aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/MemoryDepAnalysis.cpp
blob: 49b6425930d486596b40735cd7515ed1fa248050 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops -----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file implements a pass (MemoryDepAnalysis) that computes memory-based
// data dependences between instructions for each function in a module.  
// Memory-based dependences occur due to load and store operations, but
// also the side-effects of call instructions.
//
// The result of this pass is a DependenceGraph for each function
// representing the memory-based data dependences between instructions.
//
//===----------------------------------------------------------------------===//

#include "MemoryDepAnalysis.h"
#include "IPModRef.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/hash_map"
#include "llvm/ADT/hash_set"

namespace llvm {

///--------------------------------------------------------------------------
/// struct ModRefTable:
/// 
/// A data structure that tracks ModRefInfo for instructions:
///   -- modRefMap is a map of Instruction* -> ModRefInfo for the instr.
///   -- definers  is a vector of instructions that define    any node
///   -- users     is a vector of instructions that reference any node
///   -- numUsersBeforeDef is a vector indicating that the number of users
///                seen before definers[i] is numUsersBeforeDef[i].
/// 
/// numUsersBeforeDef[] effectively tells us the exact interleaving of
/// definers and users within the ModRefTable.
/// This is only maintained when constructing the table for one SCC, and
/// not copied over from one table to another since it is no longer useful.
///--------------------------------------------------------------------------

struct ModRefTable {
  typedef hash_map<Instruction*, ModRefInfo> ModRefMap;
  typedef ModRefMap::const_iterator                 const_map_iterator;
  typedef ModRefMap::      iterator                       map_iterator;
  typedef std::vector<Instruction*>::const_iterator const_ref_iterator;
  typedef std::vector<Instruction*>::      iterator       ref_iterator;

  ModRefMap                 modRefMap;
  std::vector<Instruction*> definers;
  std::vector<Instruction*> users;
  std::vector<unsigned>     numUsersBeforeDef;

  // Iterators to enumerate all the defining instructions
  const_ref_iterator defsBegin()  const {  return definers.begin(); }
        ref_iterator defsBegin()        {  return definers.begin(); }
  const_ref_iterator defsEnd()    const {  return definers.end(); }
        ref_iterator defsEnd()          {  return definers.end(); }

  // Iterators to enumerate all the user instructions
  const_ref_iterator usersBegin() const {  return users.begin(); }
        ref_iterator usersBegin()       {  return users.begin(); }
  const_ref_iterator usersEnd()   const {  return users.end(); }
        ref_iterator usersEnd()         {  return users.end(); }

  // Iterator identifying the last user that was seen *before* a
  // specified def.  In particular, all users in the half-closed range
  //    [ usersBegin(), usersBeforeDef_End(defPtr) )
  // were seen *before* the specified def.  All users in the half-closed range
  //    [ usersBeforeDef_End(defPtr), usersEnd() )
  // were seen *after* the specified def.
  // 
  ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) {
    unsigned defIndex = (unsigned) (defPtr - defsBegin());
    assert(defIndex < numUsersBeforeDef.size());
    assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd()); 
    return usersBegin() + numUsersBeforeDef[defIndex]; 
  }
  const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const {
    return const_cast<ModRefTable*>(this)->usersBeforeDef_End(defPtr);
  }

  // 
  // Modifier methods
  // 
  void AddDef(Instruction* D) {
    definers.push_back(D);
    numUsersBeforeDef.push_back(users.size());
  }
  void AddUse(Instruction* U) {
    users.push_back(U);
  }
  void Insert(const ModRefTable& fromTable) {
    modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end());
    definers.insert(definers.end(),
                    fromTable.definers.begin(), fromTable.definers.end());
    users.insert(users.end(),
                 fromTable.users.begin(), fromTable.users.end());
    numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */
  }
};


///--------------------------------------------------------------------------
/// class ModRefInfoBuilder:
/// 
/// A simple InstVisitor<> class that retrieves the Mod/Ref info for
/// Load/Store/Call instructions and inserts this information in
/// a ModRefTable.  It also records all instructions that Mod any node
/// and all that use any node.
///--------------------------------------------------------------------------

class ModRefInfoBuilder : public InstVisitor<ModRefInfoBuilder> {
  const DSGraph&            funcGraph;
  const FunctionModRefInfo& funcModRef;
  struct ModRefTable&       modRefTable;

  ModRefInfoBuilder();                         // DO NOT IMPLEMENT
  ModRefInfoBuilder(const ModRefInfoBuilder&); // DO NOT IMPLEMENT
  void operator=(const ModRefInfoBuilder&);    // DO NOT IMPLEMENT

public:
  ModRefInfoBuilder(const DSGraph& _funcGraph,
                    const FunctionModRefInfo& _funcModRef,
                    ModRefTable& _modRefTable)
    : funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable)
  {
  }

  // At a call instruction, retrieve the ModRefInfo using IPModRef results.
  // Add the call to the defs list if it modifies any nodes and to the uses
  // list if it refs any nodes.
  // 
  void visitCallInst(CallInst& callInst) {
    ModRefInfo safeModRef(funcGraph.getGraphSize());
    const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst);
    if (callModRef == NULL) {
      // call to external/unknown function: mark all nodes as Mod and Ref
      safeModRef.getModSet().set();
      safeModRef.getRefSet().set();
      callModRef = &safeModRef;
    }

    modRefTable.modRefMap.insert(std::make_pair(&callInst,
                                                ModRefInfo(*callModRef)));
    if (callModRef->getModSet().any())
      modRefTable.AddDef(&callInst);
    if (callModRef->getRefSet().any())
      modRefTable.AddUse(&callInst);
  }

  // At a store instruction, add to the mod set the single node pointed to
  // by the pointer argument of the store.  Interestingly, if there is no
  // such node, that would be a null pointer reference!
  void visitStoreInst(StoreInst& storeInst) {
    const DSNodeHandle& ptrNode =
      funcGraph.getNodeForValue(storeInst.getPointerOperand());
    if (const DSNode* target = ptrNode.getNode()) {
      unsigned nodeId = funcModRef.getNodeId(target);
      ModRefInfo& minfo =
        modRefTable.modRefMap.insert(
          std::make_pair(&storeInst,
                         ModRefInfo(funcGraph.getGraphSize()))).first->second;
      minfo.setNodeIsMod(nodeId);
      modRefTable.AddDef(&storeInst);
    } else
      std::cerr << "Warning: Uninitialized pointer reference!\n";
  }

  // At a load instruction, add to the ref set the single node pointed to
  // by the pointer argument of the load.  Interestingly, if there is no
  // such node, that would be a null pointer reference!
  void visitLoadInst(LoadInst& loadInst) {
    const DSNodeHandle& ptrNode =
      funcGraph.getNodeForValue(loadInst.getPointerOperand());
    if (const DSNode* target = ptrNode.getNode()) {
      unsigned nodeId = funcModRef.getNodeId(target);
      ModRefInfo& minfo =
        modRefTable.modRefMap.insert(
          std::make_pair(&loadInst,
                         ModRefInfo(funcGraph.getGraphSize()))).first->second;
      minfo.setNodeIsRef(nodeId);
      modRefTable.AddUse(&loadInst);
    } else
      std::cerr << "Warning: Uninitialized pointer reference!\n";
  }
};


//----------------------------------------------------------------------------
// class MemoryDepAnalysis: A dep. graph for load/store/call instructions
//----------------------------------------------------------------------------


/// getAnalysisUsage - This does not modify anything.  It uses the Top-Down DS
/// Graph and IPModRef.
///
void MemoryDepAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<TDDataStructures>();
  AU.addRequired<IPModRef>();
}


/// Basic dependence gathering algorithm, using scc_iterator on CFG:
/// 
/// for every SCC S in the CFG in PostOrder on the SCC DAG
///     {
///       for every basic block BB in S in *postorder*
///         for every instruction I in BB in reverse
///           Add (I, ModRef[I]) to ModRefCurrent
///           if (Mod[I] != NULL)
///               Add I to DefSetCurrent:  { I \in S : Mod[I] != NULL }
///           if (Ref[I] != NULL)
///               Add I to UseSetCurrent:  { I       : Ref[I] != NULL }
/// 
///       for every def D in DefSetCurrent
/// 
///           // NOTE: D comes after itself iff S contains a loop
///           if (HasLoop(S) && D & D)
///               Add output-dep: D -> D2
/// 
///           for every def D2 *after* D in DefSetCurrent
///               // NOTE: D2 comes before D in execution order
///               if (D & D2)
///                   Add output-dep: D2 -> D
///                   if (HasLoop(S))
///                       Add output-dep: D -> D2
/// 
///           for every use U in UseSetCurrent that was seen *before* D
///               // NOTE: U comes after D in execution order
///               if (U & D)
///                   if (U != D || HasLoop(S))
///                       Add true-dep: D -> U
///                   if (HasLoop(S))
///                       Add anti-dep: U -> D
/// 
///           for every use U in UseSetCurrent that was seen *after* D
///               // NOTE: U comes before D in execution order
///               if (U & D)
///                   if (U != D || HasLoop(S))
///                       Add anti-dep: U -> D
///                   if (HasLoop(S))
///                       Add true-dep: D -> U
/// 
///           for every def Dnext in DefSetAfter
///               // NOTE: Dnext comes after D in execution order
///               if (Dnext & D)
///                   Add output-dep: D -> Dnext
/// 
///           for every use Unext in UseSetAfter
///               // NOTE: Unext comes after D in execution order
///               if (Unext & D)
///                   Add true-dep: D -> Unext
/// 
///       for every use U in UseSetCurrent
///           for every def Dnext in DefSetAfter
///               // NOTE: Dnext comes after U in execution order
///               if (Dnext & D)
///                   Add anti-dep: U -> Dnext
/// 
///       Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
///       Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
///       Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
///     }
///         
///
void MemoryDepAnalysis::ProcessSCC(std::vector<BasicBlock*> &S,
                                   ModRefTable& ModRefAfter, bool hasLoop) {
  ModRefTable ModRefCurrent;
  ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap;
  ModRefTable::ModRefMap& mapAfter   = ModRefAfter.modRefMap;

  // Builder class fills out a ModRefTable one instruction at a time.
  // To use it, we just invoke it's visit function for each basic block:
  // 
  //   for each basic block BB in the SCC in *postorder*
  //       for each instruction  I in BB in *reverse*
  //           ModRefInfoBuilder::visit(I)
  //           : Add (I, ModRef[I]) to ModRefCurrent.modRefMap
  //           : Add I  to ModRefCurrent.definers if it defines any node
  //           : Add I  to ModRefCurrent.users    if it uses any node
  // 
  ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent);
  for (std::vector<BasicBlock*>::iterator BI = S.begin(), BE = S.end();
       BI != BE; ++BI)
    // Note: BBs in the SCC<> created by scc_iterator are in postorder.
    for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend();
         II != IE; ++II)
      builder.visit(*II);

  ///       for every def D in DefSetCurrent
  /// 
  for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(),
         IE=ModRefCurrent.defsEnd(); II != IE; ++II)
    {
      ///           // NOTE: D comes after itself iff S contains a loop
      ///           if (HasLoop(S))
      ///               Add output-dep: D -> D2
      if (hasLoop)
        funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence);

      ///           for every def D2 *after* D in DefSetCurrent
      ///               // NOTE: D2 comes before D in execution order
      ///               if (D2 & D)
      ///                   Add output-dep: D2 -> D
      ///                   if (HasLoop(S))
      ///                       Add output-dep: D -> D2
      for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI)
        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
                      mapCurrent.find(*JI)->second.getModSet()))
          {
            funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence);
            if (hasLoop)
              funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
          }
  
      ///           for every use U in UseSetCurrent that was seen *before* D
      ///               // NOTE: U comes after D in execution order
      ///               if (U & D)
      ///                   if (U != D || HasLoop(S))
      ///                       Add true-dep: U -> D
      ///                   if (HasLoop(S))
      ///                       Add anti-dep: D -> U
      ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin();
      ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II);
      for ( ; JI != JE; ++JI)
        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
                      mapCurrent.find(*JI)->second.getRefSet()))
          {
            if (*II != *JI || hasLoop)
              funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
            if (hasLoop)
              funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
          }

      ///           for every use U in UseSetCurrent that was seen *after* D
      ///               // NOTE: U comes before D in execution order
      ///               if (U & D)
      ///                   if (U != D || HasLoop(S))
      ///                       Add anti-dep: U -> D
      ///                   if (HasLoop(S))
      ///                       Add true-dep: D -> U
      for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI)
        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
                      mapCurrent.find(*JI)->second.getRefSet()))
          {
            if (*II != *JI || hasLoop)
              funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
            if (hasLoop)
              funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
          }

      ///           for every def Dnext in DefSetPrev
      ///               // NOTE: Dnext comes after D in execution order
      ///               if (Dnext & D)
      ///                   Add output-dep: D -> Dnext
      for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
             JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
                      mapAfter.find(*JI)->second.getModSet()))
          funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);

      ///           for every use Unext in UseSetAfter
      ///               // NOTE: Unext comes after D in execution order
      ///               if (Unext & D)
      ///                   Add true-dep: D -> Unext
      for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(),
             JE=ModRefAfter.usersEnd(); JI != JE; ++JI)
        if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
                      mapAfter.find(*JI)->second.getRefSet()))
          funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
    }

  /// 
  ///       for every use U in UseSetCurrent
  ///           for every def Dnext in DefSetAfter
  ///               // NOTE: Dnext comes after U in execution order
  ///               if (Dnext & D)
  ///                   Add anti-dep: U -> Dnext
  for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(),
         IE=ModRefCurrent.usersEnd(); II != IE; ++II)
    for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
           JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
      if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(),
                    mapAfter.find(*JI)->second.getModSet()))
        funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence);
    
  ///       Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
  ///       Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
  ///       Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
  ModRefAfter.Insert(ModRefCurrent);
}


/// Debugging support methods
/// 
void MemoryDepAnalysis::print(std::ostream &O) const
{
  // TEMPORARY LOOP
  for (hash_map<Function*, DependenceGraph*>::const_iterator
         I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
    {
      Function* func = I->first;
      DependenceGraph* depGraph = I->second;

  O << "\n================================================================\n";
  O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName();
  O << "\n================================================================\n\n";
  depGraph->print(*func, O);

    }
}


/// 
/// Run the pass on a function
/// 
bool MemoryDepAnalysis::runOnFunction(Function &F) {
  assert(!F.isExternal());

  // Get the FunctionModRefInfo holding IPModRef results for this function.
  // Use the TD graph recorded within the FunctionModRefInfo object, which
  // may not be the same as the original TD graph computed by DS analysis.
  // 
  funcModRef = &getAnalysis<IPModRef>().getFunctionModRefInfo(F);
  funcGraph  = &funcModRef->getFuncGraph();

  // TEMPORARY: ptr to depGraph (later just becomes "this").
  assert(!funcMap.count(&F) && "Analyzing function twice?");
  funcDepGraph = funcMap[&F] = new DependenceGraph();

  ModRefTable ModRefAfter;

  for (scc_iterator<Function*> I = scc_begin(&F), E = scc_end(&F); I != E; ++I)
    ProcessSCC(*I, ModRefAfter, I.hasLoop());

  return true;
}


//-------------------------------------------------------------------------
// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
// These functions will go away once this class becomes a FunctionPass.
// 

// Driver function to compute dependence graphs for every function.
// This is temporary and will go away once this is a FunctionPass.
// 
bool MemoryDepAnalysis::run(Module& M)
{
  for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
    if (! FI->isExternal())
      runOnFunction(*FI); // automatically inserts each depGraph into funcMap
  return true;
}
  
// Release all the dependence graphs in the map.
void MemoryDepAnalysis::releaseMemory()
{
  for (hash_map<Function*, DependenceGraph*>::const_iterator
         I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
    delete I->second;
  funcMap.clear();

  // Clear pointers because the pass constructor will not be invoked again.
  funcDepGraph = NULL;
  funcGraph = NULL;
  funcModRef = NULL;
}

MemoryDepAnalysis::~MemoryDepAnalysis()
{
  releaseMemory();
}

//----END TEMPORARY FUNCTIONS----------------------------------------------


void MemoryDepAnalysis::dump() const
{
  this->print(std::cerr);
}

static RegisterAnalysis<MemoryDepAnalysis>
Z("memdep", "Memory Dependence Analysis");


} // End llvm namespace