1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
//===- EliminateNodes.cpp - Prune unneccesary nodes in the graph ----------===//
//
// This file contains two node optimizations:
// 1. UnlinkUndistinguishableNodes - Often, after unification, shadow
// nodes are left around that should not exist anymore. An example is when
// a shadow gets unified with a 'new' node, the following graph gets
// generated: %X -> Shadow, %X -> New. Since all of the edges to the
// shadow node also all go to the New node, we can eliminate the shadow.
//
// 2. RemoveUnreachableNodes - Remove shadow and allocation nodes that are not
// reachable from some other node in the graph. Unreachable nodes are left
// lying around often because a method only refers to some allocations with
// scalar values or an alloca, then when it is inlined, these references
// disappear and the nodes become homeless and prunable.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructureGraph.h"
#include "llvm/Value.h"
#include "Support/STLExtras.h"
#include <algorithm>
//#define DEBUG_NODE_ELIMINATE 1
static void DestroyFirstNodeOfPair(DSNode *N1, DSNode *N2) {
#ifdef DEBUG_NODE_ELIMINATE
cerr << "Found Indistinguishable Node:\n";
N1->print(cerr);
#endif
// The nodes can be merged. Make sure that N2 contains all of the
// outgoing edges (fields) that N1 does...
//
assert(N1->getNumLinks() == N2->getNumLinks() &&
"Same type, diff # fields?");
for (unsigned i = 0, e = N1->getNumLinks(); i != e; ++i)
N2->getLink(i).add(N1->getLink(i));
// Now make sure that all of the nodes that point to N1 also point to the node
// that we are merging it with...
//
const std::vector<PointerValSet*> &Refs = N1->getReferrers();
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
PointerValSet &PVS = *Refs[i];
bool RanOnce = false;
for (unsigned j = 0, je = PVS.size(); j != je; ++j)
if (PVS[j].Node == N1) {
RanOnce = true;
PVS.add(PointerVal(N2, PVS[j].Index));
}
assert(RanOnce && "Node on user set but cannot find the use!");
}
// If we are about to eliminate a call node that returns a pointer, make the
// shadow node it points to not be critical anymore!
//
if (isa<CallDSNode>(N1) && N1->getNumLinks()) {
assert(N1->getNumLinks() == 1 && "Call node can only return one pointer!");
PointerValSet &PVS = N1->getLink(0);
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (ShadowDSNode *Shad = dyn_cast<ShadowDSNode>(PVS[i].Node))
if (Shad->isCriticalNode()) {
Shad->resetCriticalMark(); // Only unmark _ONE_ node..
break;
}
}
N1->removeAllIncomingEdges();
delete N1;
}
// isIndistinguishableNode - A node is indistinguishable if some other node
// has exactly the same incoming links to it and if the node considers itself
// to be the same as the other node...
//
static bool isIndistinguishableNode(DSNode *DN) {
if (DN->getReferrers().empty()) { // No referrers...
if (isa<ShadowDSNode>(DN) || isa<AllocDSNode>(DN))
return true; // Node is trivially dead
else
return false;
}
// Pick a random referrer... Ptr is the things that the referrer points to.
// Since DN is in the Ptr set, look through the set seeing if there are any
// other nodes that are exactly equilivant to DN (with the exception of node
// type), but are not DN. If anything exists, then DN is indistinguishable.
//
DSNode *IndFrom = 0;
const std::vector<PointerValSet*> &Refs = DN->getReferrers();
for (unsigned R = 0, RE = Refs.size(); R != RE; ++R) {
const PointerValSet &Ptr = *Refs[R];
for (unsigned i = 0, e = Ptr.size(); i != e; ++i) {
DSNode *N2 = Ptr[i].Node;
if (Ptr[i].Index == 0 && N2 != cast<DSNode>(DN) &&
DN->getType() == N2->getType() && DN->isEquivalentTo(N2)) {
IndFrom = N2;
R = RE-1;
break;
}
}
}
// If we haven't found an equivalent node to merge with, see if one of the
// nodes pointed to by this node is equivalent to this one...
//
if (IndFrom == 0) {
unsigned NumOutgoing = DN->getNumOutgoingLinks();
for (DSNode::iterator I = DN->begin(), E = DN->end(); I != E; ++I) {
DSNode *Linked = *I;
if (Linked != DN && Linked->getNumOutgoingLinks() == NumOutgoing &&
DN->getType() == Linked->getType() && DN->isEquivalentTo(Linked)) {
#if 0
// Make sure the leftover node contains links to everything we do...
for (unsigned i = 0, e = DN->getNumLinks(); i != e; ++i)
Linked->getLink(i).add(DN->getLink(i));
#endif
IndFrom = Linked;
break;
}
}
}
// If DN is indistinguishable from some other node, merge them now...
if (IndFrom == 0)
return false; // Otherwise, nothing found, perhaps next time....
DestroyFirstNodeOfPair(DN, IndFrom);
return true;
}
template<typename NodeTy>
static bool removeIndistinguishableNodes(std::vector<NodeTy*> &Nodes) {
bool Changed = false;
std::vector<NodeTy*>::iterator I = Nodes.begin();
while (I != Nodes.end()) {
if (isIndistinguishableNode(*I)) {
I = Nodes.erase(I);
Changed = true;
} else {
++I;
}
}
return Changed;
}
template<typename NodeTy>
static bool removeIndistinguishableNodePairs(std::vector<NodeTy*> &Nodes) {
bool Changed = false;
std::vector<NodeTy*>::iterator I = Nodes.begin();
while (I != Nodes.end()) {
NodeTy *N1 = *I++;
for (std::vector<NodeTy*>::iterator I2 = I, I2E = Nodes.end();
I2 != I2E; ++I2) {
NodeTy *N2 = *I2;
if (N1->isEquivalentTo(N2)) {
DestroyFirstNodeOfPair(N1, N2);
--I;
I = Nodes.erase(I);
Changed = true;
break;
}
}
}
return Changed;
}
// UnlinkUndistinguishableNodes - Eliminate shadow nodes that are not
// distinguishable from some other node in the graph...
//
bool FunctionDSGraph::UnlinkUndistinguishableNodes() {
// Loop over all of the shadow nodes, checking to see if they are
// indistinguishable from some other node. If so, eliminate the node!
//
return
removeIndistinguishableNodes(AllocNodes) |
removeIndistinguishableNodes(ShadowNodes) |
removeIndistinguishableNodePairs(CallNodes) |
removeIndistinguishableNodePairs(GlobalNodes);
}
static void MarkReferredNodesReachable(DSNode *N,
vector<ShadowDSNode*> &ShadowNodes,
vector<bool> &ReachableShadowNodes,
vector<AllocDSNode*> &AllocNodes,
vector<bool> &ReachableAllocNodes);
static inline void MarkReferredNodeSetReachable(const PointerValSet &PVS,
vector<ShadowDSNode*> &ShadowNodes,
vector<bool> &ReachableShadowNodes,
vector<AllocDSNode*> &AllocNodes,
vector<bool> &ReachableAllocNodes) {
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (isa<ShadowDSNode>(PVS[i].Node) || isa<AllocDSNode>(PVS[i].Node))
MarkReferredNodesReachable(PVS[i].Node, ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
}
static void MarkReferredNodesReachable(DSNode *N,
vector<ShadowDSNode*> &ShadowNodes,
vector<bool> &ReachableShadowNodes,
vector<AllocDSNode*> &AllocNodes,
vector<bool> &ReachableAllocNodes) {
assert(ShadowNodes.size() == ReachableShadowNodes.size());
assert(AllocNodes.size() == ReachableAllocNodes.size());
if (ShadowDSNode *Shad = dyn_cast<ShadowDSNode>(N)) {
vector<ShadowDSNode*>::iterator I =
std::find(ShadowNodes.begin(), ShadowNodes.end(), Shad);
unsigned i = I-ShadowNodes.begin();
if (ReachableShadowNodes[i]) return; // Recursion detected, abort...
ReachableShadowNodes[i] = true;
} else if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(N)) {
vector<AllocDSNode*>::iterator I =
std::find(AllocNodes.begin(), AllocNodes.end(), Alloc);
unsigned i = I-AllocNodes.begin();
if (ReachableAllocNodes[i]) return; // Recursion detected, abort...
ReachableAllocNodes[i] = true;
}
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
MarkReferredNodeSetReachable(N->getLink(i),
ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
const std::vector<PointerValSet> *Links = N->getAuxLinks();
if (Links)
for (unsigned i = 0, e = Links->size(); i != e; ++i)
MarkReferredNodeSetReachable((*Links)[i],
ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
}
void FunctionDSGraph::MarkEscapeableNodesReachable(
vector<bool> &ReachableShadowNodes,
vector<bool> &ReachableAllocNodes) {
// Mark all shadow nodes that have edges from other nodes as reachable.
// Recursively mark any shadow nodes pointed to by the newly live shadow
// nodes as also alive.
//
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
MarkReferredNodesReachable(GlobalNodes[i],
ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
for (unsigned i = 0, e = CallNodes.size(); i != e; ++i)
MarkReferredNodesReachable(CallNodes[i],
ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
// Mark all nodes in the return set as being reachable...
MarkReferredNodeSetReachable(RetNode,
ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
}
bool FunctionDSGraph::RemoveUnreachableNodes() {
bool Changed = false;
bool LocalChange = true;
while (LocalChange) {
LocalChange = false;
// Reachable*Nodes - Contains true if there is an edge from a reachable
// node to the numbered node...
//
vector<bool> ReachableShadowNodes(ShadowNodes.size());
vector<bool> ReachableAllocNodes (AllocNodes.size());
MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
// Mark all nodes in the value map as being reachable...
for (std::map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
E = ValueMap.end(); I != E; ++I)
MarkReferredNodeSetReachable(I->second,
ShadowNodes, ReachableShadowNodes,
AllocNodes, ReachableAllocNodes);
// At this point, all reachable shadow nodes have a true value in the
// Reachable vector. This means that any shadow nodes without an entry in
// the reachable vector are not reachable and should be removed. This is
// a two part process, because we must drop all references before we delete
// the shadow nodes [in case cycles exist].
//
for (unsigned i = 0; i != ShadowNodes.size(); ++i)
if (!ReachableShadowNodes[i]) {
// Track all unreachable nodes...
#if DEBUG_NODE_ELIMINATE
cerr << "Unreachable node eliminated:\n";
ShadowNodes[i]->print(cerr);
#endif
ShadowNodes[i]->removeAllIncomingEdges();
delete ShadowNodes[i];
// Remove from reachable...
ReachableShadowNodes.erase(ReachableShadowNodes.begin()+i);
ShadowNodes.erase(ShadowNodes.begin()+i); // Remove node entry
--i; // Don't skip the next node.
LocalChange = Changed = true;
}
for (unsigned i = 0; i != AllocNodes.size(); ++i)
if (!ReachableAllocNodes[i]) {
// Track all unreachable nodes...
#if DEBUG_NODE_ELIMINATE
cerr << "Unreachable node eliminated:\n";
AllocNodes[i]->print(cerr);
#endif
AllocNodes[i]->removeAllIncomingEdges();
delete AllocNodes[i];
// Remove from reachable...
ReachableAllocNodes.erase(ReachableAllocNodes.begin()+i);
AllocNodes.erase(AllocNodes.begin()+i); // Remove node entry
--i; // Don't skip the next node.
LocalChange = Changed = true;
}
}
// Loop over the global nodes, removing nodes that have no edges into them.
//
for (std::vector<GlobalDSNode*>::iterator I = GlobalNodes.begin();
I != GlobalNodes.end(); )
if ((*I)->getReferrers().empty()) { // No referrers...
delete *I;
I = GlobalNodes.erase(I); // Remove the node...
Changed = true;
} else {
++I;
}
return Changed;
}
// getEscapingAllocations - Add all allocations that escape the current
// function to the specified vector.
//
void FunctionDSGraph::getEscapingAllocations(vector<AllocDSNode*> &Allocs) {
vector<bool> ReachableShadowNodes(ShadowNodes.size());
vector<bool> ReachableAllocNodes (AllocNodes.size());
MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
if (ReachableAllocNodes[i])
Allocs.push_back(AllocNodes[i]);
}
// getNonEscapingAllocations - Add all allocations that do not escape the
// current function to the specified vector.
//
void FunctionDSGraph::getNonEscapingAllocations(vector<AllocDSNode*> &Allocs) {
vector<bool> ReachableShadowNodes(ShadowNodes.size());
vector<bool> ReachableAllocNodes (AllocNodes.size());
MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
if (!ReachableAllocNodes[i])
Allocs.push_back(AllocNodes[i]);
}
|