aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/DataStructure.cpp
blob: b125b5d67f396ad67dd8a461ed8dbc7cc5116362 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
//===- DataStructure.cpp - Implement the core data structure analysis -----===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Assembly/Writer.h"
#include "Support/Debug.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include "Support/Timer.h"
#include <algorithm>

namespace {
  Statistic<> NumFolds          ("dsnode", "Number of nodes completely folded");
  Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged");
};

namespace DS {   // TODO: FIXME
  extern TargetData TD;
}
using namespace DS;

DSNode *DSNodeHandle::HandleForwarding() const {
  assert(!N->ForwardNH.isNull() && "Can only be invoked if forwarding!");

  // Handle node forwarding here!
  DSNode *Next = N->ForwardNH.getNode();  // Cause recursive shrinkage
  Offset += N->ForwardNH.getOffset();

  if (--N->NumReferrers == 0) {
    // Removing the last referrer to the node, sever the forwarding link
    N->stopForwarding();
  }

  N = Next;
  N->NumReferrers++;
  if (N->Size <= Offset) {
    assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
    Offset = 0;
  }
  return N;
}

//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//

DSNode::DSNode(const Type *T, DSGraph *G)
  : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
  // Add the type entry if it is specified...
  if (T) mergeTypeInfo(T, 0);
  G->getNodes().push_back(this);
}

// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N, DSGraph *G)
  : NumReferrers(0), Size(N.Size), ParentGraph(G),
    Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) {
  G->getNodes().push_back(this);
}

void DSNode::assertOK() const {
  assert((Ty != Type::VoidTy ||
          Ty == Type::VoidTy && (Size == 0 ||
                                 (NodeType & DSNode::Array))) &&
         "Node not OK!");

  assert(ParentGraph && "Node has no parent?");
  const DSGraph::ScalarMapTy &SM = ParentGraph->getScalarMap();
  for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
    assert(SM.find(Globals[i]) != SM.end());
    assert(SM.find(Globals[i])->second.getNode() == this);
  }
}

/// forwardNode - Mark this node as being obsolete, and all references to it
/// should be forwarded to the specified node and offset.
///
void DSNode::forwardNode(DSNode *To, unsigned Offset) {
  assert(this != To && "Cannot forward a node to itself!");
  assert(ForwardNH.isNull() && "Already forwarding from this node!");
  if (To->Size <= 1) Offset = 0;
  assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
         "Forwarded offset is wrong!");
  ForwardNH.setNode(To);
  ForwardNH.setOffset(Offset);
  NodeType = DEAD;
  Size = 0;
  Ty = Type::VoidTy;
}

// addGlobal - Add an entry for a global value to the Globals list.  This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
  // Keep the list sorted.
  std::vector<GlobalValue*>::iterator I =
    std::lower_bound(Globals.begin(), Globals.end(), GV);

  if (I == Globals.end() || *I != GV) {
    //assert(GV->getType()->getElementType() == Ty);
    Globals.insert(I, GV);
    NodeType |= GlobalNode;
  }
}

/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node.  This node is represented as a
/// single byte with a single TypeEntry of "void".
///
void DSNode::foldNodeCompletely() {
  if (isNodeCompletelyFolded()) return;  // If this node is already folded...

  ++NumFolds;

  // Create the node we are going to forward to...
  DSNode *DestNode = new DSNode(0, ParentGraph);
  DestNode->NodeType = NodeType|DSNode::Array;
  DestNode->Ty = Type::VoidTy;
  DestNode->Size = 1;
  DestNode->Globals.swap(Globals);

  // Start forwarding to the destination node...
  forwardNode(DestNode, 0);
  
  if (Links.size()) {
    DestNode->Links.push_back(Links[0]);
    DSNodeHandle NH(DestNode);

    // If we have links, merge all of our outgoing links together...
    for (unsigned i = Links.size()-1; i != 0; --i)
      NH.getNode()->Links[0].mergeWith(Links[i]);
    Links.clear();
  } else {
    DestNode->Links.resize(1);
  }
}

/// isNodeCompletelyFolded - Return true if this node has been completely
/// folded down to something that can never be expanded, effectively losing
/// all of the field sensitivity that may be present in the node.
///
bool DSNode::isNodeCompletelyFolded() const {
  return getSize() == 1 && Ty == Type::VoidTy && isArray();
}


namespace {
  /// TypeElementWalker Class - Used for implementation of physical subtyping...
  ///
  class TypeElementWalker {
    struct StackState {
      const Type *Ty;
      unsigned Offset;
      unsigned Idx;
      StackState(const Type *T, unsigned Off = 0)
        : Ty(T), Offset(Off), Idx(0) {}
    };

    std::vector<StackState> Stack;
  public:
    TypeElementWalker(const Type *T) {
      Stack.push_back(T);
      StepToLeaf();
    }

    bool isDone() const { return Stack.empty(); }
    const Type *getCurrentType()   const { return Stack.back().Ty;     }
    unsigned    getCurrentOffset() const { return Stack.back().Offset; }

    void StepToNextType() {
      PopStackAndAdvance();
      StepToLeaf();
    }

  private:
    /// PopStackAndAdvance - Pop the current element off of the stack and
    /// advance the underlying element to the next contained member.
    void PopStackAndAdvance() {
      assert(!Stack.empty() && "Cannot pop an empty stack!");
      Stack.pop_back();
      while (!Stack.empty()) {
        StackState &SS = Stack.back();
        if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
          ++SS.Idx;
          if (SS.Idx != ST->getElementTypes().size()) {
            const StructLayout *SL = TD.getStructLayout(ST);
            SS.Offset += SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1];
            return;
          }
          Stack.pop_back();  // At the end of the structure
        } else {
          const ArrayType *AT = cast<ArrayType>(SS.Ty);
          ++SS.Idx;
          if (SS.Idx != AT->getNumElements()) {
            SS.Offset += TD.getTypeSize(AT->getElementType());
            return;
          }
          Stack.pop_back();  // At the end of the array
        }
      }
    }

    /// StepToLeaf - Used by physical subtyping to move to the first leaf node
    /// on the type stack.
    void StepToLeaf() {
      if (Stack.empty()) return;
      while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
        StackState &SS = Stack.back();
        if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
          if (ST->getElementTypes().empty()) {
            assert(SS.Idx == 0);
            PopStackAndAdvance();
          } else {
            // Step into the structure...
            assert(SS.Idx < ST->getElementTypes().size());
            const StructLayout *SL = TD.getStructLayout(ST);
            Stack.push_back(StackState(ST->getElementTypes()[SS.Idx],
                                       SS.Offset+SL->MemberOffsets[SS.Idx]));
          }
        } else {
          const ArrayType *AT = cast<ArrayType>(SS.Ty);
          if (AT->getNumElements() == 0) {
            assert(SS.Idx == 0);
            PopStackAndAdvance();
          } else {
            // Step into the array...
            assert(SS.Idx < AT->getNumElements());
            Stack.push_back(StackState(AT->getElementType(),
                                       SS.Offset+SS.Idx*
                                       TD.getTypeSize(AT->getElementType())));
          }
        }
      }
    }
  };
}

/// ElementTypesAreCompatible - Check to see if the specified types are
/// "physically" compatible.  If so, return true, else return false.  We only
/// have to check the fields in T1: T2 may be larger than T1.
///
static bool ElementTypesAreCompatible(const Type *T1, const Type *T2) {
  TypeElementWalker T1W(T1), T2W(T2);
  
  while (!T1W.isDone() && !T2W.isDone()) {
    if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
      return false;

    const Type *T1 = T1W.getCurrentType();
    const Type *T2 = T2W.getCurrentType();
    if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2))
      return false;
    
    T1W.StepToNextType();
    T2W.StepToNextType();
  }
  
  return T1W.isDone();
}


/// mergeTypeInfo - This method merges the specified type into the current node
/// at the specified offset.  This may update the current node's type record if
/// this gives more information to the node, it may do nothing to the node if
/// this information is already known, or it may merge the node completely (and
/// return true) if the information is incompatible with what is already known.
///
/// This method returns true if the node is completely folded, otherwise false.
///
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
                           bool FoldIfIncompatible) {
  // Check to make sure the Size member is up-to-date.  Size can be one of the
  // following:
  //  Size = 0, Ty = Void: Nothing is known about this node.
  //  Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
  //  Size = 1, Ty = Void, Array = 1: The node is collapsed
  //  Otherwise, sizeof(Ty) = Size
  //
  assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
          (Size == 0 && !Ty->isSized() && !isArray()) ||
          (Size == 1 && Ty == Type::VoidTy && isArray()) ||
          (Size == 0 && !Ty->isSized() && !isArray()) ||
          (TD.getTypeSize(Ty) == Size)) &&
         "Size member of DSNode doesn't match the type structure!");
  assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");

  if (Offset == 0 && NewTy == Ty)
    return false;  // This should be a common case, handle it efficiently

  // Return true immediately if the node is completely folded.
  if (isNodeCompletelyFolded()) return true;

  // If this is an array type, eliminate the outside arrays because they won't
  // be used anyway.  This greatly reduces the size of large static arrays used
  // as global variables, for example.
  //
  bool WillBeArray = false;
  while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
    // FIXME: we might want to keep small arrays, but must be careful about
    // things like: [2 x [10000 x int*]]
    NewTy = AT->getElementType();
    WillBeArray = true;
  }

  // Figure out how big the new type we're merging in is...
  unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;

  // Otherwise check to see if we can fold this type into the current node.  If
  // we can't, we fold the node completely, if we can, we potentially update our
  // internal state.
  //
  if (Ty == Type::VoidTy) {
    // If this is the first type that this node has seen, just accept it without
    // question....
    assert(Offset == 0 && "Cannot have an offset into a void node!");
    assert(!isArray() && "This shouldn't happen!");
    Ty = NewTy;
    NodeType &= ~Array;
    if (WillBeArray) NodeType |= Array;
    Size = NewTySize;

    // Calculate the number of outgoing links from this node.
    Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
    return false;
  }

  // Handle node expansion case here...
  if (Offset+NewTySize > Size) {
    // It is illegal to grow this node if we have treated it as an array of
    // objects...
    if (isArray()) {
      if (FoldIfIncompatible) foldNodeCompletely();
      return true;
    }

    if (Offset) {  // We could handle this case, but we don't for now...
      std::cerr << "UNIMP: Trying to merge a growth type into "
                << "offset != 0: Collapsing!\n";
      if (FoldIfIncompatible) foldNodeCompletely();
      return true;
    }

    // Okay, the situation is nice and simple, we are trying to merge a type in
    // at offset 0 that is bigger than our current type.  Implement this by
    // switching to the new type and then merge in the smaller one, which should
    // hit the other code path here.  If the other code path decides it's not
    // ok, it will collapse the node as appropriate.
    //
    const Type *OldTy = Ty;
    Ty = NewTy;
    NodeType &= ~Array;
    if (WillBeArray) NodeType |= Array;
    Size = NewTySize;

    // Must grow links to be the appropriate size...
    Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);

    // Merge in the old type now... which is guaranteed to be smaller than the
    // "current" type.
    return mergeTypeInfo(OldTy, 0);
  }

  assert(Offset <= Size &&
         "Cannot merge something into a part of our type that doesn't exist!");

  // Find the section of Ty that NewTy overlaps with... first we find the
  // type that starts at offset Offset.
  //
  unsigned O = 0;
  const Type *SubType = Ty;
  while (O < Offset) {
    assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");

    switch (SubType->getPrimitiveID()) {
    case Type::StructTyID: {
      const StructType *STy = cast<StructType>(SubType);
      const StructLayout &SL = *TD.getStructLayout(STy);

      unsigned i = 0, e = SL.MemberOffsets.size();
      for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
        /* empty */;

      // The offset we are looking for must be in the i'th element...
      SubType = STy->getElementTypes()[i];
      O += SL.MemberOffsets[i];
      break;
    }
    case Type::ArrayTyID: {
      SubType = cast<ArrayType>(SubType)->getElementType();
      unsigned ElSize = TD.getTypeSize(SubType);
      unsigned Remainder = (Offset-O) % ElSize;
      O = Offset-Remainder;
      break;
    }
    default:
      if (FoldIfIncompatible) foldNodeCompletely();
      return true;
    }
  }

  assert(O == Offset && "Could not achieve the correct offset!");

  // If we found our type exactly, early exit
  if (SubType == NewTy) return false;

  unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;

  // Ok, we are getting desperate now.  Check for physical subtyping, where we
  // just require each element in the node to be compatible.
  if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
      SubTypeSize && SubTypeSize < 256 && 
      ElementTypesAreCompatible(NewTy, SubType))
    return false;

  // Okay, so we found the leader type at the offset requested.  Search the list
  // of types that starts at this offset.  If SubType is currently an array or
  // structure, the type desired may actually be the first element of the
  // composite type...
  //
  unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
  while (SubType != NewTy) {
    const Type *NextSubType = 0;
    unsigned NextSubTypeSize = 0;
    unsigned NextPadSize = 0;
    switch (SubType->getPrimitiveID()) {
    case Type::StructTyID: {
      const StructType *STy = cast<StructType>(SubType);
      const StructLayout &SL = *TD.getStructLayout(STy);
      if (SL.MemberOffsets.size() > 1)
        NextPadSize = SL.MemberOffsets[1];
      else
        NextPadSize = SubTypeSize;
      NextSubType = STy->getElementTypes()[0];
      NextSubTypeSize = TD.getTypeSize(NextSubType);
      break;
    }
    case Type::ArrayTyID:
      NextSubType = cast<ArrayType>(SubType)->getElementType();
      NextSubTypeSize = TD.getTypeSize(NextSubType);
      NextPadSize = NextSubTypeSize;
      break;
    default: ;
      // fall out 
    }

    if (NextSubType == 0)
      break;   // In the default case, break out of the loop

    if (NextPadSize < NewTySize)
      break;   // Don't allow shrinking to a smaller type than NewTySize
    SubType = NextSubType;
    SubTypeSize = NextSubTypeSize;
    PadSize = NextPadSize;
  }

  // If we found the type exactly, return it...
  if (SubType == NewTy)
    return false;

  // Check to see if we have a compatible, but different type...
  if (NewTySize == SubTypeSize) {
    // Check to see if this type is obviously convertible... int -> uint f.e.
    if (NewTy->isLosslesslyConvertibleTo(SubType))
      return false;

    // Check to see if we have a pointer & integer mismatch going on here,
    // loading a pointer as a long, for example.
    //
    if (SubType->isInteger() && isa<PointerType>(NewTy) ||
        NewTy->isInteger() && isa<PointerType>(SubType))
      return false;
  } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
    // We are accessing the field, plus some structure padding.  Ignore the
    // structure padding.
    return false;
  }

  Module *M = 0;
  if (getParentGraph()->getReturnNodes().size())
    M = getParentGraph()->getReturnNodes().begin()->first->getParent();
  DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: ";
        WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:";
        WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n"
                  << "SubType: ";
        WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n");

  if (FoldIfIncompatible) foldNodeCompletely();
  return true;
}



// addEdgeTo - Add an edge from the current node to the specified node.  This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
  if (NH.getNode() == 0) return;       // Nothing to do

  DSNodeHandle &ExistingEdge = getLink(Offset);
  if (ExistingEdge.getNode()) {
    // Merge the two nodes...
    ExistingEdge.mergeWith(NH);
  } else {                             // No merging to perform...
    setLink(Offset, NH);               // Just force a link in there...
  }
}


// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted.  This assumes that 'T's are
// efficiently copyable and have sane comparison semantics.
//
static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
                               const std::vector<GlobalValue*> &Src) {
  // By far, the most common cases will be the simple ones.  In these cases,
  // avoid having to allocate a temporary vector...
  //
  if (Src.empty()) {             // Nothing to merge in...
    return;
  } else if (Dest.empty()) {     // Just copy the result in...
    Dest = Src;
  } else if (Src.size() == 1) {  // Insert a single element...
    const GlobalValue *V = Src[0];
    std::vector<GlobalValue*>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(), V);
    if (I == Dest.end() || *I != Src[0])  // If not already contained...
      Dest.insert(I, Src[0]);
  } else if (Dest.size() == 1) {
    GlobalValue *Tmp = Dest[0];           // Save value in temporary...
    Dest = Src;                           // Copy over list...
    std::vector<GlobalValue*>::iterator I =
      std::lower_bound(Dest.begin(), Dest.end(), Tmp);
    if (I == Dest.end() || *I != Tmp)     // If not already contained...
      Dest.insert(I, Tmp);

  } else {
    // Make a copy to the side of Dest...
    std::vector<GlobalValue*> Old(Dest);
    
    // Make space for all of the type entries now...
    Dest.resize(Dest.size()+Src.size());
    
    // Merge the two sorted ranges together... into Dest.
    std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
    
    // Now erase any duplicate entries that may have accumulated into the 
    // vectors (because they were in both of the input sets)
    Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
  }
}


// MergeNodes() - Helper function for DSNode::mergeWith().
// This function does the hard work of merging two nodes, CurNodeH
// and NH after filtering out trivial cases and making sure that
// CurNodeH.offset >= NH.offset.
// 
// ***WARNING***
// Since merging may cause either node to go away, we must always
// use the node-handles to refer to the nodes.  These node handles are
// automatically updated during merging, so will always provide access
// to the correct node after a merge.
//
void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
  assert(CurNodeH.getOffset() >= NH.getOffset() &&
         "This should have been enforced in the caller.");

  // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
  // respect to NH.Offset) is now zero.  NOffset is the distance from the base
  // of our object that N starts from.
  //
  unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
  unsigned NSize = NH.getNode()->getSize();

  // If the two nodes are of different size, and the smaller node has the array
  // bit set, collapse!
  if (NSize != CurNodeH.getNode()->getSize()) {
    if (NSize < CurNodeH.getNode()->getSize()) {
      if (NH.getNode()->isArray())
        NH.getNode()->foldNodeCompletely();
    } else if (CurNodeH.getNode()->isArray()) {
      NH.getNode()->foldNodeCompletely();
    }
  }

  // Merge the type entries of the two nodes together...    
  if (NH.getNode()->Ty != Type::VoidTy)
    CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
  assert(!CurNodeH.getNode()->isDeadNode());

  // If we are merging a node with a completely folded node, then both nodes are
  // now completely folded.
  //
  if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
    if (!NH.getNode()->isNodeCompletelyFolded()) {
      NH.getNode()->foldNodeCompletely();
      assert(NH.getNode() && NH.getOffset() == 0 &&
             "folding did not make offset 0?");
      NOffset = NH.getOffset();
      NSize = NH.getNode()->getSize();
      assert(NOffset == 0 && NSize == 1);
    }
  } else if (NH.getNode()->isNodeCompletelyFolded()) {
    CurNodeH.getNode()->foldNodeCompletely();
    assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
           "folding did not make offset 0?");
    NOffset = NH.getOffset();
    NSize = NH.getNode()->getSize();
    assert(NOffset == 0 && NSize == 1);
  }

  DSNode *N = NH.getNode();
  if (CurNodeH.getNode() == N || N == 0) return;
  assert(!CurNodeH.getNode()->isDeadNode());

  // Merge the NodeType information...
  CurNodeH.getNode()->NodeType |= N->NodeType;

  // Start forwarding to the new node!
  N->forwardNode(CurNodeH.getNode(), NOffset);
  assert(!CurNodeH.getNode()->isDeadNode());

  // Make all of the outgoing links of N now be outgoing links of CurNodeH.
  //
  for (unsigned i = 0; i < N->getNumLinks(); ++i) {
    DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
    if (Link.getNode()) {
      // Compute the offset into the current node at which to
      // merge this link.  In the common case, this is a linear
      // relation to the offset in the original node (with
      // wrapping), but if the current node gets collapsed due to
      // recursive merging, we must make sure to merge in all remaining
      // links at offset zero.
      unsigned MergeOffset = 0;
      DSNode *CN = CurNodeH.getNode();
      if (CN->Size != 1)
        MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
      CN->addEdgeTo(MergeOffset, Link);
    }
  }

  // Now that there are no outgoing edges, all of the Links are dead.
  N->Links.clear();

  // Merge the globals list...
  if (!N->Globals.empty()) {
    MergeSortedVectors(CurNodeH.getNode()->Globals, N->Globals);

    // Delete the globals from the old node...
    std::vector<GlobalValue*>().swap(N->Globals);
  }
}


// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
  DSNode *N = NH.getNode();
  if (N == 0 || (N == this && NH.getOffset() == Offset))
    return;  // Noop

  assert(!N->isDeadNode() && !isDeadNode());
  assert(!hasNoReferrers() && "Should not try to fold a useless node!");

  if (N == this) {
    // We cannot merge two pieces of the same node together, collapse the node
    // completely.
    DEBUG(std::cerr << "Attempting to merge two chunks of"
                    << " the same node together!\n");
    foldNodeCompletely();
    return;
  }

  // If both nodes are not at offset 0, make sure that we are merging the node
  // at an later offset into the node with the zero offset.
  //
  if (Offset < NH.getOffset()) {
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
    // If the offsets are the same, merge the smaller node into the bigger node
    N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
    return;
  }

  // Ok, now we can merge the two nodes.  Use a static helper that works with
  // two node handles, since "this" may get merged away at intermediate steps.
  DSNodeHandle CurNodeH(this, Offset);
  DSNodeHandle NHCopy(NH);
  DSNode::MergeNodes(CurNodeH, NHCopy);
}

//===----------------------------------------------------------------------===//
// DSCallSite Implementation
//===----------------------------------------------------------------------===//

// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
Function &DSCallSite::getCaller() const {
  return *Site.getInstruction()->getParent()->getParent();
}


//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//

/// getFunctionNames - Return a space separated list of the name of the
/// functions in this graph (if any)
std::string DSGraph::getFunctionNames() const {
  switch (getReturnNodes().size()) {
  case 0: return "Globals graph";
  case 1: return getReturnNodes().begin()->first->getName();
  default:
    std::string Return;
    for (DSGraph::ReturnNodesTy::const_iterator I = getReturnNodes().begin();
         I != getReturnNodes().end(); ++I)
      Return += I->first->getName() + " ";
    Return.erase(Return.end()-1, Return.end());   // Remove last space character
    return Return;
  }
}


DSGraph::DSGraph(const DSGraph &G) : GlobalsGraph(0) {
  PrintAuxCalls = false;
  NodeMapTy NodeMap;
  cloneInto(G, ScalarMap, ReturnNodes, NodeMap);
  InlinedGlobals.clear();               // clear set of "up-to-date" globals
}

DSGraph::DSGraph(const DSGraph &G, NodeMapTy &NodeMap)
  : GlobalsGraph(0) {
  PrintAuxCalls = false;
  cloneInto(G, ScalarMap, ReturnNodes, NodeMap);
  InlinedGlobals.clear();               // clear set of "up-to-date" globals
}

DSGraph::~DSGraph() {
  FunctionCalls.clear();
  AuxFunctionCalls.clear();
  InlinedGlobals.clear();
  ScalarMap.clear();
  ReturnNodes.clear();

  // Drop all intra-node references, so that assertions don't fail...
  std::for_each(Nodes.begin(), Nodes.end(),
                std::mem_fun(&DSNode::dropAllReferences));

  // Delete all of the nodes themselves...
  std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}

// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }


/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
///
void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
  for (unsigned i = 0, e = Links.size(); i != e; ++i) {
    DSNodeHandle &H = OldNodeMap[Links[i].getNode()];
    Links[i].setNode(H.getNode());
    Links[i].setOffset(Links[i].getOffset()+H.getOffset());
  }
}


/// cloneReachableNodes - Clone all reachable nodes from *Node into the
/// current graph.  This is a recursive function.  The map OldNodeMap is a
/// map from the original nodes to their clones.
/// 
void DSGraph::cloneReachableNodes(const DSNode*  Node,
                                  unsigned BitsToClear,
                                  NodeMapTy& OldNodeMap,
                                  NodeMapTy& CompletedNodeMap) {
  if (CompletedNodeMap.find(Node) != CompletedNodeMap.end())
    return;

  DSNodeHandle& NH = OldNodeMap[Node];
  if (NH.getNode() != NULL)
    return;

  // else Node has not yet been cloned: clone it and clear the specified bits
  NH = new DSNode(*Node, this);          // enters in OldNodeMap
  NH.getNode()->maskNodeTypes(~BitsToClear);

  // now recursively clone nodes pointed to by this node
  for (unsigned i = 0, e = Node->getNumLinks(); i != e; ++i) {
    const DSNodeHandle &Link = Node->getLink(i << DS::PointerShift);
    if (const DSNode* nextNode = Link.getNode())
      cloneReachableNodes(nextNode, BitsToClear, OldNodeMap, CompletedNodeMap);
  }
}

void DSGraph::cloneReachableSubgraph(const DSGraph& G,
                                     const hash_set<const DSNode*>& RootNodes,
                                     NodeMapTy& OldNodeMap,
                                     NodeMapTy& CompletedNodeMap,
                                     unsigned CloneFlags) {
  if (RootNodes.empty())
    return;

  assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
  assert(&G != this && "Cannot clone graph into itself!");
  assert((*RootNodes.begin())->getParentGraph() == &G &&
         "Root nodes do not belong to this graph!");

  // Remove alloca or mod/ref bits as specified...
  unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
    | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
    | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
  BitsToClear |= DSNode::DEAD;  // Clear dead flag...

  // Clone all nodes reachable from each root node, using a recursive helper
  for (hash_set<const DSNode*>::const_iterator I = RootNodes.begin(),
         E = RootNodes.end(); I != E; ++I)
    cloneReachableNodes(*I, BitsToClear, OldNodeMap, CompletedNodeMap);

  // Merge the map entries in OldNodeMap and CompletedNodeMap to remap links
  NodeMapTy MergedMap(OldNodeMap);
  MergedMap.insert(CompletedNodeMap.begin(), CompletedNodeMap.end());

  // Rewrite the links in the newly created nodes (the nodes in OldNodeMap)
  // to point into the current graph.  MergedMap gives the full mapping.
  for (NodeMapTy::iterator I=OldNodeMap.begin(), E=OldNodeMap.end(); I!= E; ++I)
    I->second.getNode()->remapLinks(MergedMap);

  // Now merge cloned global nodes with their copies in the current graph
  // Just look through OldNodeMap to find such nodes!
  for (NodeMapTy::iterator I=OldNodeMap.begin(), E=OldNodeMap.end(); I!= E; ++I)
    if (I->first->isGlobalNode()) {
      DSNodeHandle &GClone = I->second;
      assert(GClone.getNode() != NULL && "NULL node in OldNodeMap?");
      const std::vector<GlobalValue*> &Globals = I->first->getGlobals();
      for (unsigned gi = 0, ge = Globals.size(); gi != ge; ++gi) {
        DSNodeHandle &GH = ScalarMap[Globals[gi]];
        GH.mergeWith(GClone);
      }
    }
}


/// updateFromGlobalGraph - This function rematerializes global nodes and
/// nodes reachable from them from the globals graph into the current graph.
/// It invokes cloneReachableSubgraph, using the globals in the current graph
/// as the roots.  It also uses the vector InlinedGlobals to avoid cloning and
/// merging globals that are already up-to-date in the current graph.  In
/// practice, in the TD pass, this is likely to be a large fraction of the
/// live global nodes in each function (since most live nodes are likely to
/// have been brought up-to-date in at _some_ caller or callee).
/// 
void DSGraph::updateFromGlobalGraph() {

  // Use a map to keep track of the mapping between nodes in the globals graph
  // and this graph for up-to-date global nodes, which do not need to be cloned.
  NodeMapTy CompletedMap;

  // Put the live, non-up-to-date global nodes into a set and the up-to-date
  // ones in the map above, mapping node in GlobalsGraph to the up-to-date node.
  hash_set<const DSNode*> GlobalNodeSet;
  for (ScalarMapTy::const_iterator I = getScalarMap().begin(),
         E = getScalarMap().end(); I != E; ++I)
    if (GlobalValue* GV = dyn_cast<GlobalValue>(I->first)) {
      DSNode* GNode = I->second.getNode();
      assert(GNode && "No node for live global in current Graph?");
      if (const DSNode* GGNode = GlobalsGraph->ScalarMap[GV].getNode())
        if (InlinedGlobals.count(GV) == 0) // GNode is not up-to-date
          GlobalNodeSet.insert(GGNode);
        else {                                       // GNode is up-to-date 
          CompletedMap[GGNode] = I->second;
          assert(GGNode->getNumLinks() == GNode->getNumLinks() &&
                 "Links dont match in a node that is supposed to be up-to-date?"
                 "\nremapLinks() will not work if the links don't match!");
        }
    }

  // Clone the subgraph reachable from the vector of nodes in GlobalNodes
  // and merge the cloned global nodes with the corresponding ones, if any.
  NodeMapTy OldNodeMap;
  cloneReachableSubgraph(*GlobalsGraph, GlobalNodeSet, OldNodeMap,CompletedMap);

  // Merging global nodes leaves behind unused nodes: get rid of them now.
  OldNodeMap.clear();      // remove references before dead node cleanup 
  CompletedMap.clear();    // remove references before dead node cleanup 
  removeTriviallyDeadNodes();
}

/// cloneInto - Clone the specified DSGraph into the current graph.  The
/// translated ScalarMap for the old function is filled into the OldValMap
/// member, and the translated ReturnNodes map is returned into ReturnNodes.
///
/// The CloneFlags member controls various aspects of the cloning process.
///
void DSGraph::cloneInto(const DSGraph &G, ScalarMapTy &OldValMap,
                        ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap,
                        unsigned CloneFlags) {
  assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
  assert(&G != this && "Cannot clone graph into itself!");

  unsigned FN = Nodes.size();           // First new node...

  // Duplicate all of the nodes, populating the node map...
  Nodes.reserve(FN+G.Nodes.size());

  // Remove alloca or mod/ref bits as specified...
  unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
    | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
    | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
  BitsToClear |= DSNode::DEAD;  // Clear dead flag...
  for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
    DSNode *Old = G.Nodes[i];
    DSNode *New = new DSNode(*Old, this);
    New->maskNodeTypes(~BitsToClear);
    OldNodeMap[Old] = New;
  }

#ifndef NDEBUG
  Timer::addPeakMemoryMeasurement();
#endif

  // Rewrite the links in the new nodes to point into the current graph now.
  for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
    Nodes[i]->remapLinks(OldNodeMap);

  // Copy the scalar map... merging all of the global nodes...
  for (ScalarMapTy::const_iterator I = G.ScalarMap.begin(),
         E = G.ScalarMap.end(); I != E; ++I) {
    DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
    DSNodeHandle &H = OldValMap[I->first];
    H.mergeWith(DSNodeHandle(MappedNode.getNode(),
                             I->second.getOffset()+MappedNode.getOffset()));

    // If this is a global, add the global to this fn or merge if already exists
    if (GlobalValue* GV = dyn_cast<GlobalValue>(I->first)) {
      ScalarMap[GV].mergeWith(H);
      InlinedGlobals.insert(GV);
    }
  }

  if (!(CloneFlags & DontCloneCallNodes)) {
    // Copy the function calls list...
    unsigned FC = FunctionCalls.size();  // FirstCall
    FunctionCalls.reserve(FC+G.FunctionCalls.size());
    for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
      FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
  }

  if (!(CloneFlags & DontCloneAuxCallNodes)) {
    // Copy the auxiliary function calls list...
    unsigned FC = AuxFunctionCalls.size();  // FirstCall
    AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
    for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
      AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
  }

  // Map the return node pointers over...
  for (ReturnNodesTy::const_iterator I = G.getReturnNodes().begin(),
         E = G.getReturnNodes().end(); I != E; ++I) {
    const DSNodeHandle &Ret = I->second;
    DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
    OldReturnNodes.insert(std::make_pair(I->first,
                          DSNodeHandle(MappedRet.getNode(),
                                       MappedRet.getOffset()+Ret.getOffset())));
  }
}

/// mergeInGraph - The method is used for merging graphs together.  If the
/// argument graph is not *this, it makes a clone of the specified graph, then
/// merges the nodes specified in the call site with the formal arguments in the
/// graph.
///
void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
                           const DSGraph &Graph, unsigned CloneFlags) {
  ScalarMapTy OldValMap, *ScalarMap;
  DSNodeHandle RetVal;

  // If this is not a recursive call, clone the graph into this graph...
  if (&Graph != this) {
    // Clone the callee's graph into the current graph, keeping
    // track of where scalars in the old graph _used_ to point,
    // and of the new nodes matching nodes of the old graph.
    NodeMapTy OldNodeMap;
    
    // The clone call may invalidate any of the vectors in the data
    // structure graph.  Strip locals and don't copy the list of callers
    ReturnNodesTy OldRetNodes;
    cloneInto(Graph, OldValMap, OldRetNodes, OldNodeMap, CloneFlags);

    // We need to map the arguments for the function to the cloned nodes old
    // argument values.  Do this now.
    RetVal = OldRetNodes[&F];
    ScalarMap = &OldValMap;
  } else {
    RetVal = getReturnNodeFor(F);
    ScalarMap = &getScalarMap();
  }

  // Merge the return value with the return value of the context...
  RetVal.mergeWith(CS.getRetVal());

  // Resolve all of the function arguments...
  Function::aiterator AI = F.abegin();

  for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
    // Advance the argument iterator to the first pointer argument...
    while (AI != F.aend() && !isPointerType(AI->getType())) {
      ++AI;
#ifndef NDEBUG
      if (AI == F.aend())
        std::cerr << "Bad call to Function: " << F.getName() << "\n";
#endif
    }
    if (AI == F.aend()) break;
    
    // Add the link from the argument scalar to the provided value
    assert(ScalarMap->count(AI) && "Argument not in scalar map?");
    DSNodeHandle &NH = (*ScalarMap)[AI];
    assert(NH.getNode() && "Pointer argument without scalarmap entry?");
    NH.mergeWith(CS.getPtrArg(i));
  }
}

/// getCallSiteForArguments - Get the arguments and return value bindings for
/// the specified function in the current graph.
///
DSCallSite DSGraph::getCallSiteForArguments(Function &F) const {
  std::vector<DSNodeHandle> Args;

  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
    if (isPointerType(I->getType()))
      Args.push_back(getScalarMap().find(I)->second);

  return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args);
}



// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed.  Because a node makes all
// of the nodes it can reach incomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
  // Stop recursion if no node, or if node already marked...
  if (N == 0 || N->isIncomplete()) return;

  // Actually mark the node
  N->setIncompleteMarker();

  // Recursively process children...
  for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
    if (DSNode *DSN = N->getLink(i).getNode())
      markIncompleteNode(DSN);
}

static void markIncomplete(DSCallSite &Call) {
  // Then the return value is certainly incomplete!
  markIncompleteNode(Call.getRetVal().getNode());

  // All objects pointed to by function arguments are incomplete!
  for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
    markIncompleteNode(Call.getPtrArg(i).getNode());
}

// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet.  This marks
// nodes that are reachable through three sources of "unknownness":
//
//  Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(unsigned Flags) {
  // Mark any incoming arguments as incomplete...
  if (Flags & DSGraph::MarkFormalArgs)
    for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
         FI != E; ++FI) {
      Function &F = *FI->first;
      if (F.getName() != "main")
        for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
          if (isPointerType(I->getType()) &&
              ScalarMap.find(I) != ScalarMap.end())
            markIncompleteNode(ScalarMap[I].getNode());
    }

  // Mark stuff passed into functions calls as being incomplete...
  if (!shouldPrintAuxCalls())
    for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
      markIncomplete(FunctionCalls[i]);
  else
    for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
      markIncomplete(AuxFunctionCalls[i]);
    

  // Mark all global nodes as incomplete...
  if ((Flags & DSGraph::IgnoreGlobals) == 0)
    for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
      if (Nodes[i]->isGlobalNode() && Nodes[i]->getNumLinks())
        markIncompleteNode(Nodes[i]);
}

static inline void killIfUselessEdge(DSNodeHandle &Edge) {
  if (DSNode *N = Edge.getNode())  // Is there an edge?
    if (N->getNumReferrers() == 1)  // Does it point to a lonely node?
      // No interesting info?
      if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
          N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
        Edge.setNode(0);  // Kill the edge!
}

static inline bool nodeContainsExternalFunction(const DSNode *N) {
  const std::vector<GlobalValue*> &Globals = N->getGlobals();
  for (unsigned i = 0, e = Globals.size(); i != e; ++i)
    if (Globals[i]->isExternal())
      return true;
  return false;
}

static void removeIdenticalCalls(std::vector<DSCallSite> &Calls) {

  // Remove trivially identical function calls
  unsigned NumFns = Calls.size();
  std::sort(Calls.begin(), Calls.end());  // Sort by callee as primary key!

  // Scan the call list cleaning it up as necessary...
  DSNode   *LastCalleeNode = 0;
  Function *LastCalleeFunc = 0;
  unsigned NumDuplicateCalls = 0;
  bool LastCalleeContainsExternalFunction = false;
  for (unsigned i = 0; i != Calls.size(); ++i) {
    DSCallSite &CS = Calls[i];

    // If the Callee is a useless edge, this must be an unreachable call site,
    // eliminate it.
    if (CS.isIndirectCall() && CS.getCalleeNode()->getNumReferrers() == 1 &&
        CS.getCalleeNode()->getNodeFlags() == 0) {  // No useful info?
      std::cerr << "WARNING: Useless call site found??\n";
      CS.swap(Calls.back());
      Calls.pop_back();
      --i;
    } else {
      // If the return value or any arguments point to a void node with no
      // information at all in it, and the call node is the only node to point
      // to it, remove the edge to the node (killing the node).
      //
      killIfUselessEdge(CS.getRetVal());
      for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
        killIfUselessEdge(CS.getPtrArg(a));
      
      // If this call site calls the same function as the last call site, and if
      // the function pointer contains an external function, this node will
      // never be resolved.  Merge the arguments of the call node because no
      // information will be lost.
      //
      if ((CS.isDirectCall()   && CS.getCalleeFunc() == LastCalleeFunc) ||
          (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
        ++NumDuplicateCalls;
        if (NumDuplicateCalls == 1) {
          if (LastCalleeNode)
            LastCalleeContainsExternalFunction =
              nodeContainsExternalFunction(LastCalleeNode);
          else
            LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
        }
        
#if 1
        if (LastCalleeContainsExternalFunction ||
            // This should be more than enough context sensitivity!
            // FIXME: Evaluate how many times this is tripped!
            NumDuplicateCalls > 20) {
          DSCallSite &OCS = Calls[i-1];
          OCS.mergeWith(CS);
          
          // The node will now be eliminated as a duplicate!
          if (CS.getNumPtrArgs() < OCS.getNumPtrArgs())
            CS = OCS;
          else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs())
            OCS = CS;
        }
#endif
      } else {
        if (CS.isDirectCall()) {
          LastCalleeFunc = CS.getCalleeFunc();
          LastCalleeNode = 0;
        } else {
          LastCalleeNode = CS.getCalleeNode();
          LastCalleeFunc = 0;
        }
        NumDuplicateCalls = 0;
      }
    }
  }

  Calls.erase(std::unique(Calls.begin(), Calls.end()),
              Calls.end());

  // Track the number of call nodes merged away...
  NumCallNodesMerged += NumFns-Calls.size();

  DEBUG(if (NumFns != Calls.size())
          std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes.\n";);
}


// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph.  These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes() {
  removeIdenticalCalls(FunctionCalls);
  removeIdenticalCalls(AuxFunctionCalls);

  // Loop over all of the nodes in the graph, calling getNode on each field.
  // This will cause all nodes to update their forwarding edges, causing
  // forwarded nodes to be delete-able.
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
    DSNode *N = Nodes[i];
    for (unsigned l = 0, e = N->getNumLinks(); l != e; ++l)
      N->getLink(l*N->getPointerSize()).getNode();
  }

  // Likewise, forward any edges from the scalar nodes...
  for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end();
       I != E; ++I)
    I->second.getNode();

  bool isGlobalsGraph = !GlobalsGraph;

  for (unsigned i = 0; i != Nodes.size(); ++i) {
    DSNode *Node = Nodes[i];

    // Do not remove *any* global nodes in the globals graph.
    // This is a special case because such nodes may not have I, M, R flags set.
    if (Node->isGlobalNode() && isGlobalsGraph)
      continue;

    if (Node->isComplete() && !Node->isModified() && !Node->isRead()) {
      // This is a useless node if it has no mod/ref info (checked above),
      // outgoing edges (which it cannot, as it is not modified in this
      // context), and it has no incoming edges.  If it is a global node it may
      // have all of these properties and still have incoming edges, due to the
      // scalar map, so we check those now.
      //
      if (Node->getNumReferrers() == Node->getGlobals().size()) {
        const std::vector<GlobalValue*> &Globals = Node->getGlobals();

        // Loop through and make sure all of the globals are referring directly
        // to the node...
        for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
          DSNode *N = ScalarMap.find(Globals[j])->second.getNode();
          assert(N == Node && "ScalarMap doesn't match globals list!");
        }

        // Make sure NumReferrers still agrees, if so, the node is truly dead.
        if (Node->getNumReferrers() == Globals.size()) {
          for (unsigned j = 0, e = Globals.size(); j != e; ++j)
            ScalarMap.erase(Globals[j]);
          Node->makeNodeDead();
        }
      }

#ifdef SANER_CODE_FOR_CHECKING_IF_ALL_REFERRERS_ARE_FROM_SCALARMAP
      //
      // *** It seems to me that we should be able to simply check if 
      // *** there are fewer or equal #referrers as #globals and make
      // *** sure that all those referrers are in the scalar map?
      // 
      if (Node->getNumReferrers() <= Node->getGlobals().size()) {
        const std::vector<GlobalValue*> &Globals = Node->getGlobals();

#ifndef NDEBUG
        // Loop through and make sure all of the globals are referring directly
        // to the node...
        for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
          DSNode *N = ScalarMap.find(Globals[j])->second.getNode();
          assert(N == Node && "ScalarMap doesn't match globals list!");
        }
#endif

        // Make sure NumReferrers still agrees.  The node is truly dead.
        assert(Node->getNumReferrers() == Globals.size());
        for (unsigned j = 0, e = Globals.size(); j != e; ++j)
          ScalarMap.erase(Globals[j]);
        Node->makeNodeDead();
      }
#endif
    }

    if (Node->getNodeFlags() == 0 && Node->hasNoReferrers()) {
      // This node is dead!
      delete Node;                        // Free memory...
      Nodes[i--] = Nodes.back();
      Nodes.pop_back();                   // Remove from node list...
    }
  }
}


/// markReachableNodes - This method recursively traverses the specified
/// DSNodes, marking any nodes which are reachable.  All reachable nodes it adds
/// to the set, which allows it to only traverse visited nodes once.
///
void DSNode::markReachableNodes(hash_set<DSNode*> &ReachableNodes) {
  if (this == 0) return;
  assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
  if (ReachableNodes.count(this)) return;          // Already marked reachable
  ReachableNodes.insert(this);                     // Is reachable now

  for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize)
    getLink(i).getNode()->markReachableNodes(ReachableNodes);
}

void DSCallSite::markReachableNodes(hash_set<DSNode*> &Nodes) {
  getRetVal().getNode()->markReachableNodes(Nodes);
  if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);
  
  for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
    getPtrArg(i).getNode()->markReachableNodes(Nodes);
}

// CanReachAliveNodes - Simple graph walker that recursively traverses the graph
// looking for a node that is marked alive.  If an alive node is found, return
// true, otherwise return false.  If an alive node is reachable, this node is
// marked as alive...
//
static bool CanReachAliveNodes(DSNode *N, hash_set<DSNode*> &Alive,
                               hash_set<DSNode*> &Visited,
                               bool IgnoreGlobals) {
  if (N == 0) return false;
  assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");

  // If this is a global node, it will end up in the globals graph anyway, so we
  // don't need to worry about it.
  if (IgnoreGlobals && N->isGlobalNode()) return false;

  // If we know that this node is alive, return so!
  if (Alive.count(N)) return true;

  // Otherwise, we don't think the node is alive yet, check for infinite
  // recursion.
  if (Visited.count(N)) return false;  // Found a cycle
  Visited.insert(N);   // No recursion, insert into Visited...

  for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
    if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited,
                           IgnoreGlobals)) {
      N->markReachableNodes(Alive);
      return true;
    }
  return false;
}

// CallSiteUsesAliveArgs - Return true if the specified call site can reach any
// alive nodes.
//
static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set<DSNode*> &Alive,
                                  hash_set<DSNode*> &Visited,
                                  bool IgnoreGlobals) {
  if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited,
                         IgnoreGlobals))
    return true;
  if (CS.isIndirectCall() &&
      CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals))
    return true;
  for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
    if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited,
                           IgnoreGlobals))
      return true;
  return false;
}

// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable.  This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely.  This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(unsigned Flags) {
  DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());

  // Reduce the amount of work we have to do... remove dummy nodes left over by
  // merging...
  removeTriviallyDeadNodes();

  // FIXME: Merge non-trivially identical call nodes...

  // Alive - a set that holds all nodes found to be reachable/alive.
  hash_set<DSNode*> Alive;
  std::vector<std::pair<Value*, DSNode*> > GlobalNodes;

  // Mark all nodes reachable by (non-global) scalar nodes as alive...
  for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I !=E;)
    if (isa<GlobalValue>(I->first)) {             // Keep track of global nodes
      assert(I->second.getNode() && "Null global node?");
      assert(I->second.getNode()->isGlobalNode() && "Should be a global node!");
      GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
      ++I;
    } else {
      // Check to see if this is a worthless node generated for non-pointer
      // values, such as integers.  Consider an addition of long types: A+B.
      // Assuming we can track all uses of the value in this context, and it is
      // NOT used as a pointer, we can delete the node.  We will be able to
      // detect this situation if the node pointed to ONLY has Unknown bit set
      // in the node.  In this case, the node is not incomplete, does not point
      // to any other nodes (no mod/ref bits set), and is therefore
      // uninteresting for data structure analysis.  If we run across one of
      // these, prune the scalar pointing to it.
      //
      DSNode *N = I->second.getNode();
      if (N->getNodeFlags() == DSNode::UnknownNode && !isa<Argument>(I->first)){
        ScalarMap.erase(I++);
      } else {
        I->second.getNode()->markReachableNodes(Alive);
        ++I;
      }
    }

  // The return value is alive as well...
  for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
       I != E; ++I)
    I->second.getNode()->markReachableNodes(Alive);

  // Mark any nodes reachable by primary calls as alive...
  for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
    FunctionCalls[i].markReachableNodes(Alive);

  // Copy and merge all information about globals to the GlobalsGraph
  // if this is not a final pass (where unreachable globals are removed)
  NodeMapTy GlobalNodeMap;
  hash_set<const DSNode*> GlobalNodeSet;

  for (std::vector<std::pair<Value*, DSNode*> >::const_iterator
         I = GlobalNodes.begin(), E = GlobalNodes.end(); I != E; ++I)
    GlobalNodeSet.insert(I->second);    // put global nodes into a set

  // Now find globals and aux call nodes that are already live or reach a live
  // value (which makes them live in turn), and continue till no more are found.
  // 
  bool Iterate;
  hash_set<DSNode*> Visited;
  std::vector<unsigned char> AuxFCallsAlive(AuxFunctionCalls.size());
  do {
    Visited.clear();
    // If any global node points to a non-global that is "alive", the global is
    // "alive" as well...  Remove it from the GlobalNodes list so we only have
    // unreachable globals in the list.
    //
    Iterate = false;
    if (!(Flags & DSGraph::RemoveUnreachableGlobals))
       for (unsigned i = 0; i != GlobalNodes.size(); ++i)
         if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, 
                                Flags & DSGraph::RemoveUnreachableGlobals)) {
           std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to...
           GlobalNodes.pop_back();                          // erase efficiently
           Iterate = true;
         }

    // Mark only unresolvable call nodes for moving to the GlobalsGraph since
    // call nodes that get resolved will be difficult to remove from that graph.
    // The final unresolved call nodes must be handled specially at the end of
    // the BU pass (i.e., in main or other roots of the call graph).
    for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
      if (!AuxFCallsAlive[i] &&
          (AuxFunctionCalls[i].isIndirectCall()
           || CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited,
                                  Flags & DSGraph::RemoveUnreachableGlobals))) {
        AuxFunctionCalls[i].markReachableNodes(Alive);
        AuxFCallsAlive[i] = true;
        Iterate = true;
      }
  } while (Iterate);

  // Move dead aux function calls to the end of the list
  unsigned CurIdx = 0;
  for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
    if (AuxFCallsAlive[i])
      AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]);

  // Copy and merge all global nodes and dead aux call nodes into the
  // GlobalsGraph, and all nodes reachable from those nodes
  // 
  if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {

    // First, add the dead aux call nodes to the set of root nodes for cloning
    // -- return value at this call site, if any
    // -- actual arguments passed at this call site
    // -- callee node at this call site, if this is an indirect call
    for (unsigned i = CurIdx, e = AuxFunctionCalls.size(); i != e; ++i) {
      if (const DSNode* RetNode = AuxFunctionCalls[i].getRetVal().getNode())
        GlobalNodeSet.insert(RetNode);
      for (unsigned j=0, N=AuxFunctionCalls[i].getNumPtrArgs(); j < N; ++j)
        if (const DSNode* ArgTarget=AuxFunctionCalls[i].getPtrArg(j).getNode())
          GlobalNodeSet.insert(ArgTarget);
      if (AuxFunctionCalls[i].isIndirectCall())
        GlobalNodeSet.insert(AuxFunctionCalls[i].getCalleeNode());
    }
    
    // There are no "pre-completed" nodes so use any empty map for those.
    // Strip all alloca bits since the current function is only for the BU pass.
    // Strip all incomplete bits since they are short-lived properties and they
    // will be correctly computed when rematerializing nodes into the functions.
    // 
    NodeMapTy CompletedMap;
    GlobalsGraph->cloneReachableSubgraph(*this, GlobalNodeSet,
                                         GlobalNodeMap, CompletedMap,
                                         (DSGraph::StripAllocaBit |
                                          DSGraph::StripIncompleteBit));
  }

  // Remove all dead aux function calls...
  if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {
    assert(GlobalsGraph && "No globals graph available??");

    // Copy the unreachable call nodes to the globals graph, updating
    // their target pointers using the GlobalNodeMap
    for (unsigned i = CurIdx, e = AuxFunctionCalls.size(); i != e; ++i)
      GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(AuxFunctionCalls[i],
                                                          GlobalNodeMap));
  }
  // Crop all the useless ones out...
  AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx,
                         AuxFunctionCalls.end());

  // We are finally done with the GlobalNodeMap so we can clear it and
  // then get rid of unused nodes in the GlobalsGraph produced by merging.
  GlobalNodeMap.clear();
  GlobalsGraph->removeTriviallyDeadNodes();

  // At this point, any nodes which are visited, but not alive, are nodes
  // which can be removed.  Loop over all nodes, eliminating completely
  // unreachable nodes.
  //
  std::vector<DSNode*> DeadNodes;
  DeadNodes.reserve(Nodes.size());
  for (unsigned i = 0; i != Nodes.size(); ++i)
    if (!Alive.count(Nodes[i])) {
      DSNode *N = Nodes[i];
      Nodes[i--] = Nodes.back();            // move node to end of vector
      Nodes.pop_back();                     // Erase node from alive list.
      DeadNodes.push_back(N);
      N->dropAllReferences();
    } else {
      assert(Nodes[i]->getForwardNode() == 0 && "Alive forwarded node?");
    }

  // Remove all unreachable globals from the ScalarMap.
  // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes.
  // In either case, the dead nodes will not be in the set Alive.
  for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) {
    assert(((Flags & DSGraph::RemoveUnreachableGlobals) ||
            !Alive.count(GlobalNodes[i].second)) && "huh? non-dead global");
    if (!Alive.count(GlobalNodes[i].second))
      ScalarMap.erase(GlobalNodes[i].first);
  }

  // Delete all dead nodes now since their referrer counts are zero.
  for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
    delete DeadNodes[i];

  DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
}

void DSGraph::AssertGraphOK() const {
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
    Nodes[i]->assertOK();

  for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
         E = ScalarMap.end(); I != E; ++I) {
    assert(I->second.getNode() && "Null node in scalarmap!");
    AssertNodeInGraph(I->second.getNode());
    if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
      assert(I->second.getNode()->isGlobalNode() &&
             "Global points to node, but node isn't global?");
      AssertNodeContainsGlobal(I->second.getNode(), GV);
    }
  }
  AssertCallNodesInGraph();
  AssertAuxCallNodesInGraph();
}

/// mergeInGlobalsGraph - This method is useful for clients to incorporate the
/// globals graph into the DS, BU or TD graph for a function.  This code retains
/// all globals, i.e., does not delete unreachable globals after they are
/// inlined.
///
void DSGraph::mergeInGlobalsGraph() {
  NodeMapTy GlobalNodeMap;
  ScalarMapTy OldValMap;
  ReturnNodesTy OldRetNodes;
  cloneInto(*GlobalsGraph, OldValMap, OldRetNodes, GlobalNodeMap,
            DSGraph::KeepAllocaBit | DSGraph::DontCloneCallNodes |
            DSGraph::DontCloneAuxCallNodes);
  
  // Now merge existing global nodes in the GlobalsGraph with their copies
  for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end(); 
       I != E; ++I)
    if (isa<GlobalValue>(I->first)) {             // Found a global node
      DSNodeHandle &GH = I->second;
      DSNodeHandle &GGNodeH = GlobalsGraph->getScalarMap()[I->first];
      GH.mergeWith(GlobalNodeMap[GGNodeH.getNode()]);
    }
  
  // Merging leaves behind unused nodes: get rid of them now.
  GlobalNodeMap.clear();
  OldValMap.clear();
  OldRetNodes.clear();
  removeTriviallyDeadNodes();
}