1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
//===- FunctionRepBuilder.cpp - Build the local datastructure graph -------===//
//
// Build the local datastructure graph for a single method.
//
//===----------------------------------------------------------------------===//
#include "FunctionRepBuilder.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "Support/STLExtras.h"
#include <algorithm>
// synthesizeNode - Create a new shadow node that is to be linked into this
// chain..
// FIXME: This should not take a FunctionRepBuilder as an argument!
//
ShadowDSNode *DSNode::synthesizeNode(const Type *Ty,
FunctionRepBuilder *Rep) {
// If we are a derived shadow node, defer to our parent to synthesize the node
if (ShadowDSNode *Th = dyn_cast<ShadowDSNode>(this))
if (Th->getShadowParent())
return Th->getShadowParent()->synthesizeNode(Ty, Rep);
// See if we have already synthesized a node of this type...
for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i)
if (SynthNodes[i].first == Ty) return SynthNodes[i].second;
// No we haven't. Do so now and add it to our list of saved nodes...
ShadowDSNode *SN = Rep->makeSynthesizedShadow(Ty, this);
SynthNodes.push_back(std::make_pair(Ty, SN));
return SN;
}
ShadowDSNode *FunctionRepBuilder::makeSynthesizedShadow(const Type *Ty,
DSNode *Parent) {
ShadowDSNode *Result = new ShadowDSNode(Ty, F->getFunction()->getParent(),
Parent);
ShadowNodes.push_back(Result);
return Result;
}
// visitOperand - If the specified instruction operand is a global value, add
// a node for it...
//
void InitVisitor::visitOperand(Value *V) {
if (!Rep->ValueMap.count(V)) // Only process it once...
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
GlobalDSNode *N = new GlobalDSNode(GV);
Rep->GlobalNodes.push_back(N);
Rep->ValueMap[V].add(N);
Rep->addAllUsesToWorkList(GV);
// FIXME: If the global variable has fields, we should add critical
// shadow nodes to represent them!
}
}
// visitCallInst - Create a call node for the callinst, and create as shadow
// node if the call returns a pointer value. Check to see if the call node
// uses any global variables...
//
void InitVisitor::visitCallInst(CallInst &CI) {
CallDSNode *C = new CallDSNode(&CI);
Rep->CallNodes.push_back(C);
Rep->CallMap[&CI] = C;
if (const PointerType *PT = dyn_cast<PointerType>(CI.getType())) {
// Create a critical shadow node to represent the memory object that the
// return value points to...
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
Func->getParent());
Rep->ShadowNodes.push_back(Shad);
// The return value of the function is a pointer to the shadow value
// just created...
//
C->getLink(0).add(Shad);
// The call instruction returns a pointer to the shadow block...
Rep->ValueMap[&CI].add(Shad, &CI);
// If the call returns a value with pointer type, add all of the users
// of the call instruction to the work list...
Rep->addAllUsesToWorkList(&CI);
}
// Loop over all of the operands of the call instruction (except the first
// one), to look for global variable references...
//
for_each(CI.op_begin(), CI.op_end(),
bind_obj(this, &InitVisitor::visitOperand));
}
// visitAllocationInst - Create an allocation node for the allocation. Since
// allocation instructions do not take pointer arguments, they cannot refer to
// global vars...
//
void InitVisitor::visitAllocationInst(AllocationInst &AI) {
AllocDSNode *N = new AllocDSNode(&AI);
Rep->AllocNodes.push_back(N);
Rep->ValueMap[&AI].add(N, &AI);
// Add all of the users of the malloc instruction to the work list...
Rep->addAllUsesToWorkList(&AI);
}
// Visit all other instruction types. Here we just scan, looking for uses of
// global variables...
//
void InitVisitor::visitInstruction(Instruction &I) {
for_each(I.op_begin(), I.op_end(),
bind_obj(this, &InitVisitor::visitOperand));
}
// addAllUsesToWorkList - Add all of the instructions users of the specified
// value to the work list for further processing...
//
void FunctionRepBuilder::addAllUsesToWorkList(Value *V) {
//cerr << "Adding all uses of " << V << "\n";
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
Instruction *Inst = cast<Instruction>(*I);
// When processing global values, it's possible that the instructions on
// the use list are not all in this method. Only add the instructions
// that _are_ in this method.
//
if (Inst->getParent()->getParent() == F->getFunction())
// Only let an instruction occur on the work list once...
if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end())
WorkList.push_back(Inst);
}
}
void FunctionRepBuilder::initializeWorkList(Function *Func) {
// Add all of the arguments to the method to the graph and add all users to
// the worklists...
//
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) {
// Only process arguments that are of pointer type...
if (const PointerType *PT = dyn_cast<PointerType>(I->getType())) {
// Add a shadow value for it to represent what it is pointing to and add
// this to the value map...
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
Func->getParent());
ShadowNodes.push_back(Shad);
ValueMap[I].add(PointerVal(Shad), I);
// Make sure that all users of the argument are processed...
addAllUsesToWorkList(I);
}
}
// Iterate over the instructions in the method. Create nodes for malloc and
// call instructions. Add all uses of these to the worklist of instructions
// to process.
//
InitVisitor IV(this, Func);
IV.visit(Func);
}
PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
const MemAccessInst &MAI) {
unsigned Index = InP.Index;
const Type *SrcTy = MAI.getPointerOperand()->getType();
for (MemAccessInst::const_op_iterator I = MAI.idx_begin(),
E = MAI.idx_end(); I != E; ++I)
if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
const StructType *STy = cast<StructType>(SrcTy);
unsigned StructIdx = cast<ConstantUInt>(I->get())->getValue();
for (unsigned i = 0; i != StructIdx; ++i)
Index += countPointerFields(STy->getContainedType(i));
// Advance SrcTy to be the new element type...
SrcTy = STy->getContainedType(StructIdx);
} else {
// Otherwise, stepping into array or initial pointer, just increment type
SrcTy = cast<SequentialType>(SrcTy)->getElementType();
}
return PointerVal(InP.Node, Index);
}
static PointerValSet &getField(const PointerVal &DestPtr) {
assert(DestPtr.Node != 0);
return DestPtr.Node->getLink(DestPtr.Index);
}
// Reprocessing a GEP instruction is the result of the pointer operand
// changing. This means that the set of possible values for the GEP
// needs to be expanded.
//
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
PointerValSet &GEPPVS = ValueMap[&GEP]; // PointerValSet to expand
// Get the input pointer val set...
const PointerValSet &SrcPVS = ValueMap[GEP.getOperand(0)];
bool Changed = false; // Process each input value... propogating it.
for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
// Calculate where the resulting pointer would point based on an
// input of 'Val' as the pointer type... and add it to our outgoing
// value set. Keep track of whether or not we actually changed
// anything.
//
Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP));
}
// If our current value set changed, notify all of the users of our
// value.
//
if (Changed) addAllUsesToWorkList(&GEP);
}
void FunctionRepBuilder::visitReturnInst(ReturnInst &RI) {
RetNode.add(ValueMap[RI.getOperand(0)]);
}
void FunctionRepBuilder::visitLoadInst(LoadInst &LI) {
// Only loads that return pointers are interesting...
const PointerType *DestTy = dyn_cast<PointerType>(LI.getType());
if (DestTy == 0) return;
const PointerValSet &SrcPVS = ValueMap[LI.getOperand(0)];
PointerValSet &LIPVS = ValueMap[&LI];
bool Changed = false;
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI);
PointerValSet &Field = getField(Ptr);
if (Field.size()) { // Field loaded wasn't null?
Changed |= LIPVS.add(Field);
} else {
// If we are loading a null field out of a shadow node, we need to
// synthesize a new shadow node and link it in...
//
ShadowDSNode *SynthNode =
Ptr.Node->synthesizeNode(DestTy->getElementType(), this);
Field.add(SynthNode);
Changed |= LIPVS.add(Field);
}
}
if (Changed) addAllUsesToWorkList(&LI);
}
void FunctionRepBuilder::visitStoreInst(StoreInst &SI) {
// The only stores that are interesting are stores the store pointers
// into data structures...
//
if (!isa<PointerType>(SI.getOperand(0)->getType())) return;
if (!ValueMap.count(SI.getOperand(0))) return; // Src scalar has no values!
const PointerValSet &SrcPVS = ValueMap[SI.getOperand(0)];
const PointerValSet &PtrPVS = ValueMap[SI.getOperand(1)];
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
const PointerVal &SrcPtr = SrcPVS[si];
for (unsigned pi = 0, pe = PtrPVS.size(); pi != pe; ++pi) {
PointerVal Dest = getIndexedPointerDest(PtrPVS[pi], SI);
#if 0
std::cerr << "Setting Dest:\n";
Dest.print(std::cerr);
std::cerr << "to point to Src:\n";
SrcPtr.print(std::cerr);
#endif
// Add SrcPtr into the Dest field...
if (getField(Dest).add(SrcPtr)) {
// If we modified the dest field, then invalidate everyone that points
// to Dest.
const std::vector<Value*> &Ptrs = Dest.Node->getPointers();
for (unsigned i = 0, e = Ptrs.size(); i != e; ++i)
addAllUsesToWorkList(Ptrs[i]);
}
}
}
}
void FunctionRepBuilder::visitCallInst(CallInst &CI) {
CallDSNode *DSN = CallMap[&CI];
unsigned PtrNum = 0;
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
if (isa<PointerType>(CI.getOperand(i)->getType()))
DSN->addArgValue(PtrNum++, ValueMap[CI.getOperand(i)]);
}
void FunctionRepBuilder::visitPHINode(PHINode &PN) {
assert(isa<PointerType>(PN.getType()) && "Should only update ptr phis");
PointerValSet &PN_PVS = ValueMap[&PN];
bool Changed = false;
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
Changed |= PN_PVS.add(ValueMap[PN.getIncomingValue(i)],
PN.getIncomingValue(i));
if (Changed) addAllUsesToWorkList(&PN);
}
// FunctionDSGraph constructor - Perform the global analysis to determine
// what the data structure usage behavior or a method looks like.
//
FunctionDSGraph::FunctionDSGraph(Function *F) : Func(F) {
FunctionRepBuilder Builder(this);
AllocNodes = Builder.getAllocNodes();
ShadowNodes = Builder.getShadowNodes();
GlobalNodes = Builder.getGlobalNodes();
CallNodes = Builder.getCallNodes();
RetNode = Builder.getRetNode();
ValueMap = Builder.getValueMap();
// Remove all entries in the value map that consist of global values pointing
// at things. They can only point to their node, so there is no use keeping
// them.
//
for (std::map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
E = ValueMap.end(); I != E;)
if (isa<GlobalValue>(I->first)) {
#if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER
I = ValueMap.erase(I);
#else
ValueMap.erase(I); // This is really lame.
I = ValueMap.begin(); // GCC's stdc++ lib doesn't return an it!
#endif
} else
++I;
bool Changed = true;
while (Changed) {
// Eliminate shadow nodes that are not distinguishable from some other
// node in the graph...
//
Changed = UnlinkUndistinguishableNodes();
// Eliminate shadow nodes that are now extraneous due to linking...
Changed |= RemoveUnreachableNodes();
}
}
|