |= GlobalNode;
  }
}


// addEdgeTo - Add an edge from the current node to the specified node.  This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
  assert(Offset < LinkIndex.size() && "Offset out of range!");
  if (NH.getNode() == 0) return;       // Nothing to do

  if (LinkIndex[Offset] == -1) {       // No merging to perform...
    LinkIndex[Offset] = Links.size();  // Allocate a new link...
    Links.push_back(NH);
    return;
  }

  unsigned Idx = (unsigned)LinkIndex[Offset];
  if (!Links[Idx].getNode()) {         // No merging to perform
    Links[Idx] = NH;
    return;
  }

  // Merge the two nodes...
  Links[Idx].mergeWith(NH);
}


// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted.  This assumes that 'T's are
// efficiently copyable and have sane comparison semantics.
//
template<typename T>
void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
  // By far, the most common cases will be the simple ones.  In these cases,
  // avoid having to allocate a temporary vector...
  //
  if (Src.empty()) {             // Nothing to merge in...
    return;
  } else if (Dest.empty()) {     // Just copy the result in...
    Dest = Src;
  } else if (Src.size() == 1) {  // Insert a single element...
    const T &V = Src[0];
    typename vector<T>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(), V);
    if (I == Dest.end() || *I != Src[0])  // If not already contained...
      Dest.insert(I, Src[0]);
  } else if (Dest.size() == 1) {
    T Tmp = Dest[0];                      // Save value in temporary...
    Dest = Src;                           // Copy over list...
    typename vector<T>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(),Tmp);
    if (I == Dest.end() || *I != Src[0])  // If not already contained...
      Dest.insert(I, Src[0]);

  } else {
    // Make a copy to the side of Dest...
    vector<T> Old(Dest);
    
    // Make space for all of the type entries now...
    Dest.resize(Dest.size()+Src.size());
    
    // Merge the two sorted ranges together... into Dest.
    std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
    
    // Now erase any duplicate entries that may have accumulated into the 
    // vectors (because they were in both of the input sets)
    Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
  }
}


// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
  DSNode *N = NH.getNode();
  if (N == 0 || (N == this && NH.getOffset() == Offset))
      return;  // Noop

  assert(NH.getNode() != this &&
         "Cannot merge two portions of the same node yet!");

  // If both nodes are not at offset 0, make sure that we are merging the node
  // at an later offset into the node with the zero offset.
  //
  if (Offset > NH.getOffset()) {
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  }

#if 0
  std::cerr << "\n\nMerging:\n";
  N->print(std::cerr, 0);
  std::cerr << " and:\n";
  print(std::cerr, 0);
#endif

  // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
  // respect to NH.Offset) is now zero.
  //
  unsigned NOffset = NH.getOffset()-Offset;

  // Remove all edges pointing at N, causing them to point to 'this' instead.
  // Make sure to adjust their offset, not just the node pointer.
  //
  while (!N->Referrers.empty()) {
    DSNodeHandle &Ref = *N->Referrers.back();
    Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
  }

  // Make all of the outgoing links of N now be outgoing links of this.  This
  // can cause recursive merging!
  //
  for (unsigned i = 0, e = N->LinkIndex.size(); i != e; ++i)
    if (N->LinkIndex[i] != -1) {
      addEdgeTo(i+NOffset, N->Links[N->LinkIndex[i]]);
      N->LinkIndex[i] = -1;  // Reduce unneccesary edges in graph. N is dead
    }

  // Now that there are no outgoing edges, all of the Links are dead.
  N->Links.clear();

  // Merge the node types
  NodeType |= N->NodeType;
  N->NodeType = 0;   // N is now a dead node.

  // If this merging into node has more than just void nodes in it, merge!
  assert(!N->TypeEntries.empty() && "TypeEntries is empty for a node?");
  if (N->TypeEntries.size() != 1 || N->TypeEntries[0].first != Type::VoidTy) {
    // If the current node just has a Void entry in it, remove it.
    if (TypeEntries.size() == 1 && TypeEntries[0].first == Type::VoidTy)
      TypeEntries.clear();

    // Adjust all of the type entries we are merging in by the offset... and add
    // them to the TypeEntries list.
    //
    if (NOffset != 0) {  // This case is common enough to optimize for
      // Offset all of the TypeEntries in N with their new offset
      for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i)
        N->TypeEntries[i].second += NOffset;
    }

    MergeSortedVectors(TypeEntries, N->TypeEntries);

    N->TypeEntries.clear();
  }

  // Merge the globals list...
  if (!N->Globals.empty()) {
    MergeSortedVectors(Globals, N->Globals);

    // Delete the globals from the old node...
    N->Globals.clear();
  }
}

//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//

DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
  std::map<const DSNode*, DSNode*> NodeMap;
  RetNode = cloneInto(G, ValueMap, NodeMap);
}

DSGraph::~DSGraph() {
  FunctionCalls.clear();
  ValueMap.clear();
  RetNode = 0;

#ifndef NDEBUG
  // Drop all intra-node references, so that assertions don't fail...
  std::for_each(Nodes.begin(), Nodes.end(),
                std::mem_fun(&DSNode::dropAllReferences));
#endif

  // Delete all of the nodes themselves...
  std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}

// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }

// Helper function used to clone a function list.
//
static void CopyFunctionCallsList(const vector<vector<DSNodeHandle> >&fromCalls,
                                  vector<vector<DSNodeHandle> > &toCalls,
                                  std::map<const DSNode*, DSNode*> &NodeMap) {

  unsigned FC = toCalls.size();  // FirstCall
  toCalls.reserve(FC+fromCalls.size());
  for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) {
    toCalls.push_back(vector<DSNodeHandle>());
    
    const vector<DSNodeHandle> &CurCall = fromCalls[i];
    toCalls.back().reserve(CurCall.size());
    for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j)
      toCalls[FC+i].push_back(DSNodeHandle(NodeMap[CurCall[j].getNode()],
                                           CurCall[j].getOffset()));
  }
}

/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) {
  for (unsigned i = 0, e = Links.size(); i != e; ++i) 
    Links[i].setNode(OldNodeMap[Links[i].getNode()]);
}

// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph.  The translated ValueMap for the old function is
// filled into the OldValMap member.  If StripLocals is set to true, Scalar and
// Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph.
//
DSNodeHandle DSGraph::cloneInto(const DSGraph &G, 
                                std::map<Value*, DSNodeHandle> &OldValMap,
                                std::map<const DSNode*, DSNode*> &OldNodeMap,
                                bool StripScalars, bool StripAllocas,
                                bool CopyCallers, bool CopyOrigCalls) {
  assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");

  unsigned FN = Nodes.size();           // First new node...

  // Duplicate all of the nodes, populating the node map...
  Nodes.reserve(FN+G.Nodes.size());
  for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
    DSNode *Old = G.Nodes[i];
    DSNode *New = new DSNode(*Old);
    Nodes.push_back(New);
    OldNodeMap[Old] = New;
  }

  // Rewrite the links in the new nodes to point into the current graph now.
  for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
    Nodes[i]->remapLinks(OldNodeMap);

  // Remove local markers as specified
  unsigned char StripBits = (StripScalars ? DSNode::ScalarNode : 0) |
                            (StripAllocas ? DSNode::AllocaNode : 0);
  if (StripBits)
    for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
      Nodes[i]->NodeType &= ~StripBits;

  // Copy the value map...
  for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
         E = G.ValueMap.end(); I != E; ++I)
    OldValMap[I->first] = DSNodeHandle(OldNodeMap[I->second.getNode()],
                                       I->second.getOffset());
  // Copy the function calls list...
  CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap);

#if 0
  if (CopyOrigCalls) 
    CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap);

  // Copy the list of unresolved callers
  if (CopyCallers)
    PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end());
#endif

  // Return the returned node pointer...
  return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset());
}

#if 0
// cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively).
// 
DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
  if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;

  // If a clone has already been created for GNode, return it.
  DSNodeHandle& ValMapEntry = ValueMap[GNode->getGlobals()[0]];
  if (ValMapEntry != 0)
    return ValMapEntry;

  // Clone the node and update the ValMap.
  DSNode* NewNode = new DSNode(*GNode);
  ValMapEntry = NewNode;                // j=0 case of loop below!
  Nodes.push_back(NewNode);
  for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
    ValueMap[NewNode->getGlobals()[j]] = NewNode;

  // Rewrite the links in the new node to point into the current graph.
  for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
    NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));

  return NewNode;
}
#endif


// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed.  Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
  // Stop recursion if no node, or if node already marked...
  if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;

  // Actually mark the node
  N->NodeType |= DSNode::Incomplete;

  // Recusively process children...
  for (unsigned i = 0, e = N->getSize(); i != e; ++i)
    if (DSNodeHandle *DSNH = N->getLink(i))
      markIncompleteNode(DSNH->getNode());
}


// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet.  This marks
// nodes that are reachable through three sources of "unknownness":
//
//  Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(bool markFormalArgs) {
  // Mark any incoming arguments as incomplete...
  if (markFormalArgs && Func)
    for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
      if (isPointerType(I->getType()) && ValueMap.find(I) != ValueMap.end()) {
        DSNodeHandle &INH = ValueMap[I];
        if (INH.getNode() && INH.hasLink(0))
          markIncompleteNode(ValueMap[I].getLink(0)->getNode());
      }

  // Mark stuff passed into functions calls as being incomplete...
  for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
    vector<DSNodeHandle> &Args = FunctionCalls[i];
    // Then the return value is certainly incomplete!
    markIncompleteNode(Args[0].getNode());

    // The call does not make the function argument incomplete...
 
    // All arguments to the function call are incomplete though!
    for (unsigned i = 2, e = Args.size(); i != e; ++i)
      markIncompleteNode(Args[i].getNode());
  }

  // Mark all of the nodes pointed to by global or cast nodes as incomplete...
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    if (Nodes[i]->NodeType & DSNode::GlobalNode) {
      DSNode *N = Nodes[i];
      for (unsigned i = 0, e = N->getSize(); i != e; ++i)
        if (DSNodeHandle *DSNH = N->getLink(i))
          markIncompleteNode(DSNH->getNode());
    }
}

// removeRefsToGlobal - Helper function that removes globals from the
// ValueMap so that the referrer count will go down to zero.
static void removeRefsToGlobal(DSNode* N,
                               std::map<Value*, DSNodeHandle> &ValueMap) {
  while (!N->getGlobals().empty()) {
    GlobalValue *GV = N->getGlobals().back();
    N->getGlobals().pop_back();      
    ValueMap.erase(GV);
  }
}


// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
  // Is it a trivially dead shadow node...
  if (N->getReferrers().empty() && N->NodeType == 0)
    return true;

  // Is it a function node or some other trivially unused global?
  if (N->NodeType != 0 &&
      (N->NodeType & ~DSNode::GlobalNode) == 0 && 
      N->getSize() == 0 &&
      N->getReferrers().size() == N->getGlobals().size()) {

    // Remove the globals from the valuemap, so that the referrer count will go
    // down to zero.
    removeRefsToGlobal(N, ValueMap);
    assert(N->getReferrers().empty() && "Referrers should all be gone now!");
    return true;
  }

  return false;
}

static void removeIdenticalCalls(vector<vector<DSNodeHandle> > &Calls,
                                 const std::string &where) {
  // Remove trivially identical function calls
  unsigned NumFns = Calls.size();
  std::sort(Calls.begin(), Calls.end());
  Calls.erase(std::unique(Calls.begin(), Calls.end()),
              Calls.end());

  DEBUG(if (NumFns != Calls.size())
          std::cerr << "Merged " << (NumFns-Calls.size())
                    << " call nodes in " << where << "\n";);
}

// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph.  These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
  for (unsigned i = 0; i != Nodes.size(); ++i)
    if (! KeepAllGlobals || ! (Nodes[i]->NodeType & DSNode::GlobalNode))
      if (isNodeDead(Nodes[i])) {               // This node is dead!
        delete Nodes[i];                        // Free memory...
        Nodes.erase(Nodes.begin()+i--);         // Remove from node list...
      }

  removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
}


// markAlive - Simple graph walker that recursively traverses the graph, marking
// stuff to be alive.
//
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
  if (N == 0) return;

  Alive.insert(N);
  for (unsigned i = 0, e = N->getSize(); i != e; ++i)
    if (DSNodeHandle *DSNH = N->getLink(i))
      if (!Alive.count(DSNH->getNode()))
        markAlive(DSNH->getNode(), Alive);
}

static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
                             std::set<DSNode*> &Visiting) {
  if (N == 0) return false;

  if (Visiting.count(N)) return false; // terminate recursion on a cycle
  Visiting.insert(N);

  // If any immediate successor is alive, N is alive
  for (unsigned i = 0, e = N->getSize(); i != e; ++i)
    if (DSNodeHandle *DSNH = N->getLink(i))
      if (Alive.count(DSNH->getNode())) {
        Visiting.erase(N);
        return true;
      }

  // Else if any successor reaches a live node, N is alive
  for (unsigned i = 0, e = N->getSize(); i != e; ++i)
    if (DSNodeHandle *DSNH = N->getLink(i))
      if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) {
        Visiting.erase(N); return true;
      }

  Visiting.erase(N);
  return false;
}


// markGlobalsIteration - Recursive helper function for markGlobalsAlive().
// This would be unnecessary if function calls were real nodes!  In that case,
// the simple iterative loop in the first few lines below suffice.
// 
static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
                                 vector<vector<DSNodeHandle> > &Calls,
                                 std::set<DSNode*> &Alive,
                                 bool FilterCalls) {

  // Iterate, marking globals or cast nodes alive until no new live nodes
  // are added to Alive
  std::set<DSNode*> Visiting;           // Used to identify cycles 
  std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
  for (size_t liveCount = 0; liveCount < Alive.size(); ) {
    liveCount = Alive.size();
    for ( ; I != E; ++I)
      if (Alive.count(*I) == 0) {
        Visiting.clear();
        if (checkGlobalAlive(*I, Alive, Visiting))
          markAlive(*I, Alive);
      }
  }

  // Find function calls with some dead and some live nodes.
  // Since all call nodes must be live if any one is live, we have to mark
  // all nodes of the call as live and continue the iteration (via recursion).
  if (FilterCalls) {
    bool recurse = false;
    for (int i = 0, ei = Calls.size(); i < ei; ++i) {
      bool CallIsDead = true, CallHasDeadArg = false;
      for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) {
        bool argIsDead = Calls[i][j].getNode() == 0 ||
                         Alive.count(Calls[i][j].getNode()) == 0;
        CallHasDeadArg |= (Calls[i][j].getNode() != 0 && argIsDead);
        CallIsDead &= argIsDead;
      }
      if (!CallIsDead && CallHasDeadArg) {
        // Some node in this call is live and another is dead.
        // Mark all nodes of call as live and iterate once more.
        recurse = true;
        for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j)
          markAlive(Calls[i][j].getNode(), Alive);
      }
    }
    if (recurse)
      markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
  }
}


// markGlobalsAlive - Mark global nodes and cast nodes alive if they
// can reach any other live node.  Since this can produce new live nodes,
// we use a simple iterative algorithm.
// 
static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive,
                             bool FilterCalls) {
  // Add global and cast nodes to a set so we don't walk all nodes every time
  std::set<DSNode*> GlobalNodes;
  for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
    if (G.getNodes()[i]->NodeType & DSNode::GlobalNode)
      GlobalNodes.insert(G.getNodes()[i]);

  // Add all call nodes to the same set
  vector<vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
  if (FilterCalls) {
    for (unsigned i = 0, e = Calls.size(); i != e; ++i)
      for (unsigned j = 0, e = Calls[i].size(); j != e; ++j)
        if (Calls[i][j].getNode())
          GlobalNodes.insert(Calls[i][j].getNode());
  }

  // Iterate and recurse until no new live node are discovered.
  // This would be a simple iterative loop if function calls were real nodes!
  markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);

  // Free up references to dead globals from the ValueMap
  std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
  for( ; I != E; ++I)
    if (Alive.count(*I) == 0)
      removeRefsToGlobal(*I, G.getValueMap());

  // Delete dead function calls
  if (FilterCalls)
    for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
      bool CallIsDead = true;
      for (unsigned j = 0, ej = Calls[i].size(); CallIsDead && j != ej; ++j)
        CallIsDead = Alive.count(Calls[i][j].getNode()) == 0;
      if (CallIsDead)
        Calls.erase(Calls.begin() + i); // remove the call entirely
    }
}

// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable.  This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely.  This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
  assert((!KeepAllGlobals || KeepCalls) &&
         "KeepAllGlobals without KeepCalls is meaningless");

  // Reduce the amount of work we have to do...
  removeTriviallyDeadNodes(KeepAllGlobals);

  // FIXME: Merge nontrivially identical call nodes...

  // Alive - a set that holds all nodes found to be reachable/alive.
  std::set<DSNode*> Alive;

  // If KeepCalls, mark all nodes reachable by call nodes as alive...
  if (KeepCalls)
    for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
      for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j)
        markAlive(FunctionCalls[i][j].getNode(), Alive);

#if 0
  for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i)
    for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j)
      markAlive(OrigFunctionCalls[i][j].getNode(), Alive);
#endif

  // Mark all nodes reachable by scalar nodes (and global nodes, if
  // keeping them was specified) as alive...
  unsigned char keepBits = DSNode::ScalarNode |
                           (KeepAllGlobals ? DSNode::GlobalNode : 0);
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    if (Nodes[i]->NodeType & keepBits)
      markAlive(Nodes[i], Alive);

  // The return value is alive as well...
  markAlive(RetNode.getNode(), Alive);

  // Mark all globals or cast nodes that can reach a live node as alive.
  // This also marks all nodes reachable from such nodes as alive.
  // Of course, if KeepAllGlobals is specified, they would be live already.
  if (! KeepAllGlobals)
    markGlobalsAlive(*this, Alive, ! KeepCalls);

  // Loop over all unreachable nodes, dropping their references...
  vector<DSNode*> DeadNodes;
  DeadNodes.reserve(Nodes.size());     // Only one allocation is allowed.
  for (unsigned i = 0; i != Nodes.size(); ++i)
    if (!Alive.count(Nodes[i])) {
      DSNode *N = Nodes[i];
      Nodes.erase(Nodes.begin()+i--);  // Erase node from alive list.
      DeadNodes.push_back(N);          // Add node to our list of dead nodes
      N->dropAllReferences();          // Drop all outgoing edges
    }
  
  // Delete all dead nodes...
  std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
}



// maskNodeTypes - Apply a mask to all of the node types in the graph.  This
// is useful for clearing out markers like Scalar or Incomplete.
//
void DSGraph::maskNodeTypes(unsigned char Mask) {
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    Nodes[i]->NodeType &= Mask;
}


#if 0
//===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation
//===----------------------------------------------------------------------===//

GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) {
}

GlobalDSGraph::~GlobalDSGraph() {
  assert(Referrers.size() == 0 &&
         "Deleting global graph while references from other graphs exist");
}

void GlobalDSGraph::addReference(const DSGraph* referrer) {
  if (referrer != this)
    Referrers.insert(referrer);
}

void GlobalDSGraph::removeReference(const DSGraph* referrer) {
  if (referrer != this) {
    assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!");
    Referrers.erase(referrer);
    if (Referrers.size() == 0)
      delete this;
  }
}

// Bits used in the next function
static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::NewNode;

#if 0
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph,
// in order to track cycles.
// GlobalsAreFinal is a flag that says whether it is safe to assume that
// an existing global node is complete.  This is important to avoid
// reinserting all globals when inserting Calls to functions.
// This is a helper function for cloneGlobals and cloneCalls.
// 
DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
                                    std::map<const DSNode*, DSNode*> &NodeCache,
                                    bool GlobalsAreFinal) {
  if (OldNode == 0) return 0;

  // The caller should check this is an external node.  Just more  efficient...
  assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");

  // If a clone has already been created for OldNode, return it.
  DSNode*& CacheEntry = NodeCache[OldNode];
  if (CacheEntry != 0)
    return CacheEntry;

  // The result value...
  DSNode* NewNode = 0;

  // If nodes already exist for any of the globals of OldNode,
  // merge all such nodes together since they are merged in OldNode.
  // If ValueCacheIsFinal==true, look for an existing node that has
  // an identical list of globals and return it if it exists.
  //
  for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
    if (DSNode *PrevNode = ValueMap[OldNode->getGlobals()[j]].getNode()) {
      if (NewNode == 0) {
        NewNode = PrevNode;             // first existing node found
        if (GlobalsAreFinal && j == 0)
          if (OldNode->getGlobals() == PrevNode->getGlobals()) {
            CacheEntry = NewNode;
            return NewNode;
          }
      }
      else if (NewNode != PrevNode) {   // found another, different from prev
        // update ValMap *before* merging PrevNode into NewNode
        for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
          ValueMap[PrevNode->getGlobals()[k]] = NewNode;
        NewNode->mergeWith(PrevNode);
      }
    } else if (NewNode != 0) {
      ValueMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
    }

  // If no existing node was found, clone the node and update the ValMap.
  if (NewNode == 0) {
    NewNode = new DSNode(*OldNode);
    Nodes.push_back(NewNode);
    for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
      NewNode->setLink(j, 0);
    for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
      ValueMap[NewNode->getGlobals()[j]] = NewNode;
  }
  else
    NewNode->NodeType |= OldNode->NodeType; // Markers may be different!

  // Add the entry to NodeCache
  CacheEntry = NewNode;

  // Rewrite the links in the new node to point into the current graph,
  // but only for links to external nodes.  Set other links to NULL.
  for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
    DSNode* OldTarget = OldNode->getLink(j);
    if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
      DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
      if (NewNode->getLink(j))
        NewNode->getLink(j)->mergeWith(NewLink);
      else
        NewNode->setLink(j, NewLink);
    }
  }

  // Remove all local markers
  NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);

  return NewNode;
}


// GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally
// visible target links (and recursively their such links) into this graph.
// 
void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
  std::map<const DSNode*, DSNode*> NodeCache;
#if 0
  for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
    if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
      GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
  if (CloneCalls)
    GlobalsGraph->cloneCalls(Graph);

  GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
#endif
}


// GlobalDSGraph::cloneCalls - Clone function calls and their visible target
// links (and recursively their such links) into this graph.
// 
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
  std::map<const DSNode*, DSNode*> NodeCache;
  vector<vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;

  FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());

  for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
    FunctionCalls.push_back(vector<DSNodeHandle>());
    FunctionCalls.back().reserve(FromCalls[i].size());
    for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
      FunctionCalls.back().push_back
        ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
         ? cloneNodeInto(FromCalls[i][j], NodeCache, true)
         : 0);
  }

  // remove trivially identical function calls
  removeIdenticalCalls(FunctionCalls, "Globals Graph");
}
#endif

#endif