aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/DataStructure.cpp
blob: 8b8bde0026d869a4cc4b28d3995dbd48e6ab0ed2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Timer.h"
#include <iostream>
#include <algorithm>
using namespace llvm;

#define COLLAPSE_ARRAYS_AGGRESSIVELY 0

namespace {
  Statistic<> NumFolds          ("dsa", "Number of nodes completely folded");
  Statistic<> NumCallNodesMerged("dsa", "Number of call nodes merged");
  Statistic<> NumNodeAllocated  ("dsa", "Number of nodes allocated");
  Statistic<> NumDNE            ("dsa", "Number of nodes removed by reachability");
  Statistic<> NumTrivialDNE     ("dsa", "Number of nodes trivially removed");
  Statistic<> NumTrivialGlobalDNE("dsa", "Number of globals trivially removed");
  static cl::opt<unsigned>
  DSAFieldLimit("dsa-field-limit", cl::Hidden,
                cl::desc("Number of fields to track before collapsing a node"),
                cl::init(256));
}

#if 0
#define TIME_REGION(VARNAME, DESC) \
   NamedRegionTimer VARNAME(DESC)
#else
#define TIME_REGION(VARNAME, DESC)
#endif

using namespace DS;

/// isForwarding - Return true if this NodeHandle is forwarding to another
/// one.
bool DSNodeHandle::isForwarding() const {
  return N && N->isForwarding();
}

DSNode *DSNodeHandle::HandleForwarding() const {
  assert(N->isForwarding() && "Can only be invoked if forwarding!");
  DEBUG(
        { //assert not looping
          DSNode* NH = N;
          std::set<DSNode*> seen;
          while(NH && NH->isForwarding()) {
            assert(seen.find(NH) == seen.end() && "Loop detected");
            seen.insert(NH);
            NH = NH->ForwardNH.N;
          }
        }
        );
  // Handle node forwarding here!
  DSNode *Next = N->ForwardNH.getNode();  // Cause recursive shrinkage
  Offset += N->ForwardNH.getOffset();

  if (--N->NumReferrers == 0) {
    // Removing the last referrer to the node, sever the forwarding link
    N->stopForwarding();
  }

  N = Next;
  N->NumReferrers++;
  if (N->Size <= Offset) {
    assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
    Offset = 0;
  }
  return N;
}

//===----------------------------------------------------------------------===//
// DSScalarMap Implementation
//===----------------------------------------------------------------------===//

DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) {
  assert(ValueMap.count(GV) == 0 && "GV already exists!");

  // If the node doesn't exist, check to see if it's a global that is
  // equated to another global in the program.
  EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV);
  if (ECI != GlobalECs.end()) {
    GlobalValue *Leader = *GlobalECs.findLeader(ECI);
    if (Leader != GV) {
      GV = Leader;
      iterator I = ValueMap.find(GV);
      if (I != ValueMap.end())
        return I->second;
    }
  }

  // Okay, this is either not an equivalenced global or it is the leader, it
  // will be inserted into the scalar map now.
  GlobalSet.insert(GV);

  return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second;
}


//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//

DSNode::DSNode(const Type *T, DSGraph *G)
  : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
  // Add the type entry if it is specified...
  if (T) mergeTypeInfo(T, 0);
  if (G) G->addNode(this);
  ++NumNodeAllocated;
}

// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks)
  : NumReferrers(0), Size(N.Size), ParentGraph(G),
    Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) {
  if (!NullLinks) {
    Links = N.Links;
  } else
    Links.resize(N.Links.size()); // Create the appropriate number of null links
  G->addNode(this);
  ++NumNodeAllocated;
}

/// getTargetData - Get the target data object used to construct this node.
///
const TargetData &DSNode::getTargetData() const {
  return ParentGraph->getTargetData();
}

void DSNode::assertOK() const {
  assert((Ty != Type::VoidTy ||
          Ty == Type::VoidTy && (Size == 0 ||
                                 (NodeType & DSNode::Array))) &&
         "Node not OK!");

  assert(ParentGraph && "Node has no parent?");
  const DSScalarMap &SM = ParentGraph->getScalarMap();
  for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
    assert(SM.global_count(Globals[i]));
    assert(SM.find(Globals[i])->second.getNode() == this);
  }
}

/// forwardNode - Mark this node as being obsolete, and all references to it
/// should be forwarded to the specified node and offset.
///
void DSNode::forwardNode(DSNode *To, unsigned Offset) {
  assert(this != To && "Cannot forward a node to itself!");
  assert(ForwardNH.isNull() && "Already forwarding from this node!");
  if (To->Size <= 1) Offset = 0;
  assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
         "Forwarded offset is wrong!");
  ForwardNH.setTo(To, Offset);
  NodeType = DEAD;
  Size = 0;
  Ty = Type::VoidTy;

  // Remove this node from the parent graph's Nodes list.
  ParentGraph->unlinkNode(this);
  ParentGraph = 0;
}

// addGlobal - Add an entry for a global value to the Globals list.  This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
  // First, check to make sure this is the leader if the global is in an
  // equivalence class.
  GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV);

  // Keep the list sorted.
  std::vector<GlobalValue*>::iterator I =
    std::lower_bound(Globals.begin(), Globals.end(), GV);

  if (I == Globals.end() || *I != GV) {
    Globals.insert(I, GV);
    NodeType |= GlobalNode;
  }
}

// removeGlobal - Remove the specified global that is explicitly in the globals
// list.
void DSNode::removeGlobal(GlobalValue *GV) {
  std::vector<GlobalValue*>::iterator I =
    std::lower_bound(Globals.begin(), Globals.end(), GV);
  assert(I != Globals.end() && *I == GV && "Global not in node!");
  Globals.erase(I);
}

/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node.  This node is represented as a
/// single byte with a single TypeEntry of "void".
///
void DSNode::foldNodeCompletely() {
  if (isNodeCompletelyFolded()) return;  // If this node is already folded...

  ++NumFolds;

  // If this node has a size that is <= 1, we don't need to create a forwarding
  // node.
  if (getSize() <= 1) {
    NodeType |= DSNode::Array;
    Ty = Type::VoidTy;
    Size = 1;
    assert(Links.size() <= 1 && "Size is 1, but has more links?");
    Links.resize(1);
  } else {
    // Create the node we are going to forward to.  This is required because
    // some referrers may have an offset that is > 0.  By forcing them to
    // forward, the forwarder has the opportunity to correct the offset.
    DSNode *DestNode = new DSNode(0, ParentGraph);
    DestNode->NodeType = NodeType|DSNode::Array;
    DestNode->Ty = Type::VoidTy;
    DestNode->Size = 1;
    DestNode->Globals.swap(Globals);

    // Start forwarding to the destination node...
    forwardNode(DestNode, 0);

    if (!Links.empty()) {
      DestNode->Links.reserve(1);

      DSNodeHandle NH(DestNode);
      DestNode->Links.push_back(Links[0]);

      // If we have links, merge all of our outgoing links together...
      for (unsigned i = Links.size()-1; i != 0; --i)
        NH.getNode()->Links[0].mergeWith(Links[i]);
      Links.clear();
    } else {
      DestNode->Links.resize(1);
    }
  }
}

/// isNodeCompletelyFolded - Return true if this node has been completely
/// folded down to something that can never be expanded, effectively losing
/// all of the field sensitivity that may be present in the node.
///
bool DSNode::isNodeCompletelyFolded() const {
  return getSize() == 1 && Ty == Type::VoidTy && isArray();
}

/// addFullGlobalsList - Compute the full set of global values that are
/// represented by this node.  Unlike getGlobalsList(), this requires fair
/// amount of work to compute, so don't treat this method call as free.
void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const {
  if (globals_begin() == globals_end()) return;

  EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();

  for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
    EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
    if (ECI == EC.end())
      List.push_back(*I);
    else
      List.insert(List.end(), EC.member_begin(ECI), EC.member_end());
  }
}

/// addFullFunctionList - Identical to addFullGlobalsList, but only return the
/// functions in the full list.
void DSNode::addFullFunctionList(std::vector<Function*> &List) const {
  if (globals_begin() == globals_end()) return;

  EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();

  for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
    EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
    if (ECI == EC.end()) {
      if (Function *F = dyn_cast<Function>(*I))
        List.push_back(F);
    } else {
      for (EquivalenceClasses<GlobalValue*>::member_iterator MI =
             EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI)
        if (Function *F = dyn_cast<Function>(*MI))
          List.push_back(F);
    }
  }
}

namespace {
  /// TypeElementWalker Class - Used for implementation of physical subtyping...
  ///
  class TypeElementWalker {
    struct StackState {
      const Type *Ty;
      unsigned Offset;
      unsigned Idx;
      StackState(const Type *T, unsigned Off = 0)
        : Ty(T), Offset(Off), Idx(0) {}
    };

    std::vector<StackState> Stack;
    const TargetData &TD;
  public:
    TypeElementWalker(const Type *T, const TargetData &td) : TD(td) {
      Stack.push_back(T);
      StepToLeaf();
    }

    bool isDone() const { return Stack.empty(); }
    const Type *getCurrentType()   const { return Stack.back().Ty;     }
    unsigned    getCurrentOffset() const { return Stack.back().Offset; }

    void StepToNextType() {
      PopStackAndAdvance();
      StepToLeaf();
    }

  private:
    /// PopStackAndAdvance - Pop the current element off of the stack and
    /// advance the underlying element to the next contained member.
    void PopStackAndAdvance() {
      assert(!Stack.empty() && "Cannot pop an empty stack!");
      Stack.pop_back();
      while (!Stack.empty()) {
        StackState &SS = Stack.back();
        if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
          ++SS.Idx;
          if (SS.Idx != ST->getNumElements()) {
            const StructLayout *SL = TD.getStructLayout(ST);
            SS.Offset +=
               unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]);
            return;
          }
          Stack.pop_back();  // At the end of the structure
        } else {
          const ArrayType *AT = cast<ArrayType>(SS.Ty);
          ++SS.Idx;
          if (SS.Idx != AT->getNumElements()) {
            SS.Offset += unsigned(TD.getTypeSize(AT->getElementType()));
            return;
          }
          Stack.pop_back();  // At the end of the array
        }
      }
    }

    /// StepToLeaf - Used by physical subtyping to move to the first leaf node
    /// on the type stack.
    void StepToLeaf() {
      if (Stack.empty()) return;
      while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
        StackState &SS = Stack.back();
        if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
          if (ST->getNumElements() == 0) {
            assert(SS.Idx == 0);
            PopStackAndAdvance();
          } else {
            // Step into the structure...
            assert(SS.Idx < ST->getNumElements());
            const StructLayout *SL = TD.getStructLayout(ST);
            Stack.push_back(StackState(ST->getElementType(SS.Idx),
                            SS.Offset+unsigned(SL->MemberOffsets[SS.Idx])));
          }
        } else {
          const ArrayType *AT = cast<ArrayType>(SS.Ty);
          if (AT->getNumElements() == 0) {
            assert(SS.Idx == 0);
            PopStackAndAdvance();
          } else {
            // Step into the array...
            assert(SS.Idx < AT->getNumElements());
            Stack.push_back(StackState(AT->getElementType(),
                                       SS.Offset+SS.Idx*
                             unsigned(TD.getTypeSize(AT->getElementType()))));
          }
        }
      }
    }
  };
} // end anonymous namespace

/// ElementTypesAreCompatible - Check to see if the specified types are
/// "physically" compatible.  If so, return true, else return false.  We only
/// have to check the fields in T1: T2 may be larger than T1.  If AllowLargerT1
/// is true, then we also allow a larger T1.
///
static bool ElementTypesAreCompatible(const Type *T1, const Type *T2,
                                      bool AllowLargerT1, const TargetData &TD){
  TypeElementWalker T1W(T1, TD), T2W(T2, TD);

  while (!T1W.isDone() && !T2W.isDone()) {
    if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
      return false;

    const Type *T1 = T1W.getCurrentType();
    const Type *T2 = T2W.getCurrentType();
    if (T1 != T2 && !T1->canLosslesslyBitCastTo(T2))
      return false;

    T1W.StepToNextType();
    T2W.StepToNextType();
  }

  return AllowLargerT1 || T1W.isDone();
}


/// mergeTypeInfo - This method merges the specified type into the current node
/// at the specified offset.  This may update the current node's type record if
/// this gives more information to the node, it may do nothing to the node if
/// this information is already known, or it may merge the node completely (and
/// return true) if the information is incompatible with what is already known.
///
/// This method returns true if the node is completely folded, otherwise false.
///
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
                           bool FoldIfIncompatible) {
  DOUT << "merging " << *NewTy << " at " << Offset << " with " << *Ty << "\n";
  const TargetData &TD = getTargetData();
  // Check to make sure the Size member is up-to-date.  Size can be one of the
  // following:
  //  Size = 0, Ty = Void: Nothing is known about this node.
  //  Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
  //  Size = 1, Ty = Void, Array = 1: The node is collapsed
  //  Otherwise, sizeof(Ty) = Size
  //
  assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
          (Size == 0 && !Ty->isSized() && !isArray()) ||
          (Size == 1 && Ty == Type::VoidTy && isArray()) ||
          (Size == 0 && !Ty->isSized() && !isArray()) ||
          (TD.getTypeSize(Ty) == Size)) &&
         "Size member of DSNode doesn't match the type structure!");
  assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");

  if (Offset == 0 && NewTy == Ty)
    return false;  // This should be a common case, handle it efficiently

  // Return true immediately if the node is completely folded.
  if (isNodeCompletelyFolded()) return true;

  // If this is an array type, eliminate the outside arrays because they won't
  // be used anyway.  This greatly reduces the size of large static arrays used
  // as global variables, for example.
  //
  bool WillBeArray = false;
  while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
    // FIXME: we might want to keep small arrays, but must be careful about
    // things like: [2 x [10000 x int*]]
    NewTy = AT->getElementType();
    WillBeArray = true;
  }

  // Figure out how big the new type we're merging in is...
  unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0;

  // Otherwise check to see if we can fold this type into the current node.  If
  // we can't, we fold the node completely, if we can, we potentially update our
  // internal state.
  //
  if (Ty == Type::VoidTy) {
    // If this is the first type that this node has seen, just accept it without
    // question....
    assert(Offset == 0 && !isArray() &&
           "Cannot have an offset into a void node!");

    // If this node would have to have an unreasonable number of fields, just
    // collapse it.  This can occur for fortran common blocks, which have stupid
    // things like { [100000000 x double], [1000000 x double] }.
    unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift;
    if (NumFields > DSAFieldLimit) {
      foldNodeCompletely();
      return true;
    }

    Ty = NewTy;
    NodeType &= ~Array;
    if (WillBeArray) NodeType |= Array;
    Size = NewTySize;

    // Calculate the number of outgoing links from this node.
    Links.resize(NumFields);
    return false;
  }

  // Handle node expansion case here...
  if (Offset+NewTySize > Size) {
    // It is illegal to grow this node if we have treated it as an array of
    // objects...
    if (isArray()) {
      if (FoldIfIncompatible) foldNodeCompletely();
      return true;
    }

    // If this node would have to have an unreasonable number of fields, just
    // collapse it.  This can occur for fortran common blocks, which have stupid
    // things like { [100000000 x double], [1000000 x double] }.
    unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift;
    if (NumFields > DSAFieldLimit) {
      foldNodeCompletely();
      return true;
    }

    if (Offset) {
      //handle some common cases:
      // Ty:    struct { t1, t2, t3, t4, ..., tn}
      // NewTy: struct { offset, stuff...}
      // try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly
      // on a field in Ty
      if (isa<StructType>(NewTy) && isa<StructType>(Ty)) {
        DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n";
        const StructType *STy = cast<StructType>(Ty);
        const StructLayout &SL = *TD.getStructLayout(STy);
        unsigned i = SL.getElementContainingOffset(Offset);
        //Either we hit it exactly or give up
        if (SL.MemberOffsets[i] != Offset) {
          if (FoldIfIncompatible) foldNodeCompletely();
          return true;
        }
        std::vector<const Type*> nt;
        for (unsigned x = 0; x < i; ++x)
          nt.push_back(STy->getElementType(x));
        STy = cast<StructType>(NewTy);
        nt.insert(nt.end(), STy->element_begin(), STy->element_end());
        //and merge
        STy = StructType::get(nt);
        DOUT << "Trying with: " << *STy << "\n";
        return mergeTypeInfo(STy, 0);
      }

      //Ty: struct { t1, t2, t3 ... tn}
      //NewTy T offset x
      //try merge with NewTy: struct : {t1, t2, T} if offset lands on a field
      //in Ty
      if (isa<StructType>(Ty)) {
        DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n";
        const StructType *STy = cast<StructType>(Ty);
        const StructLayout &SL = *TD.getStructLayout(STy);
        unsigned i = SL.getElementContainingOffset(Offset);
        //Either we hit it exactly or give up
        if (SL.MemberOffsets[i] != Offset) {
          if (FoldIfIncompatible) foldNodeCompletely();
          return true;
        }
        std::vector<const Type*> nt;
        for (unsigned x = 0; x < i; ++x)
          nt.push_back(STy->getElementType(x));
        nt.push_back(NewTy);
        //and merge
        STy = StructType::get(nt);
        DOUT << "Trying with: " << *STy << "\n";
        return mergeTypeInfo(STy, 0);
      }

      assert(0 &&
             "UNIMP: Trying to merge a growth type into "
             "offset != 0: Collapsing!");
      abort();
      if (FoldIfIncompatible) foldNodeCompletely();
      return true;

    }


    // Okay, the situation is nice and simple, we are trying to merge a type in
    // at offset 0 that is bigger than our current type.  Implement this by
    // switching to the new type and then merge in the smaller one, which should
    // hit the other code path here.  If the other code path decides it's not
    // ok, it will collapse the node as appropriate.
    //

    const Type *OldTy = Ty;
    Ty = NewTy;
    NodeType &= ~Array;
    if (WillBeArray) NodeType |= Array;
    Size = NewTySize;

    // Must grow links to be the appropriate size...
    Links.resize(NumFields);

    // Merge in the old type now... which is guaranteed to be smaller than the
    // "current" type.
    return mergeTypeInfo(OldTy, 0);
  }

  assert(Offset <= Size &&
         "Cannot merge something into a part of our type that doesn't exist!");

  // Find the section of Ty that NewTy overlaps with... first we find the
  // type that starts at offset Offset.
  //
  unsigned O = 0;
  const Type *SubType = Ty;
  while (O < Offset) {
    assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");

    switch (SubType->getTypeID()) {
    case Type::StructTyID: {
      const StructType *STy = cast<StructType>(SubType);
      const StructLayout &SL = *TD.getStructLayout(STy);
      unsigned i = SL.getElementContainingOffset(Offset-O);

      // The offset we are looking for must be in the i'th element...
      SubType = STy->getElementType(i);
      O += (unsigned)SL.MemberOffsets[i];
      break;
    }
    case Type::ArrayTyID: {
      SubType = cast<ArrayType>(SubType)->getElementType();
      unsigned ElSize = (unsigned)TD.getTypeSize(SubType);
      unsigned Remainder = (Offset-O) % ElSize;
      O = Offset-Remainder;
      break;
    }
    default:
      if (FoldIfIncompatible) foldNodeCompletely();
      return true;
    }
  }

  assert(O == Offset && "Could not achieve the correct offset!");

  // If we found our type exactly, early exit
  if (SubType == NewTy) return false;

  // Differing function types don't require us to merge.  They are not values
  // anyway.
  if (isa<FunctionType>(SubType) &&
      isa<FunctionType>(NewTy)) return false;

  unsigned SubTypeSize = SubType->isSized() ?
       (unsigned)TD.getTypeSize(SubType) : 0;

  // Ok, we are getting desperate now.  Check for physical subtyping, where we
  // just require each element in the node to be compatible.
  if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
      SubTypeSize && SubTypeSize < 256 &&
      ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD))
    return false;

  // Okay, so we found the leader type at the offset requested.  Search the list
  // of types that starts at this offset.  If SubType is currently an array or
  // structure, the type desired may actually be the first element of the
  // composite type...
  //
  unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
  while (SubType != NewTy) {
    const Type *NextSubType = 0;
    unsigned NextSubTypeSize = 0;
    unsigned NextPadSize = 0;
    switch (SubType->getTypeID()) {
    case Type::StructTyID: {
      const StructType *STy = cast<StructType>(SubType);
      const StructLayout &SL = *TD.getStructLayout(STy);
      if (SL.MemberOffsets.size() > 1)
        NextPadSize = (unsigned)SL.MemberOffsets[1];
      else
        NextPadSize = SubTypeSize;
      NextSubType = STy->getElementType(0);
      NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
      break;
    }
    case Type::ArrayTyID:
      NextSubType = cast<ArrayType>(SubType)->getElementType();
      NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
      NextPadSize = NextSubTypeSize;
      break;
    default: ;
      // fall out
    }

    if (NextSubType == 0)
      break;   // In the default case, break out of the loop

    if (NextPadSize < NewTySize)
      break;   // Don't allow shrinking to a smaller type than NewTySize
    SubType = NextSubType;
    SubTypeSize = NextSubTypeSize;
    PadSize = NextPadSize;
  }

  // If we found the type exactly, return it...
  if (SubType == NewTy)
    return false;

  // Check to see if we have a compatible, but different type...
  if (NewTySize == SubTypeSize) {
    // Check to see if this type is obviously convertible... int -> uint f.e.
    if (NewTy->canLosslesslyBitCastTo(SubType))
      return false;

    // Check to see if we have a pointer & integer mismatch going on here,
    // loading a pointer as a long, for example.
    //
    if (SubType->isInteger() && isa<PointerType>(NewTy) ||
        NewTy->isInteger() && isa<PointerType>(SubType))
      return false;
  } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
    // We are accessing the field, plus some structure padding.  Ignore the
    // structure padding.
    return false;
  }

  Module *M = 0;
  if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end())
    M = getParentGraph()->retnodes_begin()->first->getParent();

  DOUT << "MergeTypeInfo Folding OrigTy: ";
  DEBUG(WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:";
        WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n"
                                               << "SubType: ";
        WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n");

  if (FoldIfIncompatible) foldNodeCompletely();
  return true;
}



/// addEdgeTo - Add an edge from the current node to the specified node.  This
/// can cause merging of nodes in the graph.
///
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
  if (NH.isNull()) return;       // Nothing to do

  if (isNodeCompletelyFolded())
    Offset = 0;

  DSNodeHandle &ExistingEdge = getLink(Offset);
  if (!ExistingEdge.isNull()) {
    // Merge the two nodes...
    ExistingEdge.mergeWith(NH);
  } else {                             // No merging to perform...
    setLink(Offset, NH);               // Just force a link in there...
  }
}


/// MergeSortedVectors - Efficiently merge a vector into another vector where
/// duplicates are not allowed and both are sorted.  This assumes that 'T's are
/// efficiently copyable and have sane comparison semantics.
///
static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
                               const std::vector<GlobalValue*> &Src) {
  // By far, the most common cases will be the simple ones.  In these cases,
  // avoid having to allocate a temporary vector...
  //
  if (Src.empty()) {             // Nothing to merge in...
    return;
  } else if (Dest.empty()) {     // Just copy the result in...
    Dest = Src;
  } else if (Src.size() == 1) {  // Insert a single element...
    const GlobalValue *V = Src[0];
    std::vector<GlobalValue*>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(), V);
    if (I == Dest.end() || *I != Src[0])  // If not already contained...
      Dest.insert(I, Src[0]);
  } else if (Dest.size() == 1) {
    GlobalValue *Tmp = Dest[0];           // Save value in temporary...
    Dest = Src;                           // Copy over list...
    std::vector<GlobalValue*>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(), Tmp);
    if (I == Dest.end() || *I != Tmp)     // If not already contained...
      Dest.insert(I, Tmp);

  } else {
    // Make a copy to the side of Dest...
    std::vector<GlobalValue*> Old(Dest);

    // Make space for all of the type entries now...
    Dest.resize(Dest.size()+Src.size());

    // Merge the two sorted ranges together... into Dest.
    std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());

    // Now erase any duplicate entries that may have accumulated into the
    // vectors (because they were in both of the input sets)
    Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
  }
}

void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) {
  MergeSortedVectors(Globals, RHS);
}

// MergeNodes - Helper function for DSNode::mergeWith().
// This function does the hard work of merging two nodes, CurNodeH
// and NH after filtering out trivial cases and making sure that
// CurNodeH.offset >= NH.offset.
//
// ***WARNING***
// Since merging may cause either node to go away, we must always
// use the node-handles to refer to the nodes.  These node handles are
// automatically updated during merging, so will always provide access
// to the correct node after a merge.
//
void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
  assert(CurNodeH.getOffset() >= NH.getOffset() &&
         "This should have been enforced in the caller.");
  assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() &&
         "Cannot merge two nodes that are not in the same graph!");

  // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
  // respect to NH.Offset) is now zero.  NOffset is the distance from the base
  // of our object that N starts from.
  //
  unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
  unsigned NSize = NH.getNode()->getSize();

  // If the two nodes are of different size, and the smaller node has the array
  // bit set, collapse!
  if (NSize != CurNodeH.getNode()->getSize()) {
#if COLLAPSE_ARRAYS_AGGRESSIVELY
    if (NSize < CurNodeH.getNode()->getSize()) {
      if (NH.getNode()->isArray())
        NH.getNode()->foldNodeCompletely();
    } else if (CurNodeH.getNode()->isArray()) {
      NH.getNode()->foldNodeCompletely();
    }
#endif
  }

  // Merge the type entries of the two nodes together...
  if (NH.getNode()->Ty != Type::VoidTy)
    CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
  assert(!CurNodeH.getNode()->isDeadNode());

  // If we are merging a node with a completely folded node, then both nodes are
  // now completely folded.
  //
  if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
    if (!NH.getNode()->isNodeCompletelyFolded()) {
      NH.getNode()->foldNodeCompletely();
      assert(NH.getNode() && NH.getOffset() == 0 &&
             "folding did not make offset 0?");
      NOffset = NH.getOffset();
      NSize = NH.getNode()->getSize();
      assert(NOffset == 0 && NSize == 1);
    }
  } else if (NH.getNode()->isNodeCompletelyFolded()) {
    CurNodeH.getNode()->foldNodeCompletely();
    assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
           "folding did not make offset 0?");
    NSize = NH.getNode()->getSize();
    NOffset = NH.getOffset();
    assert(NOffset == 0 && NSize == 1);
  }

  DSNode *N = NH.getNode();
  if (CurNodeH.getNode() == N || N == 0) return;
  assert(!CurNodeH.getNode()->isDeadNode());

  // Merge the NodeType information.
  CurNodeH.getNode()->NodeType |= N->NodeType;

  // Start forwarding to the new node!
  N->forwardNode(CurNodeH.getNode(), NOffset);
  assert(!CurNodeH.getNode()->isDeadNode());

  // Make all of the outgoing links of N now be outgoing links of CurNodeH.
  //
  for (unsigned i = 0; i < N->getNumLinks(); ++i) {
    DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
    if (Link.getNode()) {
      // Compute the offset into the current node at which to
      // merge this link.  In the common case, this is a linear
      // relation to the offset in the original node (with
      // wrapping), but if the current node gets collapsed due to
      // recursive merging, we must make sure to merge in all remaining
      // links at offset zero.
      unsigned MergeOffset = 0;
      DSNode *CN = CurNodeH.getNode();
      if (CN->Size != 1)
        MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
      CN->addEdgeTo(MergeOffset, Link);
    }
  }

  // Now that there are no outgoing edges, all of the Links are dead.
  N->Links.clear();

  // Merge the globals list...
  if (!N->Globals.empty()) {
    CurNodeH.getNode()->mergeGlobals(N->Globals);

    // Delete the globals from the old node...
    std::vector<GlobalValue*>().swap(N->Globals);
  }
}


/// mergeWith - Merge this node and the specified node, moving all links to and
/// from the argument node into the current node, deleting the node argument.
/// Offset indicates what offset the specified node is to be merged into the
/// current node.
///
/// The specified node may be a null pointer (in which case, we update it to
/// point to this node).
///
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
  DSNode *N = NH.getNode();
  if (N == this && NH.getOffset() == Offset)
    return;  // Noop

  // If the RHS is a null node, make it point to this node!
  if (N == 0) {
    NH.mergeWith(DSNodeHandle(this, Offset));
    return;
  }

  assert(!N->isDeadNode() && !isDeadNode());
  assert(!hasNoReferrers() && "Should not try to fold a useless node!");

  if (N == this) {
    // We cannot merge two pieces of the same node together, collapse the node
    // completely.
    DOUT << "Attempting to merge two chunks of the same node together!\n";
    foldNodeCompletely();
    return;
  }

  // If both nodes are not at offset 0, make sure that we are merging the node
  // at an later offset into the node with the zero offset.
  //
  if (Offset < NH.getOffset()) {
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
    // If the offsets are the same, merge the smaller node into the bigger node
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  }

  // Ok, now we can merge the two nodes.  Use a static helper that works with
  // two node handles, since "this" may get merged away at intermediate steps.
  DSNodeHandle CurNodeH(this, Offset);
  DSNodeHandle NHCopy(NH);
  if (CurNodeH.getOffset() >= NHCopy.getOffset())
    DSNode::MergeNodes(CurNodeH, NHCopy);
  else
    DSNode::MergeNodes(NHCopy, CurNodeH);
}


//===----------------------------------------------------------------------===//
// ReachabilityCloner Implementation
//===----------------------------------------------------------------------===//

DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) {
  if (SrcNH.isNull()) return DSNodeHandle();
  const DSNode *SN = SrcNH.getNode();

  DSNodeHandle &NH = NodeMap[SN];
  if (!NH.isNull()) {   // Node already mapped?
    DSNode *NHN = NH.getNode();
    return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
  }

  // If SrcNH has globals and the destination graph has one of the same globals,
  // merge this node with the destination node, which is much more efficient.
  if (SN->globals_begin() != SN->globals_end()) {
    DSScalarMap &DestSM = Dest.getScalarMap();
    for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end();
         I != E; ++I) {
      GlobalValue *GV = *I;
      DSScalarMap::iterator GI = DestSM.find(GV);
      if (GI != DestSM.end() && !GI->second.isNull()) {
        // We found one, use merge instead!
        merge(GI->second, Src.getNodeForValue(GV));
        assert(!NH.isNull() && "Didn't merge node!");
        DSNode *NHN = NH.getNode();
        return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
      }
    }
  }

  DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */);
  DN->maskNodeTypes(BitsToKeep);
  NH = DN;

  // Next, recursively clone all outgoing links as necessary.  Note that
  // adding these links can cause the node to collapse itself at any time, and
  // the current node may be merged with arbitrary other nodes.  For this
  // reason, we must always go through NH.
  DN = 0;
  for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
    const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
    if (!SrcEdge.isNull()) {
      const DSNodeHandle &DestEdge = getClonedNH(SrcEdge);
      // Compute the offset into the current node at which to
      // merge this link.  In the common case, this is a linear
      // relation to the offset in the original node (with
      // wrapping), but if the current node gets collapsed due to
      // recursive merging, we must make sure to merge in all remaining
      // links at offset zero.
      unsigned MergeOffset = 0;
      DSNode *CN = NH.getNode();
      if (CN->getSize() != 1)
        MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize();
      CN->addEdgeTo(MergeOffset, DestEdge);
    }
  }

  // If this node contains any globals, make sure they end up in the scalar
  // map with the correct offset.
  for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end();
       I != E; ++I) {
    GlobalValue *GV = *I;
    const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
    DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
    assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent");
    Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
                                       DestGNH.getOffset()+SrcGNH.getOffset()));
  }
  NH.getNode()->mergeGlobals(SN->getGlobalsList());

  return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset());
}

void ReachabilityCloner::merge(const DSNodeHandle &NH,
                               const DSNodeHandle &SrcNH) {
  if (SrcNH.isNull()) return;  // Noop
  if (NH.isNull()) {
    // If there is no destination node, just clone the source and assign the
    // destination node to be it.
    NH.mergeWith(getClonedNH(SrcNH));
    return;
  }

  // Okay, at this point, we know that we have both a destination and a source
  // node that need to be merged.  Check to see if the source node has already
  // been cloned.
  const DSNode *SN = SrcNH.getNode();
  DSNodeHandle &SCNH = NodeMap[SN];  // SourceClonedNodeHandle
  if (!SCNH.isNull()) {   // Node already cloned?
    DSNode *SCNHN = SCNH.getNode();
    NH.mergeWith(DSNodeHandle(SCNHN,
                              SCNH.getOffset()+SrcNH.getOffset()));
    return;  // Nothing to do!
  }

  // Okay, so the source node has not already been cloned.  Instead of creating
  // a new DSNode, only to merge it into the one we already have, try to perform
  // the merge in-place.  The only case we cannot handle here is when the offset
  // into the existing node is less than the offset into the virtual node we are
  // merging in.  In this case, we have to extend the existing node, which
  // requires an allocation anyway.
  DSNode *DN = NH.getNode();   // Make sure the Offset is up-to-date
  if (NH.getOffset() >= SrcNH.getOffset()) {
    if (!DN->isNodeCompletelyFolded()) {
      // Make sure the destination node is folded if the source node is folded.
      if (SN->isNodeCompletelyFolded()) {
        DN->foldNodeCompletely();
        DN = NH.getNode();
      } else if (SN->getSize() != DN->getSize()) {
        // If the two nodes are of different size, and the smaller node has the
        // array bit set, collapse!
#if COLLAPSE_ARRAYS_AGGRESSIVELY
        if (SN->getSize() < DN->getSize()) {
          if (SN->isArray()) {
            DN->foldNodeCompletely();
            DN = NH.getNode();
          }
        } else if (DN->isArray()) {
          DN->foldNodeCompletely();
          DN = NH.getNode();
        }
#endif
      }

      // Merge the type entries of the two nodes together...
      if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) {
        DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset());
        DN = NH.getNode();
      }
    }

    assert(!DN->isDeadNode());

    // Merge the NodeType information.
    DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep);

    // Before we start merging outgoing links and updating the scalar map, make
    // sure it is known that this is the representative node for the src node.
    SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset());

    // If the source node contains any globals, make sure they end up in the
    // scalar map with the correct offset.
    if (SN->globals_begin() != SN->globals_end()) {
      // Update the globals in the destination node itself.
      DN->mergeGlobals(SN->getGlobalsList());

      // Update the scalar map for the graph we are merging the source node
      // into.
      for (DSNode::globals_iterator I = SN->globals_begin(),
             E = SN->globals_end(); I != E; ++I) {
        GlobalValue *GV = *I;
        const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
        DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
        assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
        Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
                                      DestGNH.getOffset()+SrcGNH.getOffset()));
      }
      NH.getNode()->mergeGlobals(SN->getGlobalsList());
    }
  } else {
    // We cannot handle this case without allocating a temporary node.  Fall
    // back on being simple.
    DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */);
    NewDN->maskNodeTypes(BitsToKeep);

    unsigned NHOffset = NH.getOffset();
    NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset()));

    assert(NH.getNode() &&
           (NH.getOffset() > NHOffset ||
            (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) &&
           "Merging did not adjust the offset!");

    // Before we start merging outgoing links and updating the scalar map, make
    // sure it is known that this is the representative node for the src node.
    SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset());

    // If the source node contained any globals, make sure to create entries
    // in the scalar map for them!
    for (DSNode::globals_iterator I = SN->globals_begin(),
           E = SN->globals_end(); I != E; ++I) {
      GlobalValue *GV = *I;
      const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
      DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
      assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
      assert(SrcGNH.getNode() == SN && "Global mapping inconsistent");
      Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
                                    DestGNH.getOffset()+SrcGNH.getOffset()));
    }
  }


  // Next, recursively merge all outgoing links as necessary.  Note that
  // adding these links can cause the destination node to collapse itself at
  // any time, and the current node may be merged with arbitrary other nodes.
  // For this reason, we must always go through NH.
  DN = 0;
  for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
    const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
    if (!SrcEdge.isNull()) {
      // Compute the offset into the current node at which to
      // merge this link.  In the common case, this is a linear
      // relation to the offset in the original node (with
      // wrapping), but if the current node gets collapsed due to
      // recursive merging, we must make sure to merge in all remaining
      // links at offset zero.
      DSNode *CN = SCNH.getNode();
      unsigned MergeOffset =
        ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize();

      DSNodeHandle Tmp = CN->getLink(MergeOffset);
      if (!Tmp.isNull()) {
        // Perform the recursive merging.  Make sure to create a temporary NH,
        // because the Link can disappear in the process of recursive merging.
        merge(Tmp, SrcEdge);
      } else {
        Tmp.mergeWith(getClonedNH(SrcEdge));
        // Merging this could cause all kinds of recursive things to happen,
        // culminating in the current node being eliminated.  Since this is
        // possible, make sure to reaquire the link from 'CN'.

        unsigned MergeOffset = 0;
        CN = SCNH.getNode();
        MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize();
        CN->getLink(MergeOffset).mergeWith(Tmp);
      }
    }
  }
}

/// mergeCallSite - Merge the nodes reachable from the specified src call
/// site into the nodes reachable from DestCS.
void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS,
                                       const DSCallSite &SrcCS) {
  merge(DestCS.getRetVal(), SrcCS.getRetVal());
  unsigned MinArgs = DestCS.getNumPtrArgs();
  if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs();

  for (unsigned a = 0; a != MinArgs; ++a)
    merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a));

  for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a)
    DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a)));
}


//===----------------------------------------------------------------------===//
// DSCallSite Implementation
//===----------------------------------------------------------------------===//

// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
Function &DSCallSite::getCaller() const {
  return *Site.getInstruction()->getParent()->getParent();
}

void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
                        ReachabilityCloner &RC) {
  NH = RC.getClonedNH(Src);
}

//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//

/// getFunctionNames - Return a space separated list of the name of the
/// functions in this graph (if any)
std::string DSGraph::getFunctionNames() const {
  switch (getReturnNodes().size()) {
  case 0: return "Globals graph";
  case 1: return retnodes_begin()->first->getName();
  default:
    std::string Return;
    for (DSGraph::retnodes_iterator I = retnodes_begin();
         I != retnodes_end(); ++I)
      Return += I->first->getName() + " ";
    Return.erase(Return.end()-1, Return.end());   // Remove last space character
    return Return;
  }
}


DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses<GlobalValue*> &ECs,
                 unsigned CloneFlags)
  : GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) {
  PrintAuxCalls = false;
  cloneInto(G, CloneFlags);
}

DSGraph::~DSGraph() {
  FunctionCalls.clear();
  AuxFunctionCalls.clear();
  ScalarMap.clear();
  ReturnNodes.clear();

  // Drop all intra-node references, so that assertions don't fail...
  for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
    NI->dropAllReferences();

  // Free all of the nodes.
  Nodes.clear();
}

// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }


/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
///
void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
  for (unsigned i = 0, e = Links.size(); i != e; ++i)
    if (DSNode *N = Links[i].getNode()) {
      DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N);
      if (ONMI != OldNodeMap.end()) {
        DSNode *ONMIN = ONMI->second.getNode();
        Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset());
      }
    }
}

/// addObjectToGraph - This method can be used to add global, stack, and heap
/// objects to the graph.  This can be used when updating DSGraphs due to the
/// introduction of new temporary objects.  The new object is not pointed to
/// and does not point to any other objects in the graph.
DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) {
  assert(isa<PointerType>(Ptr->getType()) && "Ptr is not a pointer!");
  const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
  DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this);
  assert(ScalarMap[Ptr].isNull() && "Object already in this graph!");
  ScalarMap[Ptr] = N;

  if (GlobalValue *GV = dyn_cast<GlobalValue>(Ptr)) {
    N->addGlobal(GV);
  } else if (isa<MallocInst>(Ptr)) {
    N->setHeapNodeMarker();
  } else if (isa<AllocaInst>(Ptr)) {
    N->setAllocaNodeMarker();
  } else {
    assert(0 && "Illegal memory object input!");
  }
  return N;
}


/// cloneInto - Clone the specified DSGraph into the current graph.  The
/// translated ScalarMap for the old function is filled into the ScalarMap
/// for the graph, and the translated ReturnNodes map is returned into
/// ReturnNodes.
///
/// The CloneFlags member controls various aspects of the cloning process.
///
void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) {
  TIME_REGION(X, "cloneInto");
  assert(&G != this && "Cannot clone graph into itself!");

  NodeMapTy OldNodeMap;

  // Remove alloca or mod/ref bits as specified...
  unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
    | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
    | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
  BitsToClear |= DSNode::DEAD;  // Clear dead flag...

  for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) {
    assert(!I->isForwarding() &&
           "Forward nodes shouldn't be in node list!");
    DSNode *New = new DSNode(*I, this);
    New->maskNodeTypes(~BitsToClear);
    OldNodeMap[I] = New;
  }

#ifndef NDEBUG
  Timer::addPeakMemoryMeasurement();
#endif

  // Rewrite the links in the new nodes to point into the current graph now.
  // Note that we don't loop over the node's list to do this.  The problem is
  // that remaping links can cause recursive merging to happen, which means
  // that node_iterator's can get easily invalidated!  Because of this, we
  // loop over the OldNodeMap, which contains all of the new nodes as the
  // .second element of the map elements.  Also note that if we remap a node
  // more than once, we won't break anything.
  for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end();
       I != E; ++I)
    I->second.getNode()->remapLinks(OldNodeMap);

  // Copy the scalar map... merging all of the global nodes...
  for (DSScalarMap::const_iterator I = G.ScalarMap.begin(),
         E = G.ScalarMap.end(); I != E; ++I) {
    DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
    DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first);
    DSNode *MappedNodeN = MappedNode.getNode();
    H.mergeWith(DSNodeHandle(MappedNodeN,
                             I->second.getOffset()+MappedNode.getOffset()));
  }

  if (!(CloneFlags & DontCloneCallNodes)) {
    // Copy the function calls list.
    for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I)
      FunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
  }

  if (!(CloneFlags & DontCloneAuxCallNodes)) {
    // Copy the auxiliary function calls list.
    for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I)
      AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
  }

  // Map the return node pointers over...
  for (retnodes_iterator I = G.retnodes_begin(),
         E = G.retnodes_end(); I != E; ++I) {
    const DSNodeHandle &Ret = I->second;
    DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
    DSNode *MappedRetN = MappedRet.getNode();
    ReturnNodes.insert(std::make_pair(I->first,
                                      DSNodeHandle(MappedRetN,
                                     MappedRet.getOffset()+Ret.getOffset())));
  }
}

/// spliceFrom - Logically perform the operation of cloning the RHS graph into
/// this graph, then clearing the RHS graph.  Instead of performing this as
/// two seperate operations, do it as a single, much faster, one.
///
void DSGraph::spliceFrom(DSGraph &RHS) {
  // Change all of the nodes in RHS to think we are their parent.
  for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end();
       I != E; ++I)
    I->setParentGraph(this);
  // Take all of the nodes.
  Nodes.splice(Nodes.end(), RHS.Nodes);

  // Take all of the calls.
  FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls);
  AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls);

  // Take all of the return nodes.
  if (ReturnNodes.empty()) {
    ReturnNodes.swap(RHS.ReturnNodes);
  } else {
    ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end());
    RHS.ReturnNodes.clear();
  }

  // Merge the scalar map in.
  ScalarMap.spliceFrom(RHS.ScalarMap);
}

/// spliceFrom - Copy all entries from RHS, then clear RHS.
///
void DSScalarMap::spliceFrom(DSScalarMap &RHS) {
  // Special case if this is empty.
  if (ValueMap.empty()) {
    ValueMap.swap(RHS.ValueMap);
    GlobalSet.swap(RHS.GlobalSet);
  } else {
    GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end());
    for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end();
         I != E; ++I)
      ValueMap[I->first].mergeWith(I->second);
    RHS.ValueMap.clear();
  }
}


/// getFunctionArgumentsForCall - Given a function that is currently in this
/// graph, return the DSNodeHandles that correspond to the pointer-compatible
/// function arguments.  The vector is filled in with the return value (or
/// null if it is not pointer compatible), followed by all of the
/// pointer-compatible arguments.
void DSGraph::getFunctionArgumentsForCall(Function *F,
                                       std::vector<DSNodeHandle> &Args) const {
  Args.push_back(getReturnNodeFor(*F));
  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
       AI != E; ++AI)
    if (isPointerType(AI->getType())) {
      Args.push_back(getNodeForValue(AI));
      assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?");
    }
}

namespace {
  // HackedGraphSCCFinder - This is used to find nodes that have a path from the
  // node to a node cloned by the ReachabilityCloner object contained.  To be
  // extra obnoxious it ignores edges from nodes that are globals, and truncates
  // search at RC marked nodes.  This is designed as an object so that
  // intermediate results can be memoized across invocations of
  // PathExistsToClonedNode.
  struct HackedGraphSCCFinder {
    ReachabilityCloner &RC;
    unsigned CurNodeId;
    std::vector<const DSNode*> SCCStack;
    std::map<const DSNode*, std::pair<unsigned, bool> > NodeInfo;

    HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) {
      // Remove null pointer as a special case.
      NodeInfo[0] = std::make_pair(0, false);
    }

    std::pair<unsigned, bool> &VisitForSCCs(const DSNode *N);

    bool PathExistsToClonedNode(const DSNode *N) {
      return VisitForSCCs(N).second;
    }

    bool PathExistsToClonedNode(const DSCallSite &CS) {
      if (PathExistsToClonedNode(CS.getRetVal().getNode()))
        return true;
      for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
        if (PathExistsToClonedNode(CS.getPtrArg(i).getNode()))
          return true;
      return false;
    }
  };
}

std::pair<unsigned, bool> &HackedGraphSCCFinder::
VisitForSCCs(const DSNode *N) {
  std::map<const DSNode*, std::pair<unsigned, bool> >::iterator
    NodeInfoIt = NodeInfo.lower_bound(N);
  if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N)
    return NodeInfoIt->second;

  unsigned Min = CurNodeId++;
  unsigned MyId = Min;
  std::pair<unsigned, bool> &ThisNodeInfo =
    NodeInfo.insert(NodeInfoIt,
                    std::make_pair(N, std::make_pair(MyId, false)))->second;

  // Base case: if we find a global, this doesn't reach the cloned graph
  // portion.
  if (N->isGlobalNode()) {
    ThisNodeInfo.second = false;
    return ThisNodeInfo;
  }

  // Base case: if this does reach the cloned graph portion... it does. :)
  if (RC.hasClonedNode(N)) {
    ThisNodeInfo.second = true;
    return ThisNodeInfo;
  }

  SCCStack.push_back(N);

  // Otherwise, check all successors.
  bool AnyDirectSuccessorsReachClonedNodes = false;
  for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
       EI != EE; ++EI)
    if (DSNode *Succ = EI->getNode()) {
      std::pair<unsigned, bool> &SuccInfo = VisitForSCCs(Succ);
      if (SuccInfo.first < Min) Min = SuccInfo.first;
      AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second;
    }

  if (Min != MyId)
    return ThisNodeInfo;  // Part of a large SCC.  Leave self on stack.

  if (SCCStack.back() == N) {  // Special case single node SCC.
    SCCStack.pop_back();
    ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes;
    return ThisNodeInfo;
  }

  // Find out if any direct successors of any node reach cloned nodes.
  if (!AnyDirectSuccessorsReachClonedNodes)
    for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i)
      for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
           EI != EE; ++EI)
        if (DSNode *N = EI->getNode())
          if (NodeInfo[N].second) {
            AnyDirectSuccessorsReachClonedNodes = true;
            goto OutOfLoop;
          }
OutOfLoop:
  // If any successor reaches a cloned node, mark all nodes in this SCC as
  // reaching the cloned node.
  if (AnyDirectSuccessorsReachClonedNodes)
    while (SCCStack.back() != N) {
      NodeInfo[SCCStack.back()].second = true;
      SCCStack.pop_back();
    }
  SCCStack.pop_back();
  ThisNodeInfo.second = true;
  return ThisNodeInfo;
}

/// mergeInCallFromOtherGraph - This graph merges in the minimal number of
/// nodes from G2 into 'this' graph, merging the bindings specified by the
/// call site (in this graph) with the bindings specified by the vector in G2.
/// The two DSGraphs must be different.
///
void DSGraph::mergeInGraph(const DSCallSite &CS,
                           std::vector<DSNodeHandle> &Args,
                           const DSGraph &Graph, unsigned CloneFlags) {
  TIME_REGION(X, "mergeInGraph");

  assert((CloneFlags & DontCloneCallNodes) &&
         "Doesn't support copying of call nodes!");

  // If this is not a recursive call, clone the graph into this graph...
  if (&Graph == this) {
    // Merge the return value with the return value of the context.
    Args[0].mergeWith(CS.getRetVal());

    // Resolve all of the function arguments.
    for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
      if (i == Args.size()-1)
        break;

      // Add the link from the argument scalar to the provided value.
      Args[i+1].mergeWith(CS.getPtrArg(i));
    }
    return;
  }

  // Clone the callee's graph into the current graph, keeping track of where
  // scalars in the old graph _used_ to point, and of the new nodes matching
  // nodes of the old graph.
  ReachabilityCloner RC(*this, Graph, CloneFlags);

  // Map the return node pointer over.
  if (!CS.getRetVal().isNull())
    RC.merge(CS.getRetVal(), Args[0]);

  // Map over all of the arguments.
  for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
    if (i == Args.size()-1)
      break;

    // Add the link from the argument scalar to the provided value.
    RC.merge(CS.getPtrArg(i), Args[i+1]);
  }

  // We generally don't want to copy global nodes or aux calls from the callee
  // graph to the caller graph.  However, we have to copy them if there is a
  // path from the node to a node we have already copied which does not go
  // through another global.  Compute the set of node that can reach globals and
  // aux call nodes to copy over, then do it.
  std::vector<const DSCallSite*> AuxCallToCopy;
  std::vector<GlobalValue*> GlobalsToCopy;

  // NodesReachCopiedNodes - Memoize results for efficiency.  Contains a
  // true/false value for every visited node that reaches a copied node without
  // going through a global.
  HackedGraphSCCFinder SCCFinder(RC);

  if (!(CloneFlags & DontCloneAuxCallNodes))
    for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I)
      if (SCCFinder.PathExistsToClonedNode(*I))
        AuxCallToCopy.push_back(&*I);
//       else if (I->isIndirectCall()){
//  	//If the call node doesn't have any callees, clone it
//  	std::vector< Function *> List;
//  	I->getCalleeNode()->addFullFunctionList(List);
//  	if (!List.size())
//  	  AuxCallToCopy.push_back(&*I);
//        }

  const DSScalarMap &GSM = Graph.getScalarMap();
  for (DSScalarMap::global_iterator GI = GSM.global_begin(),
         E = GSM.global_end(); GI != E; ++GI) {
    DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode();
    for (DSNode::edge_iterator EI = GlobalNode->edge_begin(),
           EE = GlobalNode->edge_end(); EI != EE; ++EI)
      if (SCCFinder.PathExistsToClonedNode(EI->getNode())) {
        GlobalsToCopy.push_back(*GI);
        break;
      }
  }

  // Copy aux calls that are needed.
  for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i)
    AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC));

  // Copy globals that are needed.
  for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i)
    RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i]));
}



/// mergeInGraph - The method is used for merging graphs together.  If the
/// argument graph is not *this, it makes a clone of the specified graph, then
/// merges the nodes specified in the call site with the formal arguments in the
/// graph.
///
void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
                           const DSGraph &Graph, unsigned CloneFlags) {
  // Set up argument bindings.
  std::vector<DSNodeHandle> Args;
  Graph.getFunctionArgumentsForCall(&F, Args);

  mergeInGraph(CS, Args, Graph, CloneFlags);
}

/// getCallSiteForArguments - Get the arguments and return value bindings for
/// the specified function in the current graph.
///
DSCallSite DSGraph::getCallSiteForArguments(Function &F) const {
  std::vector<DSNodeHandle> Args;

  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    if (isPointerType(I->getType()))
      Args.push_back(getNodeForValue(I));

  return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args);
}

/// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
/// the context of this graph, return the DSCallSite for it.
DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const {
  DSNodeHandle RetVal;
  Instruction *I = CS.getInstruction();
  if (isPointerType(I->getType()))
    RetVal = getNodeForValue(I);

  std::vector<DSNodeHandle> Args;
  Args.reserve(CS.arg_end()-CS.arg_begin());

  // Calculate the arguments vector...
  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
    if (isPointerType((*I)->getType()))
      if (isa<ConstantPointerNull>(*I))
        Args.push_back(DSNodeHandle());
      else
        Args.push_back(getNodeForValue(*I));

  // Add a new function call entry...
  if (Function *F = CS.getCalledFunction())
    return DSCallSite(CS, RetVal, F, Args);
  else
    return DSCallSite(CS, RetVal,
                      getNodeForValue(CS.getCalledValue()).getNode(), Args);
}



// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed.  Because a node makes all
// of the nodes it can reach incomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
  // Stop recursion if no node, or if node already marked...
  if (N == 0 || N->isIncomplete()) return;

  // Actually mark the node
  N->setIncompleteMarker();

  // Recursively process children...
  for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
    if (DSNode *DSN = I->getNode())
      markIncompleteNode(DSN);
}

static void markIncomplete(DSCallSite &Call) {
  // Then the return value is certainly incomplete!
  markIncompleteNode(Call.getRetVal().getNode());

  // All objects pointed to by function arguments are incomplete!
  for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
    markIncompleteNode(Call.getPtrArg(i).getNode());
}

// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet.  This marks
// nodes that are reachable through three sources of "unknownness":
//
//  Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(unsigned Flags) {
  // Mark any incoming arguments as incomplete.
  if (Flags & DSGraph::MarkFormalArgs)
    for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
         FI != E; ++FI) {
      Function &F = *FI->first;
      for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
           I != E; ++I)
        if (isPointerType(I->getType()))
          markIncompleteNode(getNodeForValue(I).getNode());
      markIncompleteNode(FI->second.getNode());
    }

  // Mark stuff passed into functions calls as being incomplete.
  if (!shouldPrintAuxCalls())
    for (std::list<DSCallSite>::iterator I = FunctionCalls.begin(),
           E = FunctionCalls.end(); I != E; ++I)
      markIncomplete(*I);
  else
    for (std::list<DSCallSite>::iterator I = AuxFunctionCalls.begin(),
           E = AuxFunctionCalls.end(); I != E; ++I)
      markIncomplete(*I);

  // Mark all global nodes as incomplete.
  for (DSScalarMap::global_iterator I = ScalarMap.global_begin(),
         E = ScalarMap.global_end(); I != E; ++I)
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
      if (!GV->hasInitializer() ||    // Always mark external globals incomp.
          (!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0))
        markIncompleteNode(ScalarMap[GV].getNode());
}

static inline void killIfUselessEdge(DSNodeHandle &Edge) {
  if (DSNode *N = Edge.getNode())  // Is there an edge?
    if (N->getNumReferrers() == 1)  // Does it point to a lonely node?
      // No interesting info?
      if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
          N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
        Edge.setTo(0, 0);  // Kill the edge!
}

static inline bool nodeContainsExternalFunction(const DSNode *N) {
  std::vector<Function*> Funcs;
  N->addFullFunctionList(Funcs);
  for (unsigned i = 0, e = Funcs.size(); i != e; ++i)
    if (Funcs[i]->isExternal()) return true;
  return false;
}

static void removeIdenticalCalls(std::list<DSCallSite> &Calls) {
  // Remove trivially identical function calls
  Calls.sort();  // Sort by callee as primary key!

  // Scan the call list cleaning it up as necessary...
  DSNodeHandle LastCalleeNode;
#if 0
  Function *LastCalleeFunc = 0;
  unsigned NumDuplicateCalls = 0;
#endif
  bool LastCalleeContainsExternalFunction = false;

  unsigned NumDeleted = 0;
  for (std::list<DSCallSite>::iterator I = Calls.begin(), E = Calls.end();
       I != E;) {
    DSCallSite &CS = *I;
    std::list<DSCallSite>::iterator OldIt = I++;

    if (!CS.isIndirectCall()) {
      LastCalleeNode = 0;
    } else {
      DSNode *Callee = CS.getCalleeNode();

      // If the Callee is a useless edge, this must be an unreachable call site,
      // eliminate it.
      if (Callee->getNumReferrers() == 1 && Callee->isComplete() &&
          Callee->getGlobalsList().empty()) {  // No useful info?
        DOUT << "WARNING: Useless call site found.\n";
        Calls.erase(OldIt);
        ++NumDeleted;
        continue;
      }

      // If the last call site in the list has the same callee as this one, and
      // if the callee contains an external function, it will never be
      // resolvable, just merge the call sites.
      if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) {
        LastCalleeContainsExternalFunction =
          nodeContainsExternalFunction(Callee);

        std::list<DSCallSite>::iterator PrevIt = OldIt;
        --PrevIt;
        PrevIt->mergeWith(CS);

        // No need to keep this call anymore.
        Calls.erase(OldIt);
        ++NumDeleted;
        continue;
      } else {
        LastCalleeNode = Callee;
      }
    }

    // If the return value or any arguments point to a void node with no
    // information at all in it, and the call node is the only node to point
    // to it, remove the edge to the node (killing the node).
    //
    killIfUselessEdge(CS.getRetVal());
    for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
      killIfUselessEdge(CS.getPtrArg(a));

#if 0
    // If this call site calls the same function as the last call site, and if
    // the function pointer contains an external function, this node will
    // never be resolved.  Merge the arguments of the call node because no
    // information will be lost.
    //
    if ((CS.isDirectCall()   && CS.getCalleeFunc() == LastCalleeFunc) ||
        (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
      ++NumDuplicateCalls;
      if (NumDuplicateCalls == 1) {
        if (LastCalleeNode)
          LastCalleeContainsExternalFunction =
            nodeContainsExternalFunction(LastCalleeNode);
        else
          LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
      }

      // It is not clear why, but enabling this code makes DSA really
      // sensitive to node forwarding.  Basically, with this enabled, DSA
      // performs different number of inlinings based on which nodes are
      // forwarding or not.  This is clearly a problem, so this code is
      // disabled until this can be resolved.
#if 1
      if (LastCalleeContainsExternalFunction
#if 0
          ||
          // This should be more than enough context sensitivity!
          // FIXME: Evaluate how many times this is tripped!
          NumDuplicateCalls > 20
#endif
          ) {

        std::list<DSCallSite>::iterator PrevIt = OldIt;
        --PrevIt;
        PrevIt->mergeWith(CS);

        // No need to keep this call anymore.
        Calls.erase(OldIt);
        ++NumDeleted;
        continue;
      }
#endif
    } else {
      if (CS.isDirectCall()) {
        LastCalleeFunc = CS.getCalleeFunc();
        LastCalleeNode = 0;
      } else {
        LastCalleeNode = CS.getCalleeNode();
        LastCalleeFunc = 0;
      }
      NumDuplicateCalls = 0;
    }
#endif

    if (I != Calls.end() && CS == *I) {
      LastCalleeNode = 0;
      Calls.erase(OldIt);
      ++NumDeleted;
      continue;
    }
  }

  // Resort now that we simplified things.
  Calls.sort();

  // Now that we are in sorted order, eliminate duplicates.
  std::list<DSCallSite>::iterator CI = Calls.begin(), CE = Calls.end();
  if (CI != CE)
    while (1) {
      std::list<DSCallSite>::iterator OldIt = CI++;
      if (CI == CE) break;

      // If this call site is now the same as the previous one, we can delete it
      // as a duplicate.
      if (*OldIt == *CI) {
        Calls.erase(CI);
        CI = OldIt;
        ++NumDeleted;
      }
    }

  //Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end());

  // Track the number of call nodes merged away...
  NumCallNodesMerged += NumDeleted;

  if (NumDeleted)
    DOUT << "Merged " << NumDeleted << " call nodes.\n";
}


// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph.  These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes() {
  TIME_REGION(X, "removeTriviallyDeadNodes");

#if 0
  /// NOTE: This code is disabled.  This slows down DSA on 177.mesa
  /// substantially!

  // Loop over all of the nodes in the graph, calling getNode on each field.
  // This will cause all nodes to update their forwarding edges, causing
  // forwarded nodes to be delete-able.
  { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate");
  for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) {
    DSNode &N = *NI;
    for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l)
      N.getLink(l*N.getPointerSize()).getNode();
  }
  }

  // NOTE: This code is disabled.  Though it should, in theory, allow us to
  // remove more nodes down below, the scan of the scalar map is incredibly
  // expensive for certain programs (with large SCCs).  In the future, if we can
  // make the scalar map scan more efficient, then we can reenable this.
  { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap");

  // Likewise, forward any edges from the scalar nodes.  While we are at it,
  // clean house a bit.
  for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){
    I->second.getNode();
    ++I;
  }
  }
#endif
  bool isGlobalsGraph = !GlobalsGraph;

  for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) {
    DSNode &Node = *NI;

    // Do not remove *any* global nodes in the globals graph.
    // This is a special case because such nodes may not have I, M, R flags set.
    if (Node.isGlobalNode() && isGlobalsGraph) {
      ++NI;
      continue;
    }

    if (Node.isComplete() && !Node.isModified() && !Node.isRead()) {
      // This is a useless node if it has no mod/ref info (checked above),
      // outgoing edges (which it cannot, as it is not modified in this
      // context), and it has no incoming edges.  If it is a global node it may
      // have all of these properties and still have incoming edges, due to the
      // scalar map, so we check those now.
      //
      if (Node.getNumReferrers() == Node.getGlobalsList().size()) {
        const std::vector<GlobalValue*> &Globals = Node.getGlobalsList();

        // Loop through and make sure all of the globals are referring directly
        // to the node...
        for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
          DSNode *N = getNodeForValue(Globals[j]).getNode();
          assert(N == &Node && "ScalarMap doesn't match globals list!");
        }

        // Make sure NumReferrers still agrees, if so, the node is truly dead.
        if (Node.getNumReferrers() == Globals.size()) {
          for (unsigned j = 0, e = Globals.size(); j != e; ++j)
            ScalarMap.erase(Globals[j]);
          Node.makeNodeDead();
          ++NumTrivialGlobalDNE;
        }
      }
    }

    if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) {
      // This node is dead!
      NI = Nodes.erase(NI);    // Erase & remove from node list.
      ++NumTrivialDNE;
    } else {
      ++NI;
    }
  }

  removeIdenticalCalls(FunctionCalls);
  removeIdenticalCalls(AuxFunctionCalls);
}


/// markReachableNodes - This method recursively traverses the specified
/// DSNodes, marking any nodes which are reachable.  All reachable nodes it adds
/// to the set, which allows it to only traverse visited nodes once.
///
void DSNode::markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const {
  if (this == 0) return;
  assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
  if (ReachableNodes.insert(this).second)        // Is newly reachable?
    for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end();
         I != E; ++I)
      I->getNode()->markReachableNodes(ReachableNodes);
}

void DSCallSite::markReachableNodes(hash_set<const DSNode*> &Nodes) const {
  getRetVal().getNode()->markReachableNodes(Nodes);
  if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);

  for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
    getPtrArg(i).getNode()->markReachableNodes(Nodes);
}

// CanReachAliveNodes - Simple graph walker that recursively traverses the graph
// looking for a node that is marked alive.  If an alive node is found, return
// true, otherwise return false.  If an alive node is reachable, this node is
// marked as alive...
//
static bool CanReachAliveNodes(DSNode *N, hash_set<const DSNode*> &Alive,
                               hash_set<const DSNode*> &Visited,
                               bool IgnoreGlobals) {
  if (N == 0) return false;
  assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");

  // If this is a global node, it will end up in the globals graph anyway, so we
  // don't need to worry about it.
  if (IgnoreGlobals && N->isGlobalNode()) return false;

  // If we know that this node is alive, return so!
  if (Alive.count(N)) return true;

  // Otherwise, we don't think the node is alive yet, check for infinite
  // recursion.
  if (Visited.count(N)) return false;  // Found a cycle
  Visited.insert(N);   // No recursion, insert into Visited...

  for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
    if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) {
      N->markReachableNodes(Alive);
      return true;
    }
  return false;
}

// CallSiteUsesAliveArgs - Return true if the specified call site can reach any
// alive nodes.
//
static bool CallSiteUsesAliveArgs(const DSCallSite &CS,
                                  hash_set<const DSNode*> &Alive,
                                  hash_set<const DSNode*> &Visited,
                                  bool IgnoreGlobals) {
  if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited,
                         IgnoreGlobals))
    return true;
  if (CS.isIndirectCall() &&
      CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals))
    return true;
  for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
    if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited,
                           IgnoreGlobals))
      return true;
  return false;
}

// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable.  This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely.  This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(unsigned Flags) {
  DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK());

  // Reduce the amount of work we have to do... remove dummy nodes left over by
  // merging...
  removeTriviallyDeadNodes();

  TIME_REGION(X, "removeDeadNodes");

  // FIXME: Merge non-trivially identical call nodes...

  // Alive - a set that holds all nodes found to be reachable/alive.
  hash_set<const DSNode*> Alive;
  std::vector<std::pair<Value*, DSNode*> > GlobalNodes;

  // Copy and merge all information about globals to the GlobalsGraph if this is
  // not a final pass (where unreachable globals are removed).
  //
  // Strip all alloca bits since the current function is only for the BU pass.
  // Strip all incomplete bits since they are short-lived properties and they
  // will be correctly computed when rematerializing nodes into the functions.
  //
  ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit |
                              DSGraph::StripIncompleteBit);

  // Mark all nodes reachable by (non-global) scalar nodes as alive...
{ TIME_REGION(Y, "removeDeadNodes:scalarscan");
  for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end();
       I != E; ++I)
    if (isa<GlobalValue>(I->first)) {             // Keep track of global nodes
      assert(!I->second.isNull() && "Null global node?");
      assert(I->second.getNode()->isGlobalNode() && "Should be a global node!");
      GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));

      // Make sure that all globals are cloned over as roots.
      if (!(Flags & DSGraph::RemoveUnreachableGlobals) && GlobalsGraph) {
        DSGraph::ScalarMapTy::iterator SMI =
          GlobalsGraph->getScalarMap().find(I->first);
        if (SMI != GlobalsGraph->getScalarMap().end())
          GGCloner.merge(SMI->second, I->second);
        else
          GGCloner.getClonedNH(I->second);
      }
    } else {
      I->second.getNode()->markReachableNodes(Alive);
    }
}

  // The return values are alive as well.
  for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
       I != E; ++I)
    I->second.getNode()->markReachableNodes(Alive);

  // Mark any nodes reachable by primary calls as alive...
  for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
    I->markReachableNodes(Alive);


  // Now find globals and aux call nodes that are already live or reach a live
  // value (which makes them live in turn), and continue till no more are found.
  //
  bool Iterate;
  hash_set<const DSNode*> Visited;
  hash_set<const DSCallSite*> AuxFCallsAlive;
  do {
    Visited.clear();
    // If any global node points to a non-global that is "alive", the global is
    // "alive" as well...  Remove it from the GlobalNodes list so we only have
    // unreachable globals in the list.
    //
    Iterate = false;
    if (!(Flags & DSGraph::RemoveUnreachableGlobals))
      for (unsigned i = 0; i != GlobalNodes.size(); ++i)
        if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited,
                               Flags & DSGraph::RemoveUnreachableGlobals)) {
          std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to...
          GlobalNodes.pop_back();                          // erase efficiently
          Iterate = true;
        }

    // Mark only unresolvable call nodes for moving to the GlobalsGraph since
    // call nodes that get resolved will be difficult to remove from that graph.
    // The final unresolved call nodes must be handled specially at the end of
    // the BU pass (i.e., in main or other roots of the call graph).
    for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI)
      if (!AuxFCallsAlive.count(&*CI) &&
          (CI->isIndirectCall()
           || CallSiteUsesAliveArgs(*CI, Alive, Visited,
                                  Flags & DSGraph::RemoveUnreachableGlobals))) {
        CI->markReachableNodes(Alive);
        AuxFCallsAlive.insert(&*CI);
        Iterate = true;
      }
  } while (Iterate);

  // Move dead aux function calls to the end of the list
  for (std::list<DSCallSite>::iterator CI = AuxFunctionCalls.begin(),
         E = AuxFunctionCalls.end(); CI != E; )
    if (AuxFCallsAlive.count(&*CI))
      ++CI;
    else {
      // Copy and merge global nodes and dead aux call nodes into the
      // GlobalsGraph, and all nodes reachable from those nodes.  Update their
      // target pointers using the GGCloner.
      //
      if (!(Flags & DSGraph::RemoveUnreachableGlobals))
        GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner));

      AuxFunctionCalls.erase(CI++);
    }

  // We are finally done with the GGCloner so we can destroy it.
  GGCloner.destroy();

  // At this point, any nodes which are visited, but not alive, are nodes
  // which can be removed.  Loop over all nodes, eliminating completely
  // unreachable nodes.
  //
  std::vector<DSNode*> DeadNodes;
  DeadNodes.reserve(Nodes.size());
  for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) {
    DSNode *N = NI++;
    assert(!N->isForwarding() && "Forwarded node in nodes list?");

    if (!Alive.count(N)) {
      Nodes.remove(N);
      assert(!N->isForwarding() && "Cannot remove a forwarding node!");
      DeadNodes.push_back(N);
      N->dropAllReferences();
      ++NumDNE;
    }
  }

  // Remove all unreachable globals from the ScalarMap.
  // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes.
  // In either case, the dead nodes will not be in the set Alive.
  for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
    if (!Alive.count(GlobalNodes[i].second))
      ScalarMap.erase(GlobalNodes[i].first);
    else
      assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global");

  // Delete all dead nodes now since their referrer counts are zero.
  for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
    delete DeadNodes[i];

  DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
}

void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const {
  assert(std::find(N->globals_begin(),N->globals_end(), GV) !=
         N->globals_end() && "Global value not in node!");
}

void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const {
  if (CS.isIndirectCall()) {
    AssertNodeInGraph(CS.getCalleeNode());
#if 0
    if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() &&
        CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty())
      DOUT << "WARNING: WEIRD CALL SITE FOUND!\n";
#endif
  }
  AssertNodeInGraph(CS.getRetVal().getNode());
  for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
    AssertNodeInGraph(CS.getPtrArg(j).getNode());
}

void DSGraph::AssertCallNodesInGraph() const {
  for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
    AssertCallSiteInGraph(*I);
}
void DSGraph::AssertAuxCallNodesInGraph() const {
  for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I)
    AssertCallSiteInGraph(*I);
}

void DSGraph::AssertGraphOK() const {
  for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
    NI->assertOK();

  for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
         E = ScalarMap.end(); I != E; ++I) {
    assert(!I->second.isNull() && "Null node in scalarmap!");
    AssertNodeInGraph(I->second.getNode());
    if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
      assert(I->second.getNode()->isGlobalNode() &&
             "Global points to node, but node isn't global?");
      AssertNodeContainsGlobal(I->second.getNode(), GV);
    }
  }
  AssertCallNodesInGraph();
  AssertAuxCallNodesInGraph();

  // Check that all pointer arguments to any functions in this graph have
  // destinations.
  for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(),
         E = ReturnNodes.end();
       RI != E; ++RI) {
    Function &F = *RI->first;
    for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI)
      if (isPointerType(AI->getType()))
        assert(!getNodeForValue(AI).isNull() &&
               "Pointer argument must be in the scalar map!");
  }
}

/// computeNodeMapping - Given roots in two different DSGraphs, traverse the
/// nodes reachable from the two graphs, computing the mapping of nodes from the
/// first to the second graph.  This mapping may be many-to-one (i.e. the first
/// graph may have multiple nodes representing one node in the second graph),
/// but it will not work if there is a one-to-many or many-to-many mapping.
///
void DSGraph::computeNodeMapping(const DSNodeHandle &NH1,
                                 const DSNodeHandle &NH2, NodeMapTy &NodeMap,
                                 bool StrictChecking) {
  DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode();
  if (N1 == 0 || N2 == 0) return;

  DSNodeHandle &Entry = NodeMap[N1];
  if (!Entry.isNull()) {
    // Termination of recursion!
    if (StrictChecking) {
      assert(Entry.getNode() == N2 && "Inconsistent mapping detected!");
      assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) ||
              Entry.getNode()->isNodeCompletelyFolded()) &&
             "Inconsistent mapping detected!");
    }
    return;
  }

  Entry.setTo(N2, NH2.getOffset()-NH1.getOffset());

  // Loop over all of the fields that N1 and N2 have in common, recursively
  // mapping the edges together now.
  int N2Idx = NH2.getOffset()-NH1.getOffset();
  unsigned N2Size = N2->getSize();
  if (N2Size == 0) return;   // No edges to map to.

  for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) {
    const DSNodeHandle &N1NH = N1->getLink(i);
    // Don't call N2->getLink if not needed (avoiding crash if N2Idx is not
    // aligned right).
    if (!N1NH.isNull()) {
      if (unsigned(N2Idx)+i < N2Size)
        computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap);
      else
        computeNodeMapping(N1NH,
                           N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap);
    }
  }
}


/// computeGToGGMapping - Compute the mapping of nodes in the global graph to
/// nodes in this graph.
void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) {
  DSGraph &GG = *getGlobalsGraph();

  DSScalarMap &SM = getScalarMap();
  for (DSScalarMap::global_iterator I = SM.global_begin(),
         E = SM.global_end(); I != E; ++I)
    DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap);
}

/// computeGGToGMapping - Compute the mapping of nodes in the global graph to
/// nodes in this graph.  Note that any uses of this method are probably bugs,
/// unless it is known that the globals graph has been merged into this graph!
void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) {
  NodeMapTy NodeMap;
  computeGToGGMapping(NodeMap);

  while (!NodeMap.empty()) {
    InvNodeMap.insert(std::make_pair(NodeMap.begin()->second,
                                     NodeMap.begin()->first));
    NodeMap.erase(NodeMap.begin());
  }
}


/// computeCalleeCallerMapping - Given a call from a function in the current
/// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the
/// mapping of nodes from the callee to nodes in the caller.
void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee,
                                         DSGraph &CalleeGraph,
                                         NodeMapTy &NodeMap) {

  DSCallSite CalleeArgs =
    CalleeGraph.getCallSiteForArguments(const_cast<Function&>(Callee));

  computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap);

  unsigned NumArgs = CS.getNumPtrArgs();
  if (NumArgs > CalleeArgs.getNumPtrArgs())
    NumArgs = CalleeArgs.getNumPtrArgs();

  for (unsigned i = 0; i != NumArgs; ++i)
    computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap);

  // Map the nodes that are pointed to by globals.
  DSScalarMap &CalleeSM = CalleeGraph.getScalarMap();
  DSScalarMap &CallerSM = getScalarMap();

  if (CalleeSM.global_size() >= CallerSM.global_size()) {
    for (DSScalarMap::global_iterator GI = CallerSM.global_begin(),
           E = CallerSM.global_end(); GI != E; ++GI)
      if (CalleeSM.global_count(*GI))
        computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
  } else {
    for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(),
           E = CalleeSM.global_end(); GI != E; ++GI)
      if (CallerSM.global_count(*GI))
        computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
  }
}

/// updateFromGlobalGraph - This function rematerializes global nodes and
/// nodes reachable from them from the globals graph into the current graph.
///
void DSGraph::updateFromGlobalGraph() {
  TIME_REGION(X, "updateFromGlobalGraph");
  ReachabilityCloner RC(*this, *GlobalsGraph, 0);

  // Clone the non-up-to-date global nodes into this graph.
  for (DSScalarMap::global_iterator I = getScalarMap().global_begin(),
         E = getScalarMap().global_end(); I != E; ++I) {
    DSScalarMap::iterator It = GlobalsGraph->ScalarMap.find(*I);
    if (It != GlobalsGraph->ScalarMap.end())
      RC.merge(getNodeForValue(*I), It->second);
  }
}