aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/DataStructure/Steensgaard.cpp
blob: cc50571019bb21c6f5d713873e1800c7368e350e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis.  It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Module.h"
#include "Support/Debug.h"
using namespace llvm;

namespace {
  class Steens : public Pass, public AliasAnalysis {
    DSGraph *ResultGraph;
    DSGraph *GlobalsGraph;  // FIXME: Eliminate globals graph stuff from DNE
  public:
    Steens() : ResultGraph(0), GlobalsGraph(0) {}
    ~Steens() {
      releaseMyMemory();
      assert(ResultGraph == 0 && "releaseMemory not called?");
    }

    //------------------------------------------------
    // Implement the Pass API
    //

    // run - Build up the result graph, representing the pointer graph for the
    // program.
    //
    bool run(Module &M);

    virtual void releaseMyMemory() { delete ResultGraph; ResultGraph = 0; }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
      AU.setPreservesAll();                    // Does not transform code...
      AU.addRequired<LocalDataStructures>();   // Uses local dsgraph
      AU.addRequired<AliasAnalysis>();         // Chains to another AA impl...
    }

    // print - Implement the Pass::print method...
    void print(std::ostream &O, const Module *M) const {
      assert(ResultGraph && "Result graph has not yet been computed!");
      ResultGraph->writeGraphToFile(O, "steensgaards");
    }

    //------------------------------------------------
    // Implement the AliasAnalysis API
    //  

    // alias - This is the only method here that does anything interesting...
    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);

    bool pointsToConstantMemory(const Value *P) {
      return getAnalysis<AliasAnalysis>().pointsToConstantMemory(P);
    }
    
  private:
    void ResolveFunctionCall(Function *F, const DSCallSite &Call,
                             DSNodeHandle &RetVal);
  };

  // Register the pass...
  RegisterOpt<Steens> X("steens-aa",
                        "Steensgaard's alias analysis (DSGraph based)");

  // Register as an implementation of AliasAnalysis
  RegisterAnalysisGroup<AliasAnalysis, Steens> Y;
}

/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
/// with the specified call site descriptor.  This function links the arguments
/// and the return value for the call site context-insensitively.
///
void Steens::ResolveFunctionCall(Function *F, const DSCallSite &Call,
                                 DSNodeHandle &RetVal) {
  assert(ResultGraph != 0 && "Result graph not allocated!");
  DSGraph::ScalarMapTy &ValMap = ResultGraph->getScalarMap();

  // Handle the return value of the function...
  if (Call.getRetVal().getNode() && RetVal.getNode())
    RetVal.mergeWith(Call.getRetVal());

  // Loop over all pointer arguments, resolving them to their provided pointers
  unsigned PtrArgIdx = 0;
  for (Function::aiterator AI = F->abegin(), AE = F->aend();
       AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) {
    DSGraph::ScalarMapTy::iterator I = ValMap.find(AI);
    if (I != ValMap.end())    // If its a pointer argument...
      I->second.mergeWith(Call.getPtrArg(PtrArgIdx++));
  }
}


/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::run(Module &M) {
  InitializeAliasAnalysis(this);
  assert(ResultGraph == 0 && "Result graph already allocated!");
  LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();

  // Create a new, empty, graph...
  ResultGraph = new DSGraph(getTargetData());
  GlobalsGraph = new DSGraph(getTargetData());
  ResultGraph->setGlobalsGraph(GlobalsGraph);
  ResultGraph->setPrintAuxCalls();

  // RetValMap - Keep track of the return values for all functions that return
  // valid pointers.
  //
  DSGraph::ReturnNodesTy RetValMap;

  // Loop over the rest of the module, merging graphs for non-external functions
  // into this graph.
  //
  unsigned Count = 0;
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->isExternal()) {
      DSGraph::ScalarMapTy ValMap;
      {  // Scope to free NodeMap memory ASAP
        DSGraph::NodeMapTy NodeMap;
        const DSGraph &FDSG = LDS.getDSGraph(*I);
        ResultGraph->cloneInto(FDSG, ValMap, RetValMap, NodeMap,
                               DSGraph::UpdateInlinedGlobals);
      }

      // Incorporate the inlined Function's ScalarMap into the global
      // ScalarMap...
      DSGraph::ScalarMapTy &GVM = ResultGraph->getScalarMap();
      for (DSGraph::ScalarMapTy::iterator I = ValMap.begin(),
             E = ValMap.end(); I != E; ++I)
        GVM[I->first].mergeWith(I->second);

      if ((++Count & 1) == 0)   // Prune nodes out every other time...
        ResultGraph->removeTriviallyDeadNodes();
    }

  // FIXME: Must recalculate and use the Incomplete markers!!

  // Now that we have all of the graphs inlined, we can go about eliminating
  // call nodes...
  //
  std::vector<DSCallSite> &Calls =
    ResultGraph->getAuxFunctionCalls();
  assert(Calls.empty() && "Aux call list is already in use??");

  // Start with a copy of the original call sites...
  Calls = ResultGraph->getFunctionCalls();

  for (unsigned i = 0; i != Calls.size(); ) {
    DSCallSite &CurCall = Calls[i];
    
    // Loop over the called functions, eliminating as many as possible...
    std::vector<GlobalValue*> CallTargets;
    if (CurCall.isDirectCall())
      CallTargets.push_back(CurCall.getCalleeFunc());
    else 
      CallTargets = CurCall.getCalleeNode()->getGlobals();

    for (unsigned c = 0; c != CallTargets.size(); ) {
      // If we can eliminate this function call, do so!
      bool Eliminated = false;
      if (Function *F = dyn_cast<Function>(CallTargets[c]))
        if (!F->isExternal()) {
          ResolveFunctionCall(F, CurCall, RetValMap[F]);
          Eliminated = true;
        }
      if (Eliminated) {
        CallTargets[c] = CallTargets.back();
        CallTargets.pop_back();
      } else
        ++c;  // Cannot eliminate this call, skip over it...
    }

    if (CallTargets.empty()) {        // Eliminated all calls?
      CurCall = Calls.back();         // Remove entry
      Calls.pop_back();
    } else
      ++i;                            // Skip this call site...
  }

  RetValMap.clear();

  // Update the "incomplete" markers on the nodes, ignoring unknownness due to
  // incoming arguments...
  ResultGraph->maskIncompleteMarkers();
  ResultGraph->markIncompleteNodes(DSGraph::IgnoreFormalArgs);

  // Remove any nodes that are dead after all of the merging we have done...
  // FIXME: We should be able to disable the globals graph for steens!
  ResultGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);

  DEBUG(print(std::cerr, &M));
  return false;
}

// alias - This is the only method here that does anything interesting...
AliasAnalysis::AliasResult Steens::alias(const Value *V1, unsigned V1Size,
                                         const Value *V2, unsigned V2Size) {
  // FIXME: HANDLE Size argument!
  assert(ResultGraph && "Result graph has not been computed yet!");

  DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();

  DSGraph::ScalarMapTy::iterator I = GSM.find(const_cast<Value*>(V1));
  if (I != GSM.end() && I->second.getNode()) {
    DSNodeHandle &V1H = I->second;
    DSGraph::ScalarMapTy::iterator J=GSM.find(const_cast<Value*>(V2));
    if (J != GSM.end() && J->second.getNode()) {
      DSNodeHandle &V2H = J->second;
      // If the two pointers point to different data structure graph nodes, they
      // cannot alias!
      if (V1H.getNode() != V2H.getNode())    // FIXME: Handle incompleteness!
        return NoAlias;

      // FIXME: If the two pointers point to the same node, and the offsets are
      // different, and the LinkIndex vector doesn't alias the section, then the
      // two pointers do not alias.  We need access size information for the two
      // accesses though!
      //
    }
  }

  // If we cannot determine alias properties based on our graph, fall back on
  // some other AA implementation.
  //
  return getAnalysis<AliasAnalysis>().alias(V1, V1Size, V2, V2Size);
}