aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/DataStructure.cpp
blob: 3bb10d4184419cf76fef66a2f24430fb1df77832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include <algorithm>
#include <set>

using std::vector;

namespace {
  Statistic<> NumFolds          ("dsnode", "Number of nodes completely folded");
  Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged");
};

namespace DS {   // TODO: FIXME
  extern TargetData TD;
}
using namespace DS;

//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//

DSNode::DSNode(enum NodeTy NT, const Type *T)
  : Ty(Type::VoidTy), Size(0), NodeType(NT) {
  // Add the type entry if it is specified...
  if (T) mergeTypeInfo(T, 0);
}

// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
  : Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size), 
    NodeType(N.NodeType) {
}

void DSNode::removeReferrer(DSNodeHandle *H) {
  // Search backwards, because we depopulate the list from the back for
  // efficiency (because it's a vector).
  vector<DSNodeHandle*>::reverse_iterator I =
    std::find(Referrers.rbegin(), Referrers.rend(), H);
  assert(I != Referrers.rend() && "Referrer not pointing to node!");
  Referrers.erase(I.base()-1);
}

// addGlobal - Add an entry for a global value to the Globals list.  This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
  // Keep the list sorted.
  vector<GlobalValue*>::iterator I =
    std::lower_bound(Globals.begin(), Globals.end(), GV);

  if (I == Globals.end() || *I != GV) {
    //assert(GV->getType()->getElementType() == Ty);
    Globals.insert(I, GV);
    NodeType |= GlobalNode;
  }
}

/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node.  This node is represented as a
/// single byte with a single TypeEntry of "void".
///
void DSNode::foldNodeCompletely() {
  if (isNodeCompletelyFolded()) return;

  ++NumFolds;

  // We are no longer typed at all...
  Ty = DSTypeRec(Type::VoidTy, true);
  Size = 1;

  // Loop over all of our referrers, making them point to our zero bytes of
  // space.
  for (vector<DSNodeHandle*>::iterator I = Referrers.begin(), E=Referrers.end();
       I != E; ++I)
    (*I)->setOffset(0);

  // If we have links, merge all of our outgoing links together...
  for (unsigned i = 1, e = Links.size(); i < e; ++i)
    Links[0].mergeWith(Links[i]);
  Links.resize(1);
}

/// isNodeCompletelyFolded - Return true if this node has been completely
/// folded down to something that can never be expanded, effectively losing
/// all of the field sensitivity that may be present in the node.
///
bool DSNode::isNodeCompletelyFolded() const {
  return getSize() == 1 && Ty.Ty == Type::VoidTy && Ty.isArray;
}


/// mergeTypeInfo - This method merges the specified type into the current node
/// at the specified offset.  This may update the current node's type record if
/// this gives more information to the node, it may do nothing to the node if
/// this information is already known, or it may merge the node completely (and
/// return true) if the information is incompatible with what is already known.
///
/// This method returns true if the node is completely folded, otherwise false.
///
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) {
  // Check to make sure the Size member is up-to-date.  Size can be one of the
  // following:
  //  Size = 0, Ty = Void: Nothing is known about this node.
  //  Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
  //  Size = 1, Ty = Void, Array = 1: The node is collapsed
  //  Otherwise, sizeof(Ty) = Size
  //
  assert(((Size == 0 && Ty.Ty == Type::VoidTy && !Ty.isArray) ||
          (Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) ||
          (Size == 1 && Ty.Ty == Type::VoidTy && Ty.isArray) ||
          (Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) ||
          (TD.getTypeSize(Ty.Ty) == Size)) &&
         "Size member of DSNode doesn't match the type structure!");
  assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");

  if (Offset == 0 && NewTy == Ty.Ty)
    return false;  // This should be a common case, handle it efficiently

  // Return true immediately if the node is completely folded.
  if (isNodeCompletelyFolded()) return true;

  // If this is an array type, eliminate the outside arrays because they won't
  // be used anyway.  This greatly reduces the size of large static arrays used
  // as global variables, for example.
  //
  while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
    // FIXME: we might want to keep small arrays, but must be careful about
    // things like: [2 x [10000 x int*]]
    NewTy = AT->getElementType();
  }

  // Figure out how big the new type we're merging in is...
  unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;

  // Otherwise check to see if we can fold this type into the current node.  If
  // we can't, we fold the node completely, if we can, we potentially update our
  // internal state.
  //
  if (Ty.Ty == Type::VoidTy) {
    // If this is the first type that this node has seen, just accept it without
    // question....
    assert(Offset == 0 && "Cannot have an offset into a void node!");
    assert(Ty.isArray == false && "This shouldn't happen!");
    Ty.Ty = NewTy;
    Size = NewTySize;

    // Calculate the number of outgoing links from this node.
    Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
    return false;
  }

  // Handle node expansion case here...
  if (Offset+NewTySize > Size) {
    // It is illegal to grow this node if we have treated it as an array of
    // objects...
    if (Ty.isArray) {
      foldNodeCompletely();
      return true;
    }

    if (Offset) {  // We could handle this case, but we don't for now...
      DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into "
                      << "offset != 0: Collapsing!\n");
      foldNodeCompletely();
      return true;
    }

    // Okay, the situation is nice and simple, we are trying to merge a type in
    // at offset 0 that is bigger than our current type.  Implement this by
    // switching to the new type and then merge in the smaller one, which should
    // hit the other code path here.  If the other code path decides it's not
    // ok, it will collapse the node as appropriate.
    //
    const Type *OldTy = Ty.Ty;
    Ty.Ty = NewTy;
    Size = NewTySize;

    // Must grow links to be the appropriate size...
    Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);

    // Merge in the old type now... which is guaranteed to be smaller than the
    // "current" type.
    return mergeTypeInfo(OldTy, 0);
  }

  assert(Offset <= Size &&
         "Cannot merge something into a part of our type that doesn't exist!");

  // Find the section of Ty.Ty that NewTy overlaps with... first we find the
  // type that starts at offset Offset.
  //
  unsigned O = 0;
  const Type *SubType = Ty.Ty;
  while (O < Offset) {
    assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");

    switch (SubType->getPrimitiveID()) {
    case Type::StructTyID: {
      const StructType *STy = cast<StructType>(SubType);
      const StructLayout &SL = *TD.getStructLayout(STy);

      unsigned i = 0, e = SL.MemberOffsets.size();
      for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
        /* empty */;

      // The offset we are looking for must be in the i'th element...
      SubType = STy->getElementTypes()[i];
      O += SL.MemberOffsets[i];
      break;
    }
    case Type::ArrayTyID: {
      SubType = cast<ArrayType>(SubType)->getElementType();
      unsigned ElSize = TD.getTypeSize(SubType);
      unsigned Remainder = (Offset-O) % ElSize;
      O = Offset-Remainder;
      break;
    }
    default:
      assert(0 && "Unknown type!");
    }
  }

  assert(O == Offset && "Could not achieve the correct offset!");

  // If we found our type exactly, early exit
  if (SubType == NewTy) return false;

  // Okay, so we found the leader type at the offset requested.  Search the list
  // of types that starts at this offset.  If SubType is currently an array or
  // structure, the type desired may actually be the first element of the
  // composite type...
  //
  unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;
  while (SubType != NewTy) {
    const Type *NextSubType = 0;
    unsigned NextSubTypeSize;
    switch (SubType->getPrimitiveID()) {
    case Type::StructTyID:
      NextSubType = cast<StructType>(SubType)->getElementTypes()[0];
      NextSubTypeSize = TD.getTypeSize(SubType);
      break;
    case Type::ArrayTyID:
      NextSubType = cast<ArrayType>(SubType)->getElementType();
      NextSubTypeSize = TD.getTypeSize(SubType);
      break;
    default: ;
      // fall out 
    }

    if (NextSubType == 0)
      break;   // In the default case, break out of the loop

    if (NextSubTypeSize < NewTySize)
      break;   // Don't allow shrinking to a smaller type than NewTySize
    SubType = NextSubType;
    SubTypeSize = NextSubTypeSize;
  }

  // If we found the type exactly, return it...
  if (SubType == NewTy)
    return false;

  // Check to see if we have a compatible, but different type...
  if (NewTySize == SubTypeSize) {
    // Check to see if this type is obviously convertable... int -> uint f.e.
    if (NewTy->isLosslesslyConvertableTo(SubType))
      return false;

    // Check to see if we have a pointer & integer mismatch going on here,
    // loading a pointer as a long, for example.
    //
    if (SubType->isInteger() && isa<PointerType>(NewTy) ||
        NewTy->isInteger() && isa<PointerType>(SubType))
      return false;

  }


  DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty.Ty
                  << "\n due to:" << NewTy << " @ " << Offset << "!\n"
                  << "SubType: " << SubType << "\n\n");

  foldNodeCompletely();
  return true;
}



// addEdgeTo - Add an edge from the current node to the specified node.  This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
  if (NH.getNode() == 0) return;       // Nothing to do

  DSNodeHandle &ExistingEdge = getLink(Offset);
  if (ExistingEdge.getNode()) {
    // Merge the two nodes...
    ExistingEdge.mergeWith(NH);
  } else {                             // No merging to perform...
    setLink(Offset, NH);               // Just force a link in there...
  }
}


// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted.  This assumes that 'T's are
// efficiently copyable and have sane comparison semantics.
//
template<typename T>
void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
  // By far, the most common cases will be the simple ones.  In these cases,
  // avoid having to allocate a temporary vector...
  //
  if (Src.empty()) {             // Nothing to merge in...
    return;
  } else if (Dest.empty()) {     // Just copy the result in...
    Dest = Src;
  } else if (Src.size() == 1) {  // Insert a single element...
    const T &V = Src[0];
    typename vector<T>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(), V);
    if (I == Dest.end() || *I != Src[0])  // If not already contained...
      Dest.insert(I, Src[0]);
  } else if (Dest.size() == 1) {
    T Tmp = Dest[0];                      // Save value in temporary...
    Dest = Src;                           // Copy over list...
    typename vector<T>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(),Tmp);
    if (I == Dest.end() || *I != Src[0])  // If not already contained...
      Dest.insert(I, Src[0]);

  } else {
    // Make a copy to the side of Dest...
    vector<T> Old(Dest);
    
    // Make space for all of the type entries now...
    Dest.resize(Dest.size()+Src.size());
    
    // Merge the two sorted ranges together... into Dest.
    std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
    
    // Now erase any duplicate entries that may have accumulated into the 
    // vectors (because they were in both of the input sets)
    Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
  }
}


// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
  DSNode *N = NH.getNode();
  if (N == 0 || (N == this && NH.getOffset() == Offset))
    return;  // Noop

  assert((N->NodeType & DSNode::DEAD) == 0);
  assert((NodeType & DSNode::DEAD) == 0);
  assert(!hasNoReferrers() && "Should not try to fold a useless node!");

  if (N == this) {
    // We cannot merge two pieces of the same node together, collapse the node
    // completely.
    DEBUG(std::cerr << "Attempting to merge two chunks of"
                    << " the same node together!\n");
    foldNodeCompletely();
    return;
  }

  // Merge the type entries of the two nodes together...
  if (N->Ty.Ty != Type::VoidTy) {
    mergeTypeInfo(N->Ty.Ty, Offset);

    // mergeTypeInfo can cause collapsing, which can cause this node to become
    // dead.
    if (hasNoReferrers()) return;
  }
  assert((NodeType & DSNode::DEAD) == 0);

  // If we are merging a node with a completely folded node, then both nodes are
  // now completely folded.
  //
  if (isNodeCompletelyFolded()) {
    if (!N->isNodeCompletelyFolded()) {
      N->foldNodeCompletely();
      if (hasNoReferrers()) return;
    }
  } else if (N->isNodeCompletelyFolded()) {
    foldNodeCompletely();
    Offset = 0;
    if (hasNoReferrers()) return;
  }
  N = NH.getNode();
  assert((NodeType & DSNode::DEAD) == 0);

  if (this == N || N == 0) return;
  assert((NodeType & DSNode::DEAD) == 0);

  // If both nodes are not at offset 0, make sure that we are merging the node
  // at an later offset into the node with the zero offset.
  //
  if (Offset > NH.getOffset()) {
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
    // If the offsets are the same, merge the smaller node into the bigger node
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  }

#if 0
  std::cerr << "\n\nMerging:\n";
  N->print(std::cerr, 0);
  std::cerr << " and:\n";
  print(std::cerr, 0);
#endif

  // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
  // respect to NH.Offset) is now zero.
  //
  unsigned NOffset = NH.getOffset()-Offset;
  unsigned NSize = N->getSize();

  assert((NodeType & DSNode::DEAD) == 0);

  // Remove all edges pointing at N, causing them to point to 'this' instead.
  // Make sure to adjust their offset, not just the node pointer.
  //
  while (!N->Referrers.empty()) {
    DSNodeHandle &Ref = *N->Referrers.back();
    Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
  }
  assert((NodeType & DSNode::DEAD) == 0);

  // Make all of the outgoing links of N now be outgoing links of this.  This
  // can cause recursive merging!
  //
  for (unsigned i = 0; i < NSize; i += DS::PointerSize) {
    DSNodeHandle &Link = N->getLink(i);
    if (Link.getNode()) {
      addEdgeTo((i+NOffset) % getSize(), Link);

      // It's possible that after adding the new edge that some recursive
      // merging just occured, causing THIS node to get merged into oblivion.
      // If that happens, we must not try to merge any more edges into it!
      //
      if (Size == 0) return;
    }
  }

  // Now that there are no outgoing edges, all of the Links are dead.
  N->Links.clear();
  N->Size = 0;
  N->Ty.Ty = Type::VoidTy;
  N->Ty.isArray = false;

  // Merge the node types
  NodeType |= N->NodeType;
  N->NodeType = DEAD;   // N is now a dead node.

  // Merge the globals list...
  if (!N->Globals.empty()) {
    MergeSortedVectors(Globals, N->Globals);

    // Delete the globals from the old node...
    N->Globals.clear();
  }
}

//===----------------------------------------------------------------------===//
// DSCallSite Implementation
//===----------------------------------------------------------------------===//

// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
Function &DSCallSite::getCaller() const {
  return *Inst->getParent()->getParent();
}


//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//

DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
  std::map<const DSNode*, DSNodeHandle> NodeMap;
  RetNode = cloneInto(G, ScalarMap, NodeMap);
}

DSGraph::DSGraph(const DSGraph &G,
                 std::map<const DSNode*, DSNodeHandle> &NodeMap)
  : Func(G.Func) {
  RetNode = cloneInto(G, ScalarMap, NodeMap);
}

DSGraph::~DSGraph() {
  FunctionCalls.clear();
  AuxFunctionCalls.clear();
  ScalarMap.clear();
  RetNode.setNode(0);

#ifndef NDEBUG
  // Drop all intra-node references, so that assertions don't fail...
  std::for_each(Nodes.begin(), Nodes.end(),
                std::mem_fun(&DSNode::dropAllReferences));
#endif

  // Delete all of the nodes themselves...
  std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}

// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }


/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
///
void DSNode::remapLinks(std::map<const DSNode*, DSNodeHandle> &OldNodeMap) {
  for (unsigned i = 0, e = Links.size(); i != e; ++i) {
    DSNodeHandle &H = OldNodeMap[Links[i].getNode()];
    Links[i].setNode(H.getNode());
    Links[i].setOffset(Links[i].getOffset()+H.getOffset());
  }
}


// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph.  The translated ScalarMap for the old function is
// filled into the OldValMap member.  If StripAllocas is set to true, Alloca
// markers are removed from the graph, as the graph is being cloned into a
// calling function's graph.
//
DSNodeHandle DSGraph::cloneInto(const DSGraph &G, 
                                std::map<Value*, DSNodeHandle> &OldValMap,
                              std::map<const DSNode*, DSNodeHandle> &OldNodeMap,
                                unsigned CloneFlags) {
  assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
  assert(&G != this && "Cannot clone graph into itself!");

  unsigned FN = Nodes.size();           // First new node...

  // Duplicate all of the nodes, populating the node map...
  Nodes.reserve(FN+G.Nodes.size());
  for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
    DSNode *Old = G.Nodes[i];
    DSNode *New = new DSNode(*Old);
    New->NodeType &= ~DSNode::DEAD;  // Clear dead flag...
    Nodes.push_back(New);
    OldNodeMap[Old] = New;
  }

  // Rewrite the links in the new nodes to point into the current graph now.
  for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
    Nodes[i]->remapLinks(OldNodeMap);

  // Remove alloca markers as specified
  if (CloneFlags & StripAllocaBit)
    for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
      Nodes[i]->NodeType &= ~DSNode::AllocaNode;

  // Copy the value map... and merge all of the global nodes...
  for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(),
         E = G.ScalarMap.end(); I != E; ++I) {
    DSNodeHandle &H = OldValMap[I->first];
    DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
    H.setNode(MappedNode.getNode());
    H.setOffset(I->second.getOffset()+MappedNode.getOffset());

    if (isa<GlobalValue>(I->first)) {  // Is this a global?
      std::map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first);
      if (GVI != ScalarMap.end()) {   // Is the global value in this fn already?
        GVI->second.mergeWith(H);
      } else {
        ScalarMap[I->first] = H;      // Add global pointer to this graph
      }
    }
  }

  if (!(CloneFlags & DontCloneCallNodes)) {
    // Copy the function calls list...
    unsigned FC = FunctionCalls.size();  // FirstCall
    FunctionCalls.reserve(FC+G.FunctionCalls.size());
    for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
      FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
  }

  if (!(CloneFlags & DontCloneAuxCallNodes)) {
    // Copy the auxillary function calls list...
    unsigned FC = AuxFunctionCalls.size();  // FirstCall
    AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
    for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
      AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
  }

  // Return the returned node pointer...
  DSNodeHandle &MappedRet = OldNodeMap[G.RetNode.getNode()];
  return DSNodeHandle(MappedRet.getNode(),
                      MappedRet.getOffset()+G.RetNode.getOffset());
}

/// mergeInGraph - The method is used for merging graphs together.  If the
/// argument graph is not *this, it makes a clone of the specified graph, then
/// merges the nodes specified in the call site with the formal arguments in the
/// graph.
///
void DSGraph::mergeInGraph(DSCallSite &CS, const DSGraph &Graph,
                           unsigned CloneFlags) {
  std::map<Value*, DSNodeHandle> OldValMap;
  DSNodeHandle RetVal;
  std::map<Value*, DSNodeHandle> *ScalarMap = &OldValMap;

  // If this is not a recursive call, clone the graph into this graph...
  if (&Graph != this) {
    // Clone the callee's graph into the current graph, keeping
    // track of where scalars in the old graph _used_ to point,
    // and of the new nodes matching nodes of the old graph.
    std::map<const DSNode*, DSNodeHandle> OldNodeMap;
    
    // The clone call may invalidate any of the vectors in the data
    // structure graph.  Strip locals and don't copy the list of callers
    RetVal = cloneInto(Graph, OldValMap, OldNodeMap, CloneFlags);
    ScalarMap = &OldValMap;
  } else {
    RetVal = getRetNode();
    ScalarMap = &getScalarMap();
  }

  // Merge the return value with the return value of the context...
  RetVal.mergeWith(CS.getRetVal());

  // Resolve all of the function arguments...
  Function &F = Graph.getFunction();
  Function::aiterator AI = F.abegin();
  for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
    // Advance the argument iterator to the first pointer argument...
    while (!isPointerType(AI->getType())) {
      ++AI;
#ifndef NDEBUG
      if (AI == F.aend())
        std::cerr << "Bad call to Function: " << F.getName() << "\n";
#endif
      assert(AI != F.aend() && "# Args provided is not # Args required!");
    }
    
    // Add the link from the argument scalar to the provided value
    DSNodeHandle &NH = (*ScalarMap)[AI];
    assert(NH.getNode() && "Pointer argument without scalarmap entry?");
    NH.mergeWith(CS.getPtrArg(i));
  }
}

#if 0
// cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively).
// 
DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
  if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;

  // If a clone has already been created for GNode, return it.
  DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]];
  if (ValMapEntry != 0)
    return ValMapEntry;

  // Clone the node and update the ValMap.
  DSNode* NewNode = new DSNode(*GNode);
  ValMapEntry = NewNode;                // j=0 case of loop below!
  Nodes.push_back(NewNode);
  for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
    ScalarMap[NewNode->getGlobals()[j]] = NewNode;

  // Rewrite the links in the new node to point into the current graph.
  for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
    NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));

  return NewNode;
}
#endif


// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed.  Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
  // Stop recursion if no node, or if node already marked...
  if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;

  // Actually mark the node
  N->NodeType |= DSNode::Incomplete;

  // Recusively process children...
  for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
    if (DSNode *DSN = N->getLink(i).getNode())
      markIncompleteNode(DSN);
}


// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet.  This marks
// nodes that are reachable through three sources of "unknownness":
//
//  Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(bool markFormalArgs) {
  // Mark any incoming arguments as incomplete...
  if (markFormalArgs && Func)
    for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
      if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end())
        markIncompleteNode(ScalarMap[I].getNode());

  // Mark stuff passed into functions calls as being incomplete...
  for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
    DSCallSite &Call = FunctionCalls[i];
    // Then the return value is certainly incomplete!
    markIncompleteNode(Call.getRetVal().getNode());

    // All objects pointed to by function arguments are incomplete though!
    for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
      markIncompleteNode(Call.getPtrArg(i).getNode());
  }

  // Mark all of the nodes pointed to by global nodes as incomplete...
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    if (Nodes[i]->NodeType & DSNode::GlobalNode) {
      DSNode *N = Nodes[i];
      // FIXME: Make more efficient by looking over Links directly
      for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
        if (DSNode *DSN = N->getLink(i).getNode())
          markIncompleteNode(DSN);
    }
}

// removeRefsToGlobal - Helper function that removes globals from the
// ScalarMap so that the referrer count will go down to zero.
static void removeRefsToGlobal(DSNode* N,
                               std::map<Value*, DSNodeHandle> &ScalarMap) {
  while (!N->getGlobals().empty()) {
    GlobalValue *GV = N->getGlobals().back();
    N->getGlobals().pop_back();      
    ScalarMap.erase(GV);
  }
}


// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
  // Is it a trivially dead shadow node...
  if (N->getReferrers().empty() &&
      (N->NodeType == 0 || N->NodeType == DSNode::DEAD))
    return true;

  // Is it a function node or some other trivially unused global?
  if ((N->NodeType & ~DSNode::GlobalNode) == 0 && N->getSize() == 0 &&
      N->getReferrers().size() == N->getGlobals().size()) {

    // Remove the globals from the ScalarMap, so that the referrer count will go
    // down to zero.
    removeRefsToGlobal(N, ScalarMap);
    assert(N->getReferrers().empty() && "Referrers should all be gone now!");
    return true;
  }

  return false;
}

static void removeIdenticalCalls(vector<DSCallSite> &Calls,
                                 const std::string &where) {
  // Remove trivially identical function calls
  unsigned NumFns = Calls.size();
  std::sort(Calls.begin(), Calls.end());
  Calls.erase(std::unique(Calls.begin(), Calls.end()),
              Calls.end());

  // Track the number of call nodes merged away...
  NumCallNodesMerged += NumFns-Calls.size();

  DEBUG(if (NumFns != Calls.size())
          std::cerr << "Merged " << (NumFns-Calls.size())
                    << " call nodes in " << where << "\n";);
}

// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph.  These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
  for (unsigned i = 0; i != Nodes.size(); ++i)
    if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode))
      if (isNodeDead(Nodes[i])) {               // This node is dead!
        delete Nodes[i];                        // Free memory...
        Nodes.erase(Nodes.begin()+i--);         // Remove from node list...
      }

  removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
}


// markAlive - Simple graph walker that recursively traverses the graph, marking
// stuff to be alive.
//
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
  if (N == 0) return;

  Alive.insert(N);
  for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
    if (DSNode *DSN = N->getLink(i).getNode())
      if (!Alive.count(DSN))
        markAlive(DSN, Alive);
}

static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
                             std::set<DSNode*> &Visiting) {
  if (N == 0) return false;

  if (Visiting.count(N)) return false; // terminate recursion on a cycle
  Visiting.insert(N);

  // If any immediate successor is alive, N is alive
  for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
    if (DSNode *DSN = N->getLink(i).getNode())
      if (Alive.count(DSN)) {
        Visiting.erase(N);
        return true;
      }

  // Else if any successor reaches a live node, N is alive
  for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
    if (DSNode *DSN = N->getLink(i).getNode())
      if (checkGlobalAlive(DSN, Alive, Visiting)) {
        Visiting.erase(N); return true;
      }

  Visiting.erase(N);
  return false;
}


// markGlobalsIteration - Recursive helper function for markGlobalsAlive().
// This would be unnecessary if function calls were real nodes!  In that case,
// the simple iterative loop in the first few lines below suffice.
// 
static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
                                 vector<DSCallSite> &Calls,
                                 std::set<DSNode*> &Alive,
                                 bool FilterCalls) {

  // Iterate, marking globals or cast nodes alive until no new live nodes
  // are added to Alive
  std::set<DSNode*> Visiting;           // Used to identify cycles 
  std::set<DSNode*>::iterator I = GlobalNodes.begin(), E = GlobalNodes.end();
  for (size_t liveCount = 0; liveCount < Alive.size(); ) {
    liveCount = Alive.size();
    for ( ; I != E; ++I)
      if (Alive.count(*I) == 0) {
        Visiting.clear();
        if (checkGlobalAlive(*I, Alive, Visiting))
          markAlive(*I, Alive);
      }
  }

  // Find function calls with some dead and some live nodes.
  // Since all call nodes must be live if any one is live, we have to mark
  // all nodes of the call as live and continue the iteration (via recursion).
  if (FilterCalls) {
    bool Recurse = false;
    for (unsigned i = 0, ei = Calls.size(); i < ei; ++i) {
      bool CallIsDead = true, CallHasDeadArg = false;
      DSCallSite &CS = Calls[i];
      for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j)
        if (DSNode *N = CS.getPtrArg(j).getNode()) {
          bool ArgIsDead  = !Alive.count(N);
          CallHasDeadArg |= ArgIsDead;
          CallIsDead     &= ArgIsDead;
        }

      if (DSNode *N = CS.getRetVal().getNode()) {
        bool RetIsDead  = !Alive.count(N);
        CallHasDeadArg |= RetIsDead;
        CallIsDead     &= RetIsDead;
      }

      DSNode *N = CS.getCallee().getNode();
      bool FnIsDead  = !Alive.count(N);
      CallHasDeadArg |= FnIsDead;
      CallIsDead     &= FnIsDead;

      if (!CallIsDead && CallHasDeadArg) {
        // Some node in this call is live and another is dead.
        // Mark all nodes of call as live and iterate once more.
        Recurse = true;
        for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j)
          markAlive(CS.getPtrArg(j).getNode(), Alive);
        markAlive(CS.getRetVal().getNode(), Alive);
        markAlive(CS.getCallee().getNode(), Alive);
      }
    }
    if (Recurse)
      markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
  }
}


// markGlobalsAlive - Mark global nodes and cast nodes alive if they
// can reach any other live node.  Since this can produce new live nodes,
// we use a simple iterative algorithm.
// 
static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive,
                             bool FilterCalls) {
  // Add global and cast nodes to a set so we don't walk all nodes every time
  std::set<DSNode*> GlobalNodes;
  for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
    if (G.getNodes()[i]->NodeType & DSNode::GlobalNode)
      GlobalNodes.insert(G.getNodes()[i]);

  // Add all call nodes to the same set
  vector<DSCallSite> &Calls = G.getAuxFunctionCalls();
  if (FilterCalls) {
    for (unsigned i = 0, e = Calls.size(); i != e; ++i) {
      for (unsigned j = 0, e = Calls[i].getNumPtrArgs(); j != e; ++j)
        if (DSNode *N = Calls[i].getPtrArg(j).getNode())
          GlobalNodes.insert(N);
      if (DSNode *N = Calls[i].getRetVal().getNode())
        GlobalNodes.insert(N);
      if (DSNode *N = Calls[i].getCallee().getNode())
        GlobalNodes.insert(N);
    }
  }

  // Iterate and recurse until no new live node are discovered.
  // This would be a simple iterative loop if function calls were real nodes!
  markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);

  // Free up references to dead globals from the ScalarMap
  std::set<DSNode*>::iterator I = GlobalNodes.begin(), E = GlobalNodes.end();
  for( ; I != E; ++I)
    if (Alive.count(*I) == 0)
      removeRefsToGlobal(*I, G.getScalarMap());

  // Delete dead function calls
  if (FilterCalls)
    for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
      bool CallIsDead = true;
      for (unsigned j = 0, ej = Calls[i].getNumPtrArgs();
           CallIsDead && j != ej; ++j)
        CallIsDead = Alive.count(Calls[i].getPtrArg(j).getNode()) == 0;
      if (CallIsDead)
        Calls.erase(Calls.begin() + i); // remove the call entirely
    }
}

// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable.  This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely.  This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
  assert((!KeepAllGlobals || KeepCalls) &&  // FIXME: This should be an enum!
         "KeepAllGlobals without KeepCalls is meaningless");

  // Reduce the amount of work we have to do...
  removeTriviallyDeadNodes(KeepAllGlobals);

  // FIXME: Merge nontrivially identical call nodes...

  // Alive - a set that holds all nodes found to be reachable/alive.
  std::set<DSNode*> Alive;

  // If KeepCalls, mark all nodes reachable by call nodes as alive...
  if (KeepCalls) {
    for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
      for (unsigned j = 0, e = FunctionCalls[i].getNumPtrArgs(); j != e; ++j)
        markAlive(FunctionCalls[i].getPtrArg(j).getNode(), Alive);
      markAlive(FunctionCalls[i].getRetVal().getNode(), Alive);
      markAlive(FunctionCalls[i].getCallee().getNode(), Alive);
    }
    for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) {
      for (unsigned j = 0, e = AuxFunctionCalls[i].getNumPtrArgs(); j != e; ++j)
        markAlive(AuxFunctionCalls[i].getPtrArg(j).getNode(), Alive);
      markAlive(AuxFunctionCalls[i].getRetVal().getNode(), Alive);
      markAlive(AuxFunctionCalls[i].getCallee().getNode(), Alive);
    }
  }

  // Mark all nodes reachable by scalar nodes as alive...
  for (std::map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(),
         E = ScalarMap.end(); I != E; ++I)
    markAlive(I->second.getNode(), Alive);

  // The return value is alive as well...
  markAlive(RetNode.getNode(), Alive);

  // Mark all globals or cast nodes that can reach a live node as alive.
  // This also marks all nodes reachable from such nodes as alive.
  // Of course, if KeepAllGlobals is specified, they would be live already.

  if (!KeepAllGlobals)
    markGlobalsAlive(*this, Alive, !KeepCalls);

  // Loop over all unreachable nodes, dropping their references...
  vector<DSNode*> DeadNodes;
  DeadNodes.reserve(Nodes.size());     // Only one allocation is allowed.
  for (unsigned i = 0; i != Nodes.size(); ++i)
    if (!Alive.count(Nodes[i])) {
      DSNode *N = Nodes[i];
      Nodes.erase(Nodes.begin()+i--);  // Erase node from alive list.
      DeadNodes.push_back(N);          // Add node to our list of dead nodes
      N->dropAllReferences();          // Drop all outgoing edges
    }
  
  // Delete all dead nodes...
  std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
}



// maskNodeTypes - Apply a mask to all of the node types in the graph.  This
// is useful for clearing out markers like Scalar or Incomplete.
//
void DSGraph::maskNodeTypes(unsigned char Mask) {
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    Nodes[i]->NodeType &= Mask;
}


#if 0
//===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation
//===----------------------------------------------------------------------===//

GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) {
}

GlobalDSGraph::~GlobalDSGraph() {
  assert(Referrers.size() == 0 &&
         "Deleting global graph while references from other graphs exist");
}

void GlobalDSGraph::addReference(const DSGraph* referrer) {
  if (referrer != this)
    Referrers.insert(referrer);
}

void GlobalDSGraph::removeReference(const DSGraph* referrer) {
  if (referrer != this) {
    assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!");
    Referrers.erase(referrer);
    if (Referrers.size() == 0)
      delete this;
  }
}

#if 0
// Bits used in the next function
static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode;


// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph,
// in order to track cycles.
// GlobalsAreFinal is a flag that says whether it is safe to assume that
// an existing global node is complete.  This is important to avoid
// reinserting all globals when inserting Calls to functions.
// This is a helper function for cloneGlobals and cloneCalls.
// 
DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
                                    std::map<const DSNode*, DSNode*> &NodeCache,
                                    bool GlobalsAreFinal) {
  if (OldNode == 0) return 0;

  // The caller should check this is an external node.  Just more  efficient...
  assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");

  // If a clone has already been created for OldNode, return it.
  DSNode*& CacheEntry = NodeCache[OldNode];
  if (CacheEntry != 0)
    return CacheEntry;

  // The result value...
  DSNode* NewNode = 0;

  // If nodes already exist for any of the globals of OldNode,
  // merge all such nodes together since they are merged in OldNode.
  // If ValueCacheIsFinal==true, look for an existing node that has
  // an identical list of globals and return it if it exists.
  //
  for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
    if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) {
      if (NewNode == 0) {
        NewNode = PrevNode;             // first existing node found
        if (GlobalsAreFinal && j == 0)
          if (OldNode->getGlobals() == PrevNode->getGlobals()) {
            CacheEntry = NewNode;
            return NewNode;
          }
      }
      else if (NewNode != PrevNode) {   // found another, different from prev
        // update ValMap *before* merging PrevNode into NewNode
        for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
          ScalarMap[PrevNode->getGlobals()[k]] = NewNode;
        NewNode->mergeWith(PrevNode);
      }
    } else if (NewNode != 0) {
      ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
    }

  // If no existing node was found, clone the node and update the ValMap.
  if (NewNode == 0) {
    NewNode = new DSNode(*OldNode);
    Nodes.push_back(NewNode);
    for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
      NewNode->setLink(j, 0);
    for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
      ScalarMap[NewNode->getGlobals()[j]] = NewNode;
  }
  else
    NewNode->NodeType |= OldNode->NodeType; // Markers may be different!

  // Add the entry to NodeCache
  CacheEntry = NewNode;

  // Rewrite the links in the new node to point into the current graph,
  // but only for links to external nodes.  Set other links to NULL.
  for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
    DSNode* OldTarget = OldNode->getLink(j);
    if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
      DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
      if (NewNode->getLink(j))
        NewNode->getLink(j)->mergeWith(NewLink);
      else
        NewNode->setLink(j, NewLink);
    }
  }

  // Remove all local markers
  NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);

  return NewNode;
}


// GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally
// visible target links (and recursively their such links) into this graph.
// 
void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
  std::map<const DSNode*, DSNode*> NodeCache;
#if 0
  for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
    if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
      GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
  if (CloneCalls)
    GlobalsGraph->cloneCalls(Graph);

  GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
#endif
}


// GlobalDSGraph::cloneCalls - Clone function calls and their visible target
// links (and recursively their such links) into this graph.
// 
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
  std::map<const DSNode*, DSNode*> NodeCache;
  vector<DSCallSite >& FromCalls =Graph.FunctionCalls;

  FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());

  for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
    DSCallSite& callCopy = FunctionCalls.back();
    callCopy.reserve(FromCalls[i].size());
    for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
      callCopy.push_back
        ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
         ? cloneNodeInto(FromCalls[i][j], NodeCache, true)
         : 0);
  }

  // remove trivially identical function calls
  removeIdenticalCalls(FunctionCalls, "Globals Graph");
}
#endif

#endif