aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/IPA/Andersens.cpp
blob: 38b29fed0b321e24e9166a7c19ac40dd04c6059e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an implementation of Andersen's interprocedural alias
// analysis
//
// In pointer analysis terms, this is a subset-based, flow-insensitive,
// field-sensitive, and context-insensitive algorithm pointer algorithm.
//
// This algorithm is implemented as three stages:
//   1. Object identification.
//   2. Inclusion constraint identification.
//   3. Offline constraint graph optimization
//   4. Inclusion constraint solving.
//
// The object identification stage identifies all of the memory objects in the
// program, which includes globals, heap allocated objects, and stack allocated
// objects.
//
// The inclusion constraint identification stage finds all inclusion constraints
// in the program by scanning the program, looking for pointer assignments and
// other statements that effect the points-to graph.  For a statement like "A =
// B", this statement is processed to indicate that A can point to anything that
// B can point to.  Constraints can handle copies, loads, and stores, and
// address taking.
//
// The offline constraint graph optimization portion includes offline variable
// substitution algorithms intended to compute pointer and location
// equivalences.  Pointer equivalences are those pointers that will have the
// same points-to sets, and location equivalences are those variables that
// always appear together in points-to sets.  It also includes an offline
// cycle detection algorithm that allows cycles to be collapsed sooner 
// during solving.
//
// The inclusion constraint solving phase iteratively propagates the inclusion
// constraints until a fixed point is reached.  This is an O(N^3) algorithm.
//
// Function constraints are handled as if they were structs with X fields.
// Thus, an access to argument X of function Y is an access to node index
// getNode(Y) + X.  This representation allows handling of indirect calls
// without any issues.  To wit, an indirect call Y(a,b) is equivalent to
// *(Y + 1) = a, *(Y + 2) = b.
// The return node for a function is always located at getNode(F) +
// CallReturnPos. The arguments start at getNode(F) + CallArgPos.
//
// Future Improvements:
//   Use of BDD's.
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "anders-aa"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/DenseSet.h"
#include <algorithm>
#include <set>
#include <list>
#include <map>
#include <stack>
#include <vector>
#include <queue>

// Determining the actual set of nodes the universal set can consist of is very
// expensive because it means propagating around very large sets.  We rely on
// other analysis being able to determine which nodes can never be pointed to in
// order to disambiguate further than "points-to anything".
#define FULL_UNIVERSAL 0

using namespace llvm;
STATISTIC(NumIters      , "Number of iterations to reach convergence");
STATISTIC(NumConstraints, "Number of constraints");
STATISTIC(NumNodes      , "Number of nodes");
STATISTIC(NumUnified    , "Number of variables unified");
STATISTIC(NumErased     , "Number of redundant constraints erased");

static const unsigned SelfRep = (unsigned)-1;
static const unsigned Unvisited = (unsigned)-1;
// Position of the function return node relative to the function node.
static const unsigned CallReturnPos = 1;
// Position of the function call node relative to the function node.
static const unsigned CallFirstArgPos = 2;

namespace {
  struct BitmapKeyInfo {
    static inline SparseBitVector<> *getEmptyKey() {
      return reinterpret_cast<SparseBitVector<> *>(-1);
    }
    static inline SparseBitVector<> *getTombstoneKey() {
      return reinterpret_cast<SparseBitVector<> *>(-2);
    }
    static unsigned getHashValue(const SparseBitVector<> *bitmap) {
      return bitmap->getHashValue();
    }
    static bool isEqual(const SparseBitVector<> *LHS,
                        const SparseBitVector<> *RHS) {
      if (LHS == RHS)
        return true;
      else if (LHS == getEmptyKey() || RHS == getEmptyKey()
               || LHS == getTombstoneKey() || RHS == getTombstoneKey())
        return false;

      return *LHS == *RHS;
    }

    static bool isPod() { return true; }
  };

  class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis,
                                      private InstVisitor<Andersens> {
    struct Node;

    /// Constraint - Objects of this structure are used to represent the various
    /// constraints identified by the algorithm.  The constraints are 'copy',
    /// for statements like "A = B", 'load' for statements like "A = *B",
    /// 'store' for statements like "*A = B", and AddressOf for statements like
    /// A = alloca;  The Offset is applied as *(A + K) = B for stores,
    /// A = *(B + K) for loads, and A = B + K for copies.  It is
    /// illegal on addressof constraints (because it is statically
    /// resolvable to A = &C where C = B + K)

    struct Constraint {
      enum ConstraintType { Copy, Load, Store, AddressOf } Type;
      unsigned Dest;
      unsigned Src;
      unsigned Offset;

      Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
        : Type(Ty), Dest(D), Src(S), Offset(O) {
        assert((Offset == 0 || Ty != AddressOf) &&
               "Offset is illegal on addressof constraints");
      }

      bool operator==(const Constraint &RHS) const {
        return RHS.Type == Type
          && RHS.Dest == Dest
          && RHS.Src == Src
          && RHS.Offset == Offset;
      }

      bool operator!=(const Constraint &RHS) const {
        return !(*this == RHS);
      }

      bool operator<(const Constraint &RHS) const {
        if (RHS.Type != Type)
          return RHS.Type < Type;
        else if (RHS.Dest != Dest)
          return RHS.Dest < Dest;
        else if (RHS.Src != Src)
          return RHS.Src < Src;
        return RHS.Offset < Offset;
      }
    };

    // Information DenseSet requires implemented in order to be able to do
    // it's thing
    struct PairKeyInfo {
      static inline std::pair<unsigned, unsigned> getEmptyKey() {
        return std::make_pair(~0U, ~0U);
      }
      static inline std::pair<unsigned, unsigned> getTombstoneKey() {
        return std::make_pair(~0U - 1, ~0U - 1);
      }
      static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
        return P.first ^ P.second;
      }
      static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
                              const std::pair<unsigned, unsigned> &RHS) {
        return LHS == RHS;
      }
    };
    
    struct ConstraintKeyInfo {
      static inline Constraint getEmptyKey() {
        return Constraint(Constraint::Copy, ~0U, ~0U, ~0U);
      }
      static inline Constraint getTombstoneKey() {
        return Constraint(Constraint::Copy, ~0U - 1, ~0U - 1, ~0U - 1);
      }
      static unsigned getHashValue(const Constraint &C) {
        return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
      }
      static bool isEqual(const Constraint &LHS,
                          const Constraint &RHS) {
        return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
          && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
      }
    };

    // Node class - This class is used to represent a node in the constraint
    // graph.  Due to various optimizations, it is not always the case that
    // there is a mapping from a Node to a Value.  In particular, we add
    // artificial Node's that represent the set of pointed-to variables shared
    // for each location equivalent Node.
    struct Node {
    private:
      static unsigned Counter;

    public:
      Value *Val;
      SparseBitVector<> *Edges;
      SparseBitVector<> *PointsTo;
      SparseBitVector<> *OldPointsTo;
      std::list<Constraint> Constraints;

      // Pointer and location equivalence labels
      unsigned PointerEquivLabel;
      unsigned LocationEquivLabel;
      // Predecessor edges, both real and implicit
      SparseBitVector<> *PredEdges;
      SparseBitVector<> *ImplicitPredEdges;
      // Set of nodes that point to us, only use for location equivalence.
      SparseBitVector<> *PointedToBy;
      // Number of incoming edges, used during variable substitution to early
      // free the points-to sets
      unsigned NumInEdges;
      // True if our points-to set is in the Set2PEClass map
      bool StoredInHash;
      // True if our node has no indirect constraints (complex or otherwise)
      bool Direct;
      // True if the node is address taken, *or* it is part of a group of nodes
      // that must be kept together.  This is set to true for functions and
      // their arg nodes, which must be kept at the same position relative to
      // their base function node.
      bool AddressTaken;

      // Nodes in cycles (or in equivalence classes) are united together using a
      // standard union-find representation with path compression.  NodeRep
      // gives the index into GraphNodes for the representative Node.
      unsigned NodeRep;

      // Modification timestamp.  Assigned from Counter.
      // Used for work list prioritization.
      unsigned Timestamp;

      explicit Node(bool direct = true) :
        Val(0), Edges(0), PointsTo(0), OldPointsTo(0), 
        PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
        ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
        StoredInHash(false), Direct(direct), AddressTaken(false),
        NodeRep(SelfRep), Timestamp(0) { }

      Node *setValue(Value *V) {
        assert(Val == 0 && "Value already set for this node!");
        Val = V;
        return this;
      }

      /// getValue - Return the LLVM value corresponding to this node.
      ///
      Value *getValue() const { return Val; }

      /// addPointerTo - Add a pointer to the list of pointees of this node,
      /// returning true if this caused a new pointer to be added, or false if
      /// we already knew about the points-to relation.
      bool addPointerTo(unsigned Node) {
        return PointsTo->test_and_set(Node);
      }

      /// intersects - Return true if the points-to set of this node intersects
      /// with the points-to set of the specified node.
      bool intersects(Node *N) const;

      /// intersectsIgnoring - Return true if the points-to set of this node
      /// intersects with the points-to set of the specified node on any nodes
      /// except for the specified node to ignore.
      bool intersectsIgnoring(Node *N, unsigned) const;

      // Timestamp a node (used for work list prioritization)
      void Stamp() {
        Timestamp = Counter++;
      }

      bool isRep() const {
        return( (int) NodeRep < 0 );
      }
    };

    struct WorkListElement {
      Node* node;
      unsigned Timestamp;
      WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}

      // Note that we reverse the sense of the comparison because we
      // actually want to give low timestamps the priority over high,
      // whereas priority is typically interpreted as a greater value is
      // given high priority.
      bool operator<(const WorkListElement& that) const {
        return( this->Timestamp > that.Timestamp );
      }
    };

    // Priority-queue based work list specialized for Nodes.
    class WorkList {
      std::priority_queue<WorkListElement> Q;

    public:
      void insert(Node* n) {
        Q.push( WorkListElement(n, n->Timestamp) );
      }

      // We automatically discard non-representative nodes and nodes
      // that were in the work list twice (we keep a copy of the
      // timestamp in the work list so we can detect this situation by
      // comparing against the node's current timestamp).
      Node* pop() {
        while( !Q.empty() ) {
          WorkListElement x = Q.top(); Q.pop();
          Node* INode = x.node;

          if( INode->isRep() &&
              INode->Timestamp == x.Timestamp ) {
            return(x.node);
          }
        }
        return(0);
      }

      bool empty() {
        return Q.empty();
      }
    };

    /// GraphNodes - This vector is populated as part of the object
    /// identification stage of the analysis, which populates this vector with a
    /// node for each memory object and fills in the ValueNodes map.
    std::vector<Node> GraphNodes;

    /// ValueNodes - This map indicates the Node that a particular Value* is
    /// represented by.  This contains entries for all pointers.
    DenseMap<Value*, unsigned> ValueNodes;

    /// ObjectNodes - This map contains entries for each memory object in the
    /// program: globals, alloca's and mallocs.
    DenseMap<Value*, unsigned> ObjectNodes;

    /// ReturnNodes - This map contains an entry for each function in the
    /// program that returns a value.
    DenseMap<Function*, unsigned> ReturnNodes;

    /// VarargNodes - This map contains the entry used to represent all pointers
    /// passed through the varargs portion of a function call for a particular
    /// function.  An entry is not present in this map for functions that do not
    /// take variable arguments.
    DenseMap<Function*, unsigned> VarargNodes;


    /// Constraints - This vector contains a list of all of the constraints
    /// identified by the program.
    std::vector<Constraint> Constraints;

    // Map from graph node to maximum K value that is allowed (for functions,
    // this is equivalent to the number of arguments + CallFirstArgPos)
    std::map<unsigned, unsigned> MaxK;

    /// This enum defines the GraphNodes indices that correspond to important
    /// fixed sets.
    enum {
      UniversalSet = 0,
      NullPtr      = 1,
      NullObject   = 2,
      NumberSpecialNodes
    };
    // Stack for Tarjan's
    std::stack<unsigned> SCCStack;
    // Map from Graph Node to DFS number
    std::vector<unsigned> Node2DFS;
    // Map from Graph Node to Deleted from graph.
    std::vector<bool> Node2Deleted;
    // Same as Node Maps, but implemented as std::map because it is faster to
    // clear 
    std::map<unsigned, unsigned> Tarjan2DFS;
    std::map<unsigned, bool> Tarjan2Deleted;
    // Current DFS number
    unsigned DFSNumber;

    // Work lists.
    WorkList w1, w2;
    WorkList *CurrWL, *NextWL; // "current" and "next" work lists

    // Offline variable substitution related things

    // Temporary rep storage, used because we can't collapse SCC's in the
    // predecessor graph by uniting the variables permanently, we can only do so
    // for the successor graph.
    std::vector<unsigned> VSSCCRep;
    // Mapping from node to whether we have visited it during SCC finding yet.
    std::vector<bool> Node2Visited;
    // During variable substitution, we create unknowns to represent the unknown
    // value that is a dereference of a variable.  These nodes are known as
    // "ref" nodes (since they represent the value of dereferences).
    unsigned FirstRefNode;
    // During HVN, we create represent address taken nodes as if they were
    // unknown (since HVN, unlike HU, does not evaluate unions).
    unsigned FirstAdrNode;
    // Current pointer equivalence class number
    unsigned PEClass;
    // Mapping from points-to sets to equivalence classes
    typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
    BitVectorMap Set2PEClass;
    // Mapping from pointer equivalences to the representative node.  -1 if we
    // have no representative node for this pointer equivalence class yet.
    std::vector<int> PEClass2Node;
    // Mapping from pointer equivalences to representative node.  This includes
    // pointer equivalent but not location equivalent variables. -1 if we have
    // no representative node for this pointer equivalence class yet.
    std::vector<int> PENLEClass2Node;
    // Union/Find for HCD
    std::vector<unsigned> HCDSCCRep;
    // HCD's offline-detected cycles; "Statically DeTected"
    // -1 if not part of such a cycle, otherwise a representative node.
    std::vector<int> SDT;
    // Whether to use SDT (UniteNodes can use it during solving, but not before)
    bool SDTActive;

  public:
    static char ID;
    Andersens() : ModulePass(&ID) {}

    bool runOnModule(Module &M) {
      InitializeAliasAnalysis(this);
      IdentifyObjects(M);
      CollectConstraints(M);
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa-constraints"
      DEBUG(PrintConstraints());
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa"
      SolveConstraints();
      DEBUG(PrintPointsToGraph());

      // Free the constraints list, as we don't need it to respond to alias
      // requests.
      std::vector<Constraint>().swap(Constraints);
      //These are needed for Print() (-analyze in opt)
      //ObjectNodes.clear();
      //ReturnNodes.clear();
      //VarargNodes.clear();
      return false;
    }

    void releaseMemory() {
      // FIXME: Until we have transitively required passes working correctly,
      // this cannot be enabled!  Otherwise, using -count-aa with the pass
      // causes memory to be freed too early. :(
#if 0
      // The memory objects and ValueNodes data structures at the only ones that
      // are still live after construction.
      std::vector<Node>().swap(GraphNodes);
      ValueNodes.clear();
#endif
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
      AU.setPreservesAll();                         // Does not transform code
    }

    //------------------------------------------------
    // Implement the AliasAnalysis API
    //
    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);
    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
    void getMustAliases(Value *P, std::vector<Value*> &RetVals);
    bool pointsToConstantMemory(const Value *P);

    virtual void deleteValue(Value *V) {
      ValueNodes.erase(V);
      getAnalysis<AliasAnalysis>().deleteValue(V);
    }

    virtual void copyValue(Value *From, Value *To) {
      ValueNodes[To] = ValueNodes[From];
      getAnalysis<AliasAnalysis>().copyValue(From, To);
    }

  private:
    /// getNode - Return the node corresponding to the specified pointer scalar.
    ///
    unsigned getNode(Value *V) {
      if (Constant *C = dyn_cast<Constant>(V))
        if (!isa<GlobalValue>(C))
          return getNodeForConstantPointer(C);

      DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
      if (I == ValueNodes.end()) {
#ifndef NDEBUG
        V->dump();
#endif
        assert(0 && "Value does not have a node in the points-to graph!");
      }
      return I->second;
    }

    /// getObject - Return the node corresponding to the memory object for the
    /// specified global or allocation instruction.
    unsigned getObject(Value *V) const {
      DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V);
      assert(I != ObjectNodes.end() &&
             "Value does not have an object in the points-to graph!");
      return I->second;
    }

    /// getReturnNode - Return the node representing the return value for the
    /// specified function.
    unsigned getReturnNode(Function *F) const {
      DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F);
      assert(I != ReturnNodes.end() && "Function does not return a value!");
      return I->second;
    }

    /// getVarargNode - Return the node representing the variable arguments
    /// formal for the specified function.
    unsigned getVarargNode(Function *F) const {
      DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F);
      assert(I != VarargNodes.end() && "Function does not take var args!");
      return I->second;
    }

    /// getNodeValue - Get the node for the specified LLVM value and set the
    /// value for it to be the specified value.
    unsigned getNodeValue(Value &V) {
      unsigned Index = getNode(&V);
      GraphNodes[Index].setValue(&V);
      return Index;
    }

    unsigned UniteNodes(unsigned First, unsigned Second,
                        bool UnionByRank = true);
    unsigned FindNode(unsigned Node);
    unsigned FindNode(unsigned Node) const;

    void IdentifyObjects(Module &M);
    void CollectConstraints(Module &M);
    bool AnalyzeUsesOfFunction(Value *);
    void CreateConstraintGraph();
    void OptimizeConstraints();
    unsigned FindEquivalentNode(unsigned, unsigned);
    void ClumpAddressTaken();
    void RewriteConstraints();
    void HU();
    void HVN();
    void HCD();
    void Search(unsigned Node);
    void UnitePointerEquivalences();
    void SolveConstraints();
    bool QueryNode(unsigned Node);
    void Condense(unsigned Node);
    void HUValNum(unsigned Node);
    void HVNValNum(unsigned Node);
    unsigned getNodeForConstantPointer(Constant *C);
    unsigned getNodeForConstantPointerTarget(Constant *C);
    void AddGlobalInitializerConstraints(unsigned, Constant *C);

    void AddConstraintsForNonInternalLinkage(Function *F);
    void AddConstraintsForCall(CallSite CS, Function *F);
    bool AddConstraintsForExternalCall(CallSite CS, Function *F);


    void PrintNode(const Node *N) const;
    void PrintConstraints() const ;
    void PrintConstraint(const Constraint &) const;
    void PrintLabels() const;
    void PrintPointsToGraph() const;

    //===------------------------------------------------------------------===//
    // Instruction visitation methods for adding constraints
    //
    friend class InstVisitor<Andersens>;
    void visitReturnInst(ReturnInst &RI);
    void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
    void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
    void visitCallSite(CallSite CS);
    void visitAllocationInst(AllocationInst &AI);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitPHINode(PHINode &PN);
    void visitCastInst(CastInst &CI);
    void visitICmpInst(ICmpInst &ICI) {} // NOOP!
    void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
    void visitSelectInst(SelectInst &SI);
    void visitVAArg(VAArgInst &I);
    void visitInstruction(Instruction &I);

    //===------------------------------------------------------------------===//
    // Implement Analyize interface
    //
    void print(std::ostream &O, const Module* M) const {
      PrintPointsToGraph();
    }
  };
}

char Andersens::ID = 0;
static RegisterPass<Andersens>
X("anders-aa", "Andersen's Interprocedural Alias Analysis", false, true);
static RegisterAnalysisGroup<AliasAnalysis> Y(X);

// Initialize Timestamp Counter (static).
unsigned Andersens::Node::Counter = 0;

ModulePass *llvm::createAndersensPass() { return new Andersens(); }

//===----------------------------------------------------------------------===//
//                  AliasAnalysis Interface Implementation
//===----------------------------------------------------------------------===//

AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
                                            const Value *V2, unsigned V2Size) {
  Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
  Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];

  // Check to see if the two pointers are known to not alias.  They don't alias
  // if their points-to sets do not intersect.
  if (!N1->intersectsIgnoring(N2, NullObject))
    return NoAlias;

  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}

AliasAnalysis::ModRefResult
Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
  // The only thing useful that we can contribute for mod/ref information is
  // when calling external function calls: if we know that memory never escapes
  // from the program, it cannot be modified by an external call.
  //
  // NOTE: This is not really safe, at least not when the entire program is not
  // available.  The deal is that the external function could call back into the
  // program and modify stuff.  We ignore this technical niggle for now.  This
  // is, after all, a "research quality" implementation of Andersen's analysis.
  if (Function *F = CS.getCalledFunction())
    if (F->isDeclaration()) {
      Node *N1 = &GraphNodes[FindNode(getNode(P))];

      if (N1->PointsTo->empty())
        return NoModRef;
#if FULL_UNIVERSAL
      if (!UniversalSet->PointsTo->test(FindNode(getNode(P))))
        return NoModRef;  // Universal set does not contain P
#else
      if (!N1->PointsTo->test(UniversalSet))
        return NoModRef;  // P doesn't point to the universal set.
#endif
    }

  return AliasAnalysis::getModRefInfo(CS, P, Size);
}

AliasAnalysis::ModRefResult
Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
  return AliasAnalysis::getModRefInfo(CS1,CS2);
}

/// getMustAlias - We can provide must alias information if we know that a
/// pointer can only point to a specific function or the null pointer.
/// Unfortunately we cannot determine must-alias information for global
/// variables or any other memory memory objects because we do not track whether
/// a pointer points to the beginning of an object or a field of it.
void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
  Node *N = &GraphNodes[FindNode(getNode(P))];
  if (N->PointsTo->count() == 1) {
    Node *Pointee = &GraphNodes[N->PointsTo->find_first()];
    // If a function is the only object in the points-to set, then it must be
    // the destination.  Note that we can't handle global variables here,
    // because we don't know if the pointer is actually pointing to a field of
    // the global or to the beginning of it.
    if (Value *V = Pointee->getValue()) {
      if (Function *F = dyn_cast<Function>(V))
        RetVals.push_back(F);
    } else {
      // If the object in the points-to set is the null object, then the null
      // pointer is a must alias.
      if (Pointee == &GraphNodes[NullObject])
        RetVals.push_back(Constant::getNullValue(P->getType()));
    }
  }
  AliasAnalysis::getMustAliases(P, RetVals);
}

/// pointsToConstantMemory - If we can determine that this pointer only points
/// to constant memory, return true.  In practice, this means that if the
/// pointer can only point to constant globals, functions, or the null pointer,
/// return true.
///
bool Andersens::pointsToConstantMemory(const Value *P) {
  Node *N = &GraphNodes[FindNode(getNode(const_cast<Value*>(P)))];
  unsigned i;

  for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
       bi != N->PointsTo->end();
       ++bi) {
    i = *bi;
    Node *Pointee = &GraphNodes[i];
    if (Value *V = Pointee->getValue()) {
      if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
                                   !cast<GlobalVariable>(V)->isConstant()))
        return AliasAnalysis::pointsToConstantMemory(P);
    } else {
      if (i != NullObject)
        return AliasAnalysis::pointsToConstantMemory(P);
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
//                       Object Identification Phase
//===----------------------------------------------------------------------===//

/// IdentifyObjects - This stage scans the program, adding an entry to the
/// GraphNodes list for each memory object in the program (global stack or
/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
///
void Andersens::IdentifyObjects(Module &M) {
  unsigned NumObjects = 0;

  // Object #0 is always the universal set: the object that we don't know
  // anything about.
  assert(NumObjects == UniversalSet && "Something changed!");
  ++NumObjects;

  // Object #1 always represents the null pointer.
  assert(NumObjects == NullPtr && "Something changed!");
  ++NumObjects;

  // Object #2 always represents the null object (the object pointed to by null)
  assert(NumObjects == NullObject && "Something changed!");
  ++NumObjects;

  // Add all the globals first.
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I) {
    ObjectNodes[I] = NumObjects++;
    ValueNodes[I] = NumObjects++;
  }

  // Add nodes for all of the functions and the instructions inside of them.
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
    // The function itself is a memory object.
    unsigned First = NumObjects;
    ValueNodes[F] = NumObjects++;
    if (isa<PointerType>(F->getFunctionType()->getReturnType()))
      ReturnNodes[F] = NumObjects++;
    if (F->getFunctionType()->isVarArg())
      VarargNodes[F] = NumObjects++;


    // Add nodes for all of the incoming pointer arguments.
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      {
        if (isa<PointerType>(I->getType()))
          ValueNodes[I] = NumObjects++;
      }
    MaxK[First] = NumObjects - First;

    // Scan the function body, creating a memory object for each heap/stack
    // allocation in the body of the function and a node to represent all
    // pointer values defined by instructions and used as operands.
    for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
      // If this is an heap or stack allocation, create a node for the memory
      // object.
      if (isa<PointerType>(II->getType())) {
        ValueNodes[&*II] = NumObjects++;
        if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
          ObjectNodes[AI] = NumObjects++;
      }

      // Calls to inline asm need to be added as well because the callee isn't
      // referenced anywhere else.
      if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
        Value *Callee = CI->getCalledValue();
        if (isa<InlineAsm>(Callee))
          ValueNodes[Callee] = NumObjects++;
      }
    }
  }

  // Now that we know how many objects to create, make them all now!
  GraphNodes.resize(NumObjects);
  NumNodes += NumObjects;
}

//===----------------------------------------------------------------------===//
//                     Constraint Identification Phase
//===----------------------------------------------------------------------===//

/// getNodeForConstantPointer - Return the node corresponding to the constant
/// pointer itself.
unsigned Andersens::getNodeForConstantPointer(Constant *C) {
  assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");

  if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
    return NullPtr;
  else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return getNode(GV);
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
      return getNodeForConstantPointer(CE->getOperand(0));
    case Instruction::IntToPtr:
      return UniversalSet;
    case Instruction::BitCast:
      return getNodeForConstantPointer(CE->getOperand(0));
    default:
      cerr << "Constant Expr not yet handled: " << *CE << "\n";
      assert(0);
    }
  } else {
    assert(0 && "Unknown constant pointer!");
  }
  return 0;
}

/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
/// specified constant pointer.
unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
  assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");

  if (isa<ConstantPointerNull>(C))
    return NullObject;
  else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return getObject(GV);
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
      return getNodeForConstantPointerTarget(CE->getOperand(0));
    case Instruction::IntToPtr:
      return UniversalSet;
    case Instruction::BitCast:
      return getNodeForConstantPointerTarget(CE->getOperand(0));
    default:
      cerr << "Constant Expr not yet handled: " << *CE << "\n";
      assert(0);
    }
  } else {
    assert(0 && "Unknown constant pointer!");
  }
  return 0;
}

/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
/// object N, which contains values indicated by C.
void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
                                                Constant *C) {
  if (C->getType()->isSingleValueType()) {
    if (isa<PointerType>(C->getType()))
      Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
                                       getNodeForConstantPointer(C)));
  } else if (C->isNullValue()) {
    Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
                                     NullObject));
    return;
  } else if (!isa<UndefValue>(C)) {
    // If this is an array or struct, include constraints for each element.
    assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
      AddGlobalInitializerConstraints(NodeIndex,
                                      cast<Constant>(C->getOperand(i)));
  }
}

/// AddConstraintsForNonInternalLinkage - If this function does not have
/// internal linkage, realize that we can't trust anything passed into or
/// returned by this function.
void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
    if (isa<PointerType>(I->getType()))
      // If this is an argument of an externally accessible function, the
      // incoming pointer might point to anything.
      Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
                                       UniversalSet));
}

/// AddConstraintsForCall - If this is a call to a "known" function, add the
/// constraints and return true.  If this is a call to an unknown function,
/// return false.
bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
  assert(F->isDeclaration() && "Not an external function!");

  // These functions don't induce any points-to constraints.
  if (F->getName() == "atoi" || F->getName() == "atof" ||
      F->getName() == "atol" || F->getName() == "atoll" ||
      F->getName() == "remove" || F->getName() == "unlink" ||
      F->getName() == "rename" || F->getName() == "memcmp" ||
      F->getName() == "llvm.memset" ||
      F->getName() == "strcmp" || F->getName() == "strncmp" ||
      F->getName() == "execl" || F->getName() == "execlp" ||
      F->getName() == "execle" || F->getName() == "execv" ||
      F->getName() == "execvp" || F->getName() == "chmod" ||
      F->getName() == "puts" || F->getName() == "write" ||
      F->getName() == "open" || F->getName() == "create" ||
      F->getName() == "truncate" || F->getName() == "chdir" ||
      F->getName() == "mkdir" || F->getName() == "rmdir" ||
      F->getName() == "read" || F->getName() == "pipe" ||
      F->getName() == "wait" || F->getName() == "time" ||
      F->getName() == "stat" || F->getName() == "fstat" ||
      F->getName() == "lstat" || F->getName() == "strtod" ||
      F->getName() == "strtof" || F->getName() == "strtold" ||
      F->getName() == "fopen" || F->getName() == "fdopen" ||
      F->getName() == "freopen" ||
      F->getName() == "fflush" || F->getName() == "feof" ||
      F->getName() == "fileno" || F->getName() == "clearerr" ||
      F->getName() == "rewind" || F->getName() == "ftell" ||
      F->getName() == "ferror" || F->getName() == "fgetc" ||
      F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
      F->getName() == "fwrite" || F->getName() == "fread" ||
      F->getName() == "fgets" || F->getName() == "ungetc" ||
      F->getName() == "fputc" ||
      F->getName() == "fputs" || F->getName() == "putc" ||
      F->getName() == "ftell" || F->getName() == "rewind" ||
      F->getName() == "_IO_putc" || F->getName() == "fseek" ||
      F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
      F->getName() == "printf" || F->getName() == "fprintf" ||
      F->getName() == "sprintf" || F->getName() == "vprintf" ||
      F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
      F->getName() == "scanf" || F->getName() == "fscanf" ||
      F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
      F->getName() == "modf")
    return true;


  // These functions do induce points-to edges.
  if (F->getName() == "llvm.memcpy" ||
      F->getName() == "llvm.memmove" ||
      F->getName() == "memmove") {

    const FunctionType *FTy = F->getFunctionType();
    if (FTy->getNumParams() > 1 && 
        isa<PointerType>(FTy->getParamType(0)) &&
        isa<PointerType>(FTy->getParamType(1))) {

      // *Dest = *Src, which requires an artificial graph node to represent the
      // constraint.  It is broken up into *Dest = temp, temp = *Src
      unsigned FirstArg = getNode(CS.getArgument(0));
      unsigned SecondArg = getNode(CS.getArgument(1));
      unsigned TempArg = GraphNodes.size();
      GraphNodes.push_back(Node());
      Constraints.push_back(Constraint(Constraint::Store,
                                       FirstArg, TempArg));
      Constraints.push_back(Constraint(Constraint::Load,
                                       TempArg, SecondArg));
      // In addition, Dest = Src
      Constraints.push_back(Constraint(Constraint::Copy,
                                       FirstArg, SecondArg));
      return true;
    }
  }

  // Result = Arg0
  if (F->getName() == "realloc" || F->getName() == "strchr" ||
      F->getName() == "strrchr" || F->getName() == "strstr" ||
      F->getName() == "strtok") {
    const FunctionType *FTy = F->getFunctionType();
    if (FTy->getNumParams() > 0 && 
        isa<PointerType>(FTy->getParamType(0))) {
      Constraints.push_back(Constraint(Constraint::Copy,
                                       getNode(CS.getInstruction()),
                                       getNode(CS.getArgument(0))));
      return true;
    }
  }

  return false;
}



/// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
/// If this is used by anything complex (i.e., the address escapes), return
/// true.
bool Andersens::AnalyzeUsesOfFunction(Value *V) {

  if (!isa<PointerType>(V->getType())) return true;

  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
    if (dyn_cast<LoadInst>(*UI)) {
      return false;
    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
      if (V == SI->getOperand(1)) {
        return false;
      } else if (SI->getOperand(1)) {
        return true;  // Storing the pointer
      }
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
      if (AnalyzeUsesOfFunction(GEP)) return true;
    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
      // Make sure that this is just the function being called, not that it is
      // passing into the function.
      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
        if (CI->getOperand(i) == V) return true;
    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
      // Make sure that this is just the function being called, not that it is
      // passing into the function.
      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
        if (II->getOperand(i) == V) return true;
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
      if (CE->getOpcode() == Instruction::GetElementPtr ||
          CE->getOpcode() == Instruction::BitCast) {
        if (AnalyzeUsesOfFunction(CE))
          return true;
      } else {
        return true;
      }
    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
        return true;  // Allow comparison against null.
    } else if (dyn_cast<FreeInst>(*UI)) {
      return false;
    } else {
      return true;
    }
  return false;
}

/// CollectConstraints - This stage scans the program, adding a constraint to
/// the Constraints list for each instruction in the program that induces a
/// constraint, and setting up the initial points-to graph.
///
void Andersens::CollectConstraints(Module &M) {
  // First, the universal set points to itself.
  Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
                                   UniversalSet));
  Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
                                   UniversalSet));

  // Next, the null pointer points to the null object.
  Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));

  // Next, add any constraints on global variables and their initializers.
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I) {
    // Associate the address of the global object as pointing to the memory for
    // the global: &G = <G memory>
    unsigned ObjectIndex = getObject(I);
    Node *Object = &GraphNodes[ObjectIndex];
    Object->setValue(I);
    Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
                                     ObjectIndex));

    if (I->hasInitializer()) {
      AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
    } else {
      // If it doesn't have an initializer (i.e. it's defined in another
      // translation unit), it points to the universal set.
      Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
                                       UniversalSet));
    }
  }

  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
    // Set up the return value node.
    if (isa<PointerType>(F->getFunctionType()->getReturnType()))
      GraphNodes[getReturnNode(F)].setValue(F);
    if (F->getFunctionType()->isVarArg())
      GraphNodes[getVarargNode(F)].setValue(F);

    // Set up incoming argument nodes.
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I)
      if (isa<PointerType>(I->getType()))
        getNodeValue(*I);

    // At some point we should just add constraints for the escaping functions
    // at solve time, but this slows down solving. For now, we simply mark
    // address taken functions as escaping and treat them as external.
    if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F))
      AddConstraintsForNonInternalLinkage(F);

    if (!F->isDeclaration()) {
      // Scan the function body, creating a memory object for each heap/stack
      // allocation in the body of the function and a node to represent all
      // pointer values defined by instructions and used as operands.
      visit(F);
    } else {
      // External functions that return pointers return the universal set.
      if (isa<PointerType>(F->getFunctionType()->getReturnType()))
        Constraints.push_back(Constraint(Constraint::Copy,
                                         getReturnNode(F),
                                         UniversalSet));

      // Any pointers that are passed into the function have the universal set
      // stored into them.
      for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
           I != E; ++I)
        if (isa<PointerType>(I->getType())) {
          // Pointers passed into external functions could have anything stored
          // through them.
          Constraints.push_back(Constraint(Constraint::Store, getNode(I),
                                           UniversalSet));
          // Memory objects passed into external function calls can have the
          // universal set point to them.
#if FULL_UNIVERSAL
          Constraints.push_back(Constraint(Constraint::Copy,
                                           UniversalSet,
                                           getNode(I)));
#else
          Constraints.push_back(Constraint(Constraint::Copy,
                                           getNode(I),
                                           UniversalSet));
#endif
        }

      // If this is an external varargs function, it can also store pointers
      // into any pointers passed through the varargs section.
      if (F->getFunctionType()->isVarArg())
        Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
                                         UniversalSet));
    }
  }
  NumConstraints += Constraints.size();
}


void Andersens::visitInstruction(Instruction &I) {
#ifdef NDEBUG
  return;          // This function is just a big assert.
#endif
  if (isa<BinaryOperator>(I))
    return;
  // Most instructions don't have any effect on pointer values.
  switch (I.getOpcode()) {
  case Instruction::Br:
  case Instruction::Switch:
  case Instruction::Unwind:
  case Instruction::Unreachable:
  case Instruction::Free:
  case Instruction::ICmp:
  case Instruction::FCmp:
    return;
  default:
    // Is this something we aren't handling yet?
    cerr << "Unknown instruction: " << I;
    abort();
  }
}

void Andersens::visitAllocationInst(AllocationInst &AI) {
  unsigned ObjectIndex = getObject(&AI);
  GraphNodes[ObjectIndex].setValue(&AI);
  Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI),
                                   ObjectIndex));
}

void Andersens::visitReturnInst(ReturnInst &RI) {
  if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
    // return V   -->   <Copy/retval{F}/v>
    Constraints.push_back(Constraint(Constraint::Copy,
                                     getReturnNode(RI.getParent()->getParent()),
                                     getNode(RI.getOperand(0))));
}

void Andersens::visitLoadInst(LoadInst &LI) {
  if (isa<PointerType>(LI.getType()))
    // P1 = load P2  -->  <Load/P1/P2>
    Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
                                     getNode(LI.getOperand(0))));
}

void Andersens::visitStoreInst(StoreInst &SI) {
  if (isa<PointerType>(SI.getOperand(0)->getType()))
    // store P1, P2  -->  <Store/P2/P1>
    Constraints.push_back(Constraint(Constraint::Store,
                                     getNode(SI.getOperand(1)),
                                     getNode(SI.getOperand(0))));
}

void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  // P1 = getelementptr P2, ... --> <Copy/P1/P2>
  Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
                                   getNode(GEP.getOperand(0))));
}

void Andersens::visitPHINode(PHINode &PN) {
  if (isa<PointerType>(PN.getType())) {
    unsigned PNN = getNodeValue(PN);
    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
      // P1 = phi P2, P3  -->  <Copy/P1/P2>, <Copy/P1/P3>, ...
      Constraints.push_back(Constraint(Constraint::Copy, PNN,
                                       getNode(PN.getIncomingValue(i))));
  }
}

void Andersens::visitCastInst(CastInst &CI) {
  Value *Op = CI.getOperand(0);
  if (isa<PointerType>(CI.getType())) {
    if (isa<PointerType>(Op->getType())) {
      // P1 = cast P2  --> <Copy/P1/P2>
      Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
                                       getNode(CI.getOperand(0))));
    } else {
      // P1 = cast int --> <Copy/P1/Univ>
#if 0
      Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
                                       UniversalSet));
#else
      getNodeValue(CI);
#endif
    }
  } else if (isa<PointerType>(Op->getType())) {
    // int = cast P1 --> <Copy/Univ/P1>
#if 0
    Constraints.push_back(Constraint(Constraint::Copy,
                                     UniversalSet,
                                     getNode(CI.getOperand(0))));
#else
    getNode(CI.getOperand(0));
#endif
  }
}

void Andersens::visitSelectInst(SelectInst &SI) {
  if (isa<PointerType>(SI.getType())) {
    unsigned SIN = getNodeValue(SI);
    // P1 = select C, P2, P3   ---> <Copy/P1/P2>, <Copy/P1/P3>
    Constraints.push_back(Constraint(Constraint::Copy, SIN,
                                     getNode(SI.getOperand(1))));
    Constraints.push_back(Constraint(Constraint::Copy, SIN,
                                     getNode(SI.getOperand(2))));
  }
}

void Andersens::visitVAArg(VAArgInst &I) {
  assert(0 && "vaarg not handled yet!");
}

/// AddConstraintsForCall - Add constraints for a call with actual arguments
/// specified by CS to the function specified by F.  Note that the types of
/// arguments might not match up in the case where this is an indirect call and
/// the function pointer has been casted.  If this is the case, do something
/// reasonable.
void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
  Value *CallValue = CS.getCalledValue();
  bool IsDeref = F == NULL;

  // If this is a call to an external function, try to handle it directly to get
  // some taste of context sensitivity.
  if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
    return;

  if (isa<PointerType>(CS.getType())) {
    unsigned CSN = getNode(CS.getInstruction());
    if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
      if (IsDeref)
        Constraints.push_back(Constraint(Constraint::Load, CSN,
                                         getNode(CallValue), CallReturnPos));
      else
        Constraints.push_back(Constraint(Constraint::Copy, CSN,
                                         getNode(CallValue) + CallReturnPos));
    } else {
      // If the function returns a non-pointer value, handle this just like we
      // treat a nonpointer cast to pointer.
      Constraints.push_back(Constraint(Constraint::Copy, CSN,
                                       UniversalSet));
    }
  } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
#if FULL_UNIVERSAL
    Constraints.push_back(Constraint(Constraint::Copy,
                                     UniversalSet,
                                     getNode(CallValue) + CallReturnPos));
#else
    Constraints.push_back(Constraint(Constraint::Copy,
                                      getNode(CallValue) + CallReturnPos,
                                      UniversalSet));
#endif
                          
    
  }

  CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
  bool external = !F ||  F->isDeclaration();
  if (F) {
    // Direct Call
    Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
    for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) 
      {
#if !FULL_UNIVERSAL
        if (external && isa<PointerType>((*ArgI)->getType())) 
          {
            // Add constraint that ArgI can now point to anything due to
            // escaping, as can everything it points to. The second portion of
            // this should be taken care of by universal = *universal
            Constraints.push_back(Constraint(Constraint::Copy,
                                             getNode(*ArgI),
                                             UniversalSet));
          }
#endif
        if (isa<PointerType>(AI->getType())) {
          if (isa<PointerType>((*ArgI)->getType())) {
            // Copy the actual argument into the formal argument.
            Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
                                             getNode(*ArgI)));
          } else {
            Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
                                             UniversalSet));
          }
        } else if (isa<PointerType>((*ArgI)->getType())) {
#if FULL_UNIVERSAL
          Constraints.push_back(Constraint(Constraint::Copy,
                                           UniversalSet,
                                           getNode(*ArgI)));
#else
          Constraints.push_back(Constraint(Constraint::Copy,
                                           getNode(*ArgI),
                                           UniversalSet));
#endif
        }
      }
  } else {
    //Indirect Call
    unsigned ArgPos = CallFirstArgPos;
    for (; ArgI != ArgE; ++ArgI) {
      if (isa<PointerType>((*ArgI)->getType())) {
        // Copy the actual argument into the formal argument.
        Constraints.push_back(Constraint(Constraint::Store,
                                         getNode(CallValue),
                                         getNode(*ArgI), ArgPos++));
      } else {
        Constraints.push_back(Constraint(Constraint::Store,
                                         getNode (CallValue),
                                         UniversalSet, ArgPos++));
      }
    }
  }
  // Copy all pointers passed through the varargs section to the varargs node.
  if (F && F->getFunctionType()->isVarArg())
    for (; ArgI != ArgE; ++ArgI)
      if (isa<PointerType>((*ArgI)->getType()))
        Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
                                         getNode(*ArgI)));
  // If more arguments are passed in than we track, just drop them on the floor.
}

void Andersens::visitCallSite(CallSite CS) {
  if (isa<PointerType>(CS.getType()))
    getNodeValue(*CS.getInstruction());

  if (Function *F = CS.getCalledFunction()) {
    AddConstraintsForCall(CS, F);
  } else {
    AddConstraintsForCall(CS, NULL);
  }
}

//===----------------------------------------------------------------------===//
//                         Constraint Solving Phase
//===----------------------------------------------------------------------===//

/// intersects - Return true if the points-to set of this node intersects
/// with the points-to set of the specified node.
bool Andersens::Node::intersects(Node *N) const {
  return PointsTo->intersects(N->PointsTo);
}

/// intersectsIgnoring - Return true if the points-to set of this node
/// intersects with the points-to set of the specified node on any nodes
/// except for the specified node to ignore.
bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
  // TODO: If we are only going to call this with the same value for Ignoring,
  // we should move the special values out of the points-to bitmap.
  bool WeHadIt = PointsTo->test(Ignoring);
  bool NHadIt = N->PointsTo->test(Ignoring);
  bool Result = false;
  if (WeHadIt)
    PointsTo->reset(Ignoring);
  if (NHadIt)
    N->PointsTo->reset(Ignoring);
  Result = PointsTo->intersects(N->PointsTo);
  if (WeHadIt)
    PointsTo->set(Ignoring);
  if (NHadIt)
    N->PointsTo->set(Ignoring);
  return Result;
}

void dumpToDOUT(SparseBitVector<> *bitmap) {
#ifndef NDEBUG
  dump(*bitmap, DOUT);
#endif
}


/// Clump together address taken variables so that the points-to sets use up
/// less space and can be operated on faster.

void Andersens::ClumpAddressTaken() {
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa-renumber"
  std::vector<unsigned> Translate;
  std::vector<Node> NewGraphNodes;

  Translate.resize(GraphNodes.size());
  unsigned NewPos = 0;

  for (unsigned i = 0; i < Constraints.size(); ++i) {
    Constraint &C = Constraints[i];
    if (C.Type == Constraint::AddressOf) {
      GraphNodes[C.Src].AddressTaken = true;
    }
  }
  for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
    unsigned Pos = NewPos++;
    Translate[i] = Pos;
    NewGraphNodes.push_back(GraphNodes[i]);
    DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
  }

  // I believe this ends up being faster than making two vectors and splicing
  // them.
  for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
    if (GraphNodes[i].AddressTaken) {
      unsigned Pos = NewPos++;
      Translate[i] = Pos;
      NewGraphNodes.push_back(GraphNodes[i]);
      DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
    }
  }

  for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
    if (!GraphNodes[i].AddressTaken) {
      unsigned Pos = NewPos++;
      Translate[i] = Pos;
      NewGraphNodes.push_back(GraphNodes[i]);
      DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
    }
  }

  for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
       Iter != ValueNodes.end();
       ++Iter)
    Iter->second = Translate[Iter->second];

  for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
       Iter != ObjectNodes.end();
       ++Iter)
    Iter->second = Translate[Iter->second];

  for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
       Iter != ReturnNodes.end();
       ++Iter)
    Iter->second = Translate[Iter->second];

  for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
       Iter != VarargNodes.end();
       ++Iter)
    Iter->second = Translate[Iter->second];

  for (unsigned i = 0; i < Constraints.size(); ++i) {
    Constraint &C = Constraints[i];
    C.Src = Translate[C.Src];
    C.Dest = Translate[C.Dest];
  }

  GraphNodes.swap(NewGraphNodes);
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa"
}

/// The technique used here is described in "Exploiting Pointer and Location
/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
/// Analysis Symposium (SAS), August 2007."  It is known as the "HVN" algorithm,
/// and is equivalent to value numbering the collapsed constraint graph without
/// evaluating unions.  This is used as a pre-pass to HU in order to resolve
/// first order pointer dereferences and speed up/reduce memory usage of HU.
/// Running both is equivalent to HRU without the iteration
/// HVN in more detail:
/// Imagine the set of constraints was simply straight line code with no loops
/// (we eliminate cycles, so there are no loops), such as:
/// E = &D
/// E = &C
/// E = F
/// F = G
/// G = F
/// Applying value numbering to this code tells us:
/// G == F == E
///
/// For HVN, this is as far as it goes.  We assign new value numbers to every
/// "address node", and every "reference node".
/// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
/// cycle must have the same value number since the = operation is really
/// inclusion, not overwrite), and value number nodes we receive points-to sets
/// before we value our own node.
/// The advantage of HU over HVN is that HU considers the inclusion property, so
/// that if you have
/// E = &D
/// E = &C
/// E = F
/// F = G
/// F = &D
/// G = F
/// HU will determine that G == F == E.  HVN will not, because it cannot prove
/// that the points to information ends up being the same because they all
/// receive &D from E anyway.

void Andersens::HVN() {
  DOUT << "Beginning HVN\n";
  // Build a predecessor graph.  This is like our constraint graph with the
  // edges going in the opposite direction, and there are edges for all the
  // constraints, instead of just copy constraints.  We also build implicit
  // edges for constraints are implied but not explicit.  I.E for the constraint
  // a = &b, we add implicit edges *a = b.  This helps us capture more cycles
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
    Constraint &C = Constraints[i];
    if (C.Type == Constraint::AddressOf) {
      GraphNodes[C.Src].AddressTaken = true;
      GraphNodes[C.Src].Direct = false;

      // Dest = &src edge
      unsigned AdrNode = C.Src + FirstAdrNode;
      if (!GraphNodes[C.Dest].PredEdges)
        GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
      GraphNodes[C.Dest].PredEdges->set(AdrNode);

      // *Dest = src edge
      unsigned RefNode = C.Dest + FirstRefNode;
      if (!GraphNodes[RefNode].ImplicitPredEdges)
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
    } else if (C.Type == Constraint::Load) {
      if (C.Offset == 0) {
        // dest = *src edge
        if (!GraphNodes[C.Dest].PredEdges)
          GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
        GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
      } else {
        GraphNodes[C.Dest].Direct = false;
      }
    } else if (C.Type == Constraint::Store) {
      if (C.Offset == 0) {
        // *dest = src edge
        unsigned RefNode = C.Dest + FirstRefNode;
        if (!GraphNodes[RefNode].PredEdges)
          GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
        GraphNodes[RefNode].PredEdges->set(C.Src);
      }
    } else {
      // Dest = Src edge and *Dest = *Src edge
      if (!GraphNodes[C.Dest].PredEdges)
        GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
      GraphNodes[C.Dest].PredEdges->set(C.Src);
      unsigned RefNode = C.Dest + FirstRefNode;
      if (!GraphNodes[RefNode].ImplicitPredEdges)
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
    }
  }
  PEClass = 1;
  // Do SCC finding first to condense our predecessor graph
  DFSNumber = 0;
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);

  for (unsigned i = 0; i < FirstRefNode; ++i) {
    unsigned Node = VSSCCRep[i];
    if (!Node2Visited[Node])
      HVNValNum(Node);
  }
  for (BitVectorMap::iterator Iter = Set2PEClass.begin();
       Iter != Set2PEClass.end();
       ++Iter)
    delete Iter->first;
  Set2PEClass.clear();
  Node2DFS.clear();
  Node2Deleted.clear();
  Node2Visited.clear();
  DOUT << "Finished HVN\n";

}

/// This is the workhorse of HVN value numbering. We combine SCC finding at the
/// same time because it's easy.
void Andersens::HVNValNum(unsigned NodeIndex) {
  unsigned MyDFS = DFSNumber++;
  Node *N = &GraphNodes[NodeIndex];
  Node2Visited[NodeIndex] = true;
  Node2DFS[NodeIndex] = MyDFS;

  // First process all our explicit edges
  if (N->PredEdges)
    for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
         Iter != N->PredEdges->end();
         ++Iter) {
      unsigned j = VSSCCRep[*Iter];
      if (!Node2Deleted[j]) {
        if (!Node2Visited[j])
          HVNValNum(j);
        if (Node2DFS[NodeIndex] > Node2DFS[j])
          Node2DFS[NodeIndex] = Node2DFS[j];
      }
    }

  // Now process all the implicit edges
  if (N->ImplicitPredEdges)
    for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
         Iter != N->ImplicitPredEdges->end();
         ++Iter) {
      unsigned j = VSSCCRep[*Iter];
      if (!Node2Deleted[j]) {
        if (!Node2Visited[j])
          HVNValNum(j);
        if (Node2DFS[NodeIndex] > Node2DFS[j])
          Node2DFS[NodeIndex] = Node2DFS[j];
      }
    }

  // See if we found any cycles
  if (MyDFS == Node2DFS[NodeIndex]) {
    while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
      unsigned CycleNodeIndex = SCCStack.top();
      Node *CycleNode = &GraphNodes[CycleNodeIndex];
      VSSCCRep[CycleNodeIndex] = NodeIndex;
      // Unify the nodes
      N->Direct &= CycleNode->Direct;

      if (CycleNode->PredEdges) {
        if (!N->PredEdges)
          N->PredEdges = new SparseBitVector<>;
        *(N->PredEdges) |= CycleNode->PredEdges;
        delete CycleNode->PredEdges;
        CycleNode->PredEdges = NULL;
      }
      if (CycleNode->ImplicitPredEdges) {
        if (!N->ImplicitPredEdges)
          N->ImplicitPredEdges = new SparseBitVector<>;
        *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
        delete CycleNode->ImplicitPredEdges;
        CycleNode->ImplicitPredEdges = NULL;
      }

      SCCStack.pop();
    }

    Node2Deleted[NodeIndex] = true;

    if (!N->Direct) {
      GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
      return;
    }

    // Collect labels of successor nodes
    bool AllSame = true;
    unsigned First = ~0;
    SparseBitVector<> *Labels = new SparseBitVector<>;
    bool Used = false;

    if (N->PredEdges)
      for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
           Iter != N->PredEdges->end();
         ++Iter) {
        unsigned j = VSSCCRep[*Iter];
        unsigned Label = GraphNodes[j].PointerEquivLabel;
        // Ignore labels that are equal to us or non-pointers
        if (j == NodeIndex || Label == 0)
          continue;
        if (First == (unsigned)~0)
          First = Label;
        else if (First != Label)
          AllSame = false;
        Labels->set(Label);
    }

    // We either have a non-pointer, a copy of an existing node, or a new node.
    // Assign the appropriate pointer equivalence label.
    if (Labels->empty()) {
      GraphNodes[NodeIndex].PointerEquivLabel = 0;
    } else if (AllSame) {
      GraphNodes[NodeIndex].PointerEquivLabel = First;
    } else {
      GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
      if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
        unsigned EquivClass = PEClass++;
        Set2PEClass[Labels] = EquivClass;
        GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
        Used = true;
      }
    }
    if (!Used)
      delete Labels;
  } else {
    SCCStack.push(NodeIndex);
  }
}

/// The technique used here is described in "Exploiting Pointer and Location
/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
/// Analysis Symposium (SAS), August 2007."  It is known as the "HU" algorithm,
/// and is equivalent to value numbering the collapsed constraint graph
/// including evaluating unions.
void Andersens::HU() {
  DOUT << "Beginning HU\n";
  // Build a predecessor graph.  This is like our constraint graph with the
  // edges going in the opposite direction, and there are edges for all the
  // constraints, instead of just copy constraints.  We also build implicit
  // edges for constraints are implied but not explicit.  I.E for the constraint
  // a = &b, we add implicit edges *a = b.  This helps us capture more cycles
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
    Constraint &C = Constraints[i];
    if (C.Type == Constraint::AddressOf) {
      GraphNodes[C.Src].AddressTaken = true;
      GraphNodes[C.Src].Direct = false;

      GraphNodes[C.Dest].PointsTo->set(C.Src);
      // *Dest = src edge
      unsigned RefNode = C.Dest + FirstRefNode;
      if (!GraphNodes[RefNode].ImplicitPredEdges)
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
      GraphNodes[C.Src].PointedToBy->set(C.Dest);
    } else if (C.Type == Constraint::Load) {
      if (C.Offset == 0) {
        // dest = *src edge
        if (!GraphNodes[C.Dest].PredEdges)
          GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
        GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
      } else {
        GraphNodes[C.Dest].Direct = false;
      }
    } else if (C.Type == Constraint::Store) {
      if (C.Offset == 0) {
        // *dest = src edge
        unsigned RefNode = C.Dest + FirstRefNode;
        if (!GraphNodes[RefNode].PredEdges)
          GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
        GraphNodes[RefNode].PredEdges->set(C.Src);
      }
    } else {
      // Dest = Src edge and *Dest = *Src edg
      if (!GraphNodes[C.Dest].PredEdges)
        GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
      GraphNodes[C.Dest].PredEdges->set(C.Src);
      unsigned RefNode = C.Dest + FirstRefNode;
      if (!GraphNodes[RefNode].ImplicitPredEdges)
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
    }
  }
  PEClass = 1;
  // Do SCC finding first to condense our predecessor graph
  DFSNumber = 0;
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);

  for (unsigned i = 0; i < FirstRefNode; ++i) {
    if (FindNode(i) == i) {
      unsigned Node = VSSCCRep[i];
      if (!Node2Visited[Node])
        Condense(Node);
    }
  }

  // Reset tables for actual labeling
  Node2DFS.clear();
  Node2Visited.clear();
  Node2Deleted.clear();
  // Pre-grow our densemap so that we don't get really bad behavior
  Set2PEClass.resize(GraphNodes.size());

  // Visit the condensed graph and generate pointer equivalence labels.
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
  for (unsigned i = 0; i < FirstRefNode; ++i) {
    if (FindNode(i) == i) {
      unsigned Node = VSSCCRep[i];
      if (!Node2Visited[Node])
        HUValNum(Node);
    }
  }
  // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
  Set2PEClass.clear();
  DOUT << "Finished HU\n";
}


/// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
void Andersens::Condense(unsigned NodeIndex) {
  unsigned MyDFS = DFSNumber++;
  Node *N = &GraphNodes[NodeIndex];
  Node2Visited[NodeIndex] = true;
  Node2DFS[NodeIndex] = MyDFS;

  // First process all our explicit edges
  if (N->PredEdges)
    for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
         Iter != N->PredEdges->end();
         ++Iter) {
      unsigned j = VSSCCRep[*Iter];
      if (!Node2Deleted[j]) {
        if (!Node2Visited[j])
          Condense(j);
        if (Node2DFS[NodeIndex] > Node2DFS[j])
          Node2DFS[NodeIndex] = Node2DFS[j];
      }
    }

  // Now process all the implicit edges
  if (N->ImplicitPredEdges)
    for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
         Iter != N->ImplicitPredEdges->end();
         ++Iter) {
      unsigned j = VSSCCRep[*Iter];
      if (!Node2Deleted[j]) {
        if (!Node2Visited[j])
          Condense(j);
        if (Node2DFS[NodeIndex] > Node2DFS[j])
          Node2DFS[NodeIndex] = Node2DFS[j];
      }
    }

  // See if we found any cycles
  if (MyDFS == Node2DFS[NodeIndex]) {
    while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
      unsigned CycleNodeIndex = SCCStack.top();
      Node *CycleNode = &GraphNodes[CycleNodeIndex];
      VSSCCRep[CycleNodeIndex] = NodeIndex;
      // Unify the nodes
      N->Direct &= CycleNode->Direct;

      *(N->PointsTo) |= CycleNode->PointsTo;
      delete CycleNode->PointsTo;
      CycleNode->PointsTo = NULL;
      if (CycleNode->PredEdges) {
        if (!N->PredEdges)
          N->PredEdges = new SparseBitVector<>;
        *(N->PredEdges) |= CycleNode->PredEdges;
        delete CycleNode->PredEdges;
        CycleNode->PredEdges = NULL;
      }
      if (CycleNode->ImplicitPredEdges) {
        if (!N->ImplicitPredEdges)
          N->ImplicitPredEdges = new SparseBitVector<>;
        *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
        delete CycleNode->ImplicitPredEdges;
        CycleNode->ImplicitPredEdges = NULL;
      }
      SCCStack.pop();
    }

    Node2Deleted[NodeIndex] = true;

    // Set up number of incoming edges for other nodes
    if (N->PredEdges)
      for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
           Iter != N->PredEdges->end();
           ++Iter)
        ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
  } else {
    SCCStack.push(NodeIndex);
  }
}

void Andersens::HUValNum(unsigned NodeIndex) {
  Node *N = &GraphNodes[NodeIndex];
  Node2Visited[NodeIndex] = true;

  // Eliminate dereferences of non-pointers for those non-pointers we have
  // already identified.  These are ref nodes whose non-ref node:
  // 1. Has already been visited determined to point to nothing (and thus, a
  // dereference of it must point to nothing)
  // 2. Any direct node with no predecessor edges in our graph and with no
  // points-to set (since it can't point to anything either, being that it
  // receives no points-to sets and has none).
  if (NodeIndex >= FirstRefNode) {
    unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
    if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
        || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
            && GraphNodes[j].PointsTo->empty())){
      return;
    }
  }
    // Process all our explicit edges
  if (N->PredEdges)
    for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
         Iter != N->PredEdges->end();
         ++Iter) {
      unsigned j = VSSCCRep[*Iter];
      if (!Node2Visited[j])
        HUValNum(j);

      // If this edge turned out to be the same as us, or got no pointer
      // equivalence label (and thus points to nothing) , just decrement our
      // incoming edges and continue.
      if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
        --GraphNodes[j].NumInEdges;
        continue;
      }

      *(N->PointsTo) |= GraphNodes[j].PointsTo;

      // If we didn't end up storing this in the hash, and we're done with all
      // the edges, we don't need the points-to set anymore.
      --GraphNodes[j].NumInEdges;
      if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
        delete GraphNodes[j].PointsTo;
        GraphNodes[j].PointsTo = NULL;
      }
    }
  // If this isn't a direct node, generate a fresh variable.
  if (!N->Direct) {
    N->PointsTo->set(FirstRefNode + NodeIndex);
  }

  // See If we have something equivalent to us, if not, generate a new
  // equivalence class.
  if (N->PointsTo->empty()) {
    delete N->PointsTo;
    N->PointsTo = NULL;
  } else {
    if (N->Direct) {
      N->PointerEquivLabel = Set2PEClass[N->PointsTo];
      if (N->PointerEquivLabel == 0) {
        unsigned EquivClass = PEClass++;
        N->StoredInHash = true;
        Set2PEClass[N->PointsTo] = EquivClass;
        N->PointerEquivLabel = EquivClass;
      }
    } else {
      N->PointerEquivLabel = PEClass++;
    }
  }
}

/// Rewrite our list of constraints so that pointer equivalent nodes are
/// replaced by their the pointer equivalence class representative.
void Andersens::RewriteConstraints() {
  std::vector<Constraint> NewConstraints;
  DenseSet<Constraint, ConstraintKeyInfo> Seen;

  PEClass2Node.clear();
  PENLEClass2Node.clear();

  // We may have from 1 to Graphnodes + 1 equivalence classes.
  PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
  PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);

  // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
  // nodes, and rewriting constraints to use the representative nodes.
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
    Constraint &C = Constraints[i];
    unsigned RHSNode = FindNode(C.Src);
    unsigned LHSNode = FindNode(C.Dest);
    unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
    unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;

    // First we try to eliminate constraints for things we can prove don't point
    // to anything.
    if (LHSLabel == 0) {
      DEBUG(PrintNode(&GraphNodes[LHSNode]));
      DOUT << " is a non-pointer, ignoring constraint.\n";
      continue;
    }
    if (RHSLabel == 0) {
      DEBUG(PrintNode(&GraphNodes[RHSNode]));
      DOUT << " is a non-pointer, ignoring constraint.\n";
      continue;
    }
    // This constraint may be useless, and it may become useless as we translate
    // it.
    if (C.Src == C.Dest && C.Type == Constraint::Copy)
      continue;

    C.Src = FindEquivalentNode(RHSNode, RHSLabel);
    C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
    if ((C.Src == C.Dest && C.Type == Constraint::Copy)
        || Seen.count(C))
      continue;

    Seen.insert(C);
    NewConstraints.push_back(C);
  }
  Constraints.swap(NewConstraints);
  PEClass2Node.clear();
}

/// See if we have a node that is pointer equivalent to the one being asked
/// about, and if so, unite them and return the equivalent node.  Otherwise,
/// return the original node.
unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
                                       unsigned NodeLabel) {
  if (!GraphNodes[NodeIndex].AddressTaken) {
    if (PEClass2Node[NodeLabel] != -1) {
      // We found an existing node with the same pointer label, so unify them.
      // We specifically request that Union-By-Rank not be used so that
      // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
      return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
    } else {
      PEClass2Node[NodeLabel] = NodeIndex;
      PENLEClass2Node[NodeLabel] = NodeIndex;
    }
  } else if (PENLEClass2Node[NodeLabel] == -1) {
    PENLEClass2Node[NodeLabel] = NodeIndex;
  }

  return NodeIndex;
}

void Andersens::PrintLabels() const {
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    if (i < FirstRefNode) {
      PrintNode(&GraphNodes[i]);
    } else if (i < FirstAdrNode) {
      DOUT << "REF(";
      PrintNode(&GraphNodes[i-FirstRefNode]);
      DOUT <<")";
    } else {
      DOUT << "ADR(";
      PrintNode(&GraphNodes[i-FirstAdrNode]);
      DOUT <<")";
    }

    DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel
         << " and SCC rep " << VSSCCRep[i]
         << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
         << "\n";
  }
}

/// The technique used here is described in "The Ant and the
/// Grasshopper: Fast and Accurate Pointer Analysis for Millions of
/// Lines of Code. In Programming Language Design and Implementation
/// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle
/// Detection) algorithm. It is called a hybrid because it performs an
/// offline analysis and uses its results during the solving (online)
/// phase. This is just the offline portion; the results of this
/// operation are stored in SDT and are later used in SolveContraints()
/// and UniteNodes().
void Andersens::HCD() {
  DOUT << "Starting HCD.\n";
  HCDSCCRep.resize(GraphNodes.size());

  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    GraphNodes[i].Edges = new SparseBitVector<>;
    HCDSCCRep[i] = i;
  }

  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
    Constraint &C = Constraints[i];
    assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
    if (C.Type == Constraint::AddressOf) {
      continue;
    } else if (C.Type == Constraint::Load) {
      if( C.Offset == 0 )
        GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode);
    } else if (C.Type == Constraint::Store) {
      if( C.Offset == 0 )
        GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src);
    } else {
      GraphNodes[C.Dest].Edges->set(C.Src);
    }
  }

  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
  SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1);

  DFSNumber = 0;
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    unsigned Node = HCDSCCRep[i];
    if (!Node2Deleted[Node])
      Search(Node);
  }

  for (unsigned i = 0; i < GraphNodes.size(); ++i)
    if (GraphNodes[i].Edges != NULL) {
      delete GraphNodes[i].Edges;
      GraphNodes[i].Edges = NULL;
    }

  while( !SCCStack.empty() )
    SCCStack.pop();

  Node2DFS.clear();
  Node2Visited.clear();
  Node2Deleted.clear();
  HCDSCCRep.clear();
  DOUT << "HCD complete.\n";
}

// Component of HCD: 
// Use Nuutila's variant of Tarjan's algorithm to detect
// Strongly-Connected Components (SCCs). For non-trivial SCCs
// containing ref nodes, insert the appropriate information in SDT.
void Andersens::Search(unsigned Node) {
  unsigned MyDFS = DFSNumber++;

  Node2Visited[Node] = true;
  Node2DFS[Node] = MyDFS;

  for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(),
                                   End  = GraphNodes[Node].Edges->end();
       Iter != End;
       ++Iter) {
    unsigned J = HCDSCCRep[*Iter];
    assert(GraphNodes[J].isRep() && "Debug check; must be representative");
    if (!Node2Deleted[J]) {
      if (!Node2Visited[J])
        Search(J);
      if (Node2DFS[Node] > Node2DFS[J])
        Node2DFS[Node] = Node2DFS[J];
    }
  }

  if( MyDFS != Node2DFS[Node] ) {
    SCCStack.push(Node);
    return;
  }

  // This node is the root of a SCC, so process it.
  //
  // If the SCC is "non-trivial" (not a singleton) and contains a reference 
  // node, we place this SCC into SDT.  We unite the nodes in any case.
  if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
    SparseBitVector<> SCC;

    SCC.set(Node);

    bool Ref = (Node >= FirstRefNode);

    Node2Deleted[Node] = true;

    do {
      unsigned P = SCCStack.top(); SCCStack.pop();
      Ref |= (P >= FirstRefNode);
      SCC.set(P);
      HCDSCCRep[P] = Node;
    } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS);

    if (Ref) {
      unsigned Rep = SCC.find_first();
      assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!");

      SparseBitVector<>::iterator i = SCC.begin();

      // Skip over the non-ref nodes
      while( *i < FirstRefNode )
        ++i;

      while( i != SCC.end() )
        SDT[ (*i++) - FirstRefNode ] = Rep;
    }
  }
}


/// Optimize the constraints by performing offline variable substitution and
/// other optimizations.
void Andersens::OptimizeConstraints() {
  DOUT << "Beginning constraint optimization\n";

  SDTActive = false;

  // Function related nodes need to stay in the same relative position and can't
  // be location equivalent.
  for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
       Iter != MaxK.end();
       ++Iter) {
    for (unsigned i = Iter->first;
         i != Iter->first + Iter->second;
         ++i) {
      GraphNodes[i].AddressTaken = true;
      GraphNodes[i].Direct = false;
    }
  }

  ClumpAddressTaken();
  FirstRefNode = GraphNodes.size();
  FirstAdrNode = FirstRefNode + GraphNodes.size();
  GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
                    Node(false));
  VSSCCRep.resize(GraphNodes.size());
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    VSSCCRep[i] = i;
  }
  HVN();
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    Node *N = &GraphNodes[i];
    delete N->PredEdges;
    N->PredEdges = NULL;
    delete N->ImplicitPredEdges;
    N->ImplicitPredEdges = NULL;
  }
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa-labels"
  DEBUG(PrintLabels());
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa"
  RewriteConstraints();
  // Delete the adr nodes.
  GraphNodes.resize(FirstRefNode * 2);

  // Now perform HU
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    Node *N = &GraphNodes[i];
    if (FindNode(i) == i) {
      N->PointsTo = new SparseBitVector<>;
      N->PointedToBy = new SparseBitVector<>;
      // Reset our labels
    }
    VSSCCRep[i] = i;
    N->PointerEquivLabel = 0;
  }
  HU();
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa-labels"
  DEBUG(PrintLabels());
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa"
  RewriteConstraints();
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    if (FindNode(i) == i) {
      Node *N = &GraphNodes[i];
      delete N->PointsTo;
      N->PointsTo = NULL;
      delete N->PredEdges;
      N->PredEdges = NULL;
      delete N->ImplicitPredEdges;
      N->ImplicitPredEdges = NULL;
      delete N->PointedToBy;
      N->PointedToBy = NULL;
    }
  }

  // perform Hybrid Cycle Detection (HCD)
  HCD();
  SDTActive = true;

  // No longer any need for the upper half of GraphNodes (for ref nodes).
  GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());

  // HCD complete.

  DOUT << "Finished constraint optimization\n";
  FirstRefNode = 0;
  FirstAdrNode = 0;
}

/// Unite pointer but not location equivalent variables, now that the constraint
/// graph is built.
void Andersens::UnitePointerEquivalences() {
  DOUT << "Uniting remaining pointer equivalences\n";
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
      unsigned Label = GraphNodes[i].PointerEquivLabel;

      if (Label && PENLEClass2Node[Label] != -1)
        UniteNodes(i, PENLEClass2Node[Label]);
    }
  }
  DOUT << "Finished remaining pointer equivalences\n";
  PENLEClass2Node.clear();
}

/// Create the constraint graph used for solving points-to analysis.
///
void Andersens::CreateConstraintGraph() {
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
    Constraint &C = Constraints[i];
    assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
    if (C.Type == Constraint::AddressOf)
      GraphNodes[C.Dest].PointsTo->set(C.Src);
    else if (C.Type == Constraint::Load)
      GraphNodes[C.Src].Constraints.push_back(C);
    else if (C.Type == Constraint::Store)
      GraphNodes[C.Dest].Constraints.push_back(C);
    else if (C.Offset != 0)
      GraphNodes[C.Src].Constraints.push_back(C);
    else
      GraphNodes[C.Src].Edges->set(C.Dest);
  }
}

// Perform DFS and cycle detection.
bool Andersens::QueryNode(unsigned Node) {
  assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
  unsigned OurDFS = ++DFSNumber;
  SparseBitVector<> ToErase;
  SparseBitVector<> NewEdges;
  Tarjan2DFS[Node] = OurDFS;

  // Changed denotes a change from a recursive call that we will bubble up.
  // Merged is set if we actually merge a node ourselves.
  bool Changed = false, Merged = false;

  for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
       bi != GraphNodes[Node].Edges->end();
       ++bi) {
    unsigned RepNode = FindNode(*bi);
    // If this edge points to a non-representative node but we are
    // already planning to add an edge to its representative, we have no
    // need for this edge anymore.
    if (RepNode != *bi && NewEdges.test(RepNode)){
      ToErase.set(*bi);
      continue;
    }

    // Continue about our DFS.
    if (!Tarjan2Deleted[RepNode]){
      if (Tarjan2DFS[RepNode] == 0) {
        Changed |= QueryNode(RepNode);
        // May have been changed by QueryNode
        RepNode = FindNode(RepNode);
      }
      if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
        Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
    }

    // We may have just discovered that this node is part of a cycle, in
    // which case we can also erase it.
    if (RepNode != *bi) {
      ToErase.set(*bi);
      NewEdges.set(RepNode);
    }
  }

  GraphNodes[Node].Edges->intersectWithComplement(ToErase);
  GraphNodes[Node].Edges |= NewEdges;

  // If this node is a root of a non-trivial SCC, place it on our 
  // worklist to be processed.
  if (OurDFS == Tarjan2DFS[Node]) {
    while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
      Node = UniteNodes(Node, SCCStack.top());

      SCCStack.pop();
      Merged = true;
    }
    Tarjan2Deleted[Node] = true;

    if (Merged)
      NextWL->insert(&GraphNodes[Node]);
  } else {
    SCCStack.push(Node);
  }

  return(Changed | Merged);
}

/// SolveConstraints - This stage iteratively processes the constraints list
/// propagating constraints (adding edges to the Nodes in the points-to graph)
/// until a fixed point is reached.
///
/// We use a variant of the technique called "Lazy Cycle Detection", which is
/// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
/// Analysis for Millions of Lines of Code. In Programming Language Design and
/// Implementation (PLDI), June 2007."
/// The paper describes performing cycle detection one node at a time, which can
/// be expensive if there are no cycles, but there are long chains of nodes that
/// it heuristically believes are cycles (because it will DFS from each node
/// without state from previous nodes).
/// Instead, we use the heuristic to build a worklist of nodes to check, then
/// cycle detect them all at the same time to do this more cheaply.  This
/// catches cycles slightly later than the original technique did, but does it
/// make significantly cheaper.

void Andersens::SolveConstraints() {
  CurrWL = &w1;
  NextWL = &w2;

  OptimizeConstraints();
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa-constraints"
      DEBUG(PrintConstraints());
#undef DEBUG_TYPE
#define DEBUG_TYPE "anders-aa"

  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    Node *N = &GraphNodes[i];
    N->PointsTo = new SparseBitVector<>;
    N->OldPointsTo = new SparseBitVector<>;
    N->Edges = new SparseBitVector<>;
  }
  CreateConstraintGraph();
  UnitePointerEquivalences();
  assert(SCCStack.empty() && "SCC Stack should be empty by now!");
  Node2DFS.clear();
  Node2Deleted.clear();
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
  DFSNumber = 0;
  DenseSet<Constraint, ConstraintKeyInfo> Seen;
  DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;

  // Order graph and add initial nodes to work list.
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    Node *INode = &GraphNodes[i];

    // Add to work list if it's a representative and can contribute to the
    // calculation right now.
    if (INode->isRep() && !INode->PointsTo->empty()
        && (!INode->Edges->empty() || !INode->Constraints.empty())) {
      INode->Stamp();
      CurrWL->insert(INode);
    }
  }
  std::queue<unsigned int> TarjanWL;
#if !FULL_UNIVERSAL
  // "Rep and special variables" - in order for HCD to maintain conservative
  // results when !FULL_UNIVERSAL, we need to treat the special variables in
  // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of
  // the analysis - it's ok to add edges from the special nodes, but never
  // *to* the special nodes.
  std::vector<unsigned int> RSV;
#endif
  while( !CurrWL->empty() ) {
    DOUT << "Starting iteration #" << ++NumIters << "\n";

    Node* CurrNode;
    unsigned CurrNodeIndex;

    // Actual cycle checking code.  We cycle check all of the lazy cycle
    // candidates from the last iteration in one go.
    if (!TarjanWL.empty()) {
      DFSNumber = 0;
      
      Tarjan2DFS.clear();
      Tarjan2Deleted.clear();
      while (!TarjanWL.empty()) {
        unsigned int ToTarjan = TarjanWL.front();
        TarjanWL.pop();
        if (!Tarjan2Deleted[ToTarjan]
            && GraphNodes[ToTarjan].isRep()
            && Tarjan2DFS[ToTarjan] == 0)
          QueryNode(ToTarjan);
      }
    }
    
    // Add to work list if it's a representative and can contribute to the
    // calculation right now.
    while( (CurrNode = CurrWL->pop()) != NULL ) {
      CurrNodeIndex = CurrNode - &GraphNodes[0];
      CurrNode->Stamp();
      
          
      // Figure out the changed points to bits
      SparseBitVector<> CurrPointsTo;
      CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
                                           CurrNode->OldPointsTo);
      if (CurrPointsTo.empty())
        continue;

      *(CurrNode->OldPointsTo) |= CurrPointsTo;

      // Check the offline-computed equivalencies from HCD.
      bool SCC = false;
      unsigned Rep;

      if (SDT[CurrNodeIndex] >= 0) {
        SCC = true;
        Rep = FindNode(SDT[CurrNodeIndex]);

#if !FULL_UNIVERSAL
        RSV.clear();
#endif
        for (SparseBitVector<>::iterator bi = CurrPointsTo.begin();
             bi != CurrPointsTo.end(); ++bi) {
          unsigned Node = FindNode(*bi);
#if !FULL_UNIVERSAL
          if (Node < NumberSpecialNodes) {
            RSV.push_back(Node);
            continue;
          }
#endif
          Rep = UniteNodes(Rep,Node);
        }
#if !FULL_UNIVERSAL
        RSV.push_back(Rep);
#endif

        NextWL->insert(&GraphNodes[Rep]);

        if ( ! CurrNode->isRep() )
          continue;
      }

      Seen.clear();

      /* Now process the constraints for this node.  */
      for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
           li != CurrNode->Constraints.end(); ) {
        li->Src = FindNode(li->Src);
        li->Dest = FindNode(li->Dest);

        // Delete redundant constraints
        if( Seen.count(*li) ) {
          std::list<Constraint>::iterator lk = li; li++;

          CurrNode->Constraints.erase(lk);
          ++NumErased;
          continue;
        }
        Seen.insert(*li);

        // Src and Dest will be the vars we are going to process.
        // This may look a bit ugly, but what it does is allow us to process
        // both store and load constraints with the same code.
        // Load constraints say that every member of our RHS solution has K
        // added to it, and that variable gets an edge to LHS. We also union
        // RHS+K's solution into the LHS solution.
        // Store constraints say that every member of our LHS solution has K
        // added to it, and that variable gets an edge from RHS. We also union
        // RHS's solution into the LHS+K solution.
        unsigned *Src;
        unsigned *Dest;
        unsigned K = li->Offset;
        unsigned CurrMember;
        if (li->Type == Constraint::Load) {
          Src = &CurrMember;
          Dest = &li->Dest;
        } else if (li->Type == Constraint::Store) {
          Src = &li->Src;
          Dest = &CurrMember;
        } else {
          // TODO Handle offseted copy constraint
          li++;
          continue;
        }

        // See if we can use Hybrid Cycle Detection (that is, check
        // if it was a statically detected offline equivalence that
        // involves pointers; if so, remove the redundant constraints).
        if( SCC && K == 0 ) {
#if FULL_UNIVERSAL
          CurrMember = Rep;

          if (GraphNodes[*Src].Edges->test_and_set(*Dest))
            if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
              NextWL->insert(&GraphNodes[*Dest]);
#else
          for (unsigned i=0; i < RSV.size(); ++i) {
            CurrMember = RSV[i];

            if (*Dest < NumberSpecialNodes)
              continue;
            if (GraphNodes[*Src].Edges->test_and_set(*Dest))
              if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
                NextWL->insert(&GraphNodes[*Dest]);
          }
#endif
          // since all future elements of the points-to set will be
          // equivalent to the current ones, the complex constraints
          // become redundant.
          //
          std::list<Constraint>::iterator lk = li; li++;
#if !FULL_UNIVERSAL
          // In this case, we can still erase the constraints when the
          // elements of the points-to sets are referenced by *Dest,
          // but not when they are referenced by *Src (i.e. for a Load
          // constraint). This is because if another special variable is
          // put into the points-to set later, we still need to add the
          // new edge from that special variable.
          if( lk->Type != Constraint::Load)
#endif
          GraphNodes[CurrNodeIndex].Constraints.erase(lk);
        } else {
          const SparseBitVector<> &Solution = CurrPointsTo;

          for (SparseBitVector<>::iterator bi = Solution.begin();
               bi != Solution.end();
               ++bi) {
            CurrMember = *bi;

            // Need to increment the member by K since that is where we are
            // supposed to copy to/from.  Note that in positive weight cycles,
            // which occur in address taking of fields, K can go past
            // MaxK[CurrMember] elements, even though that is all it could point
            // to.
            if (K > 0 && K > MaxK[CurrMember])
              continue;
            else
              CurrMember = FindNode(CurrMember + K);

            // Add an edge to the graph, so we can just do regular
            // bitmap ior next time.  It may also let us notice a cycle.
#if !FULL_UNIVERSAL
            if (*Dest < NumberSpecialNodes)
              continue;
#endif
            if (GraphNodes[*Src].Edges->test_and_set(*Dest))
              if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
                NextWL->insert(&GraphNodes[*Dest]);

          }
          li++;
        }
      }
      SparseBitVector<> NewEdges;
      SparseBitVector<> ToErase;

      // Now all we have left to do is propagate points-to info along the
      // edges, erasing the redundant edges.
      for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
           bi != CurrNode->Edges->end();
           ++bi) {

        unsigned DestVar = *bi;
        unsigned Rep = FindNode(DestVar);

        // If we ended up with this node as our destination, or we've already
        // got an edge for the representative, delete the current edge.
        if (Rep == CurrNodeIndex ||
            (Rep != DestVar && NewEdges.test(Rep))) {
            ToErase.set(DestVar);
            continue;
        }
        
        std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
        
        // This is where we do lazy cycle detection.
        // If this is a cycle candidate (equal points-to sets and this
        // particular edge has not been cycle-checked previously), add to the
        // list to check for cycles on the next iteration.
        if (!EdgesChecked.count(edge) &&
            *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
          EdgesChecked.insert(edge);
          TarjanWL.push(Rep);
        }
        // Union the points-to sets into the dest
#if !FULL_UNIVERSAL
        if (Rep >= NumberSpecialNodes)
#endif
        if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
          NextWL->insert(&GraphNodes[Rep]);
        }
        // If this edge's destination was collapsed, rewrite the edge.
        if (Rep != DestVar) {
          ToErase.set(DestVar);
          NewEdges.set(Rep);
        }
      }
      CurrNode->Edges->intersectWithComplement(ToErase);
      CurrNode->Edges |= NewEdges;
    }

    // Switch to other work list.
    WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
  }


  Node2DFS.clear();
  Node2Deleted.clear();
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
    Node *N = &GraphNodes[i];
    delete N->OldPointsTo;
    delete N->Edges;
  }
  SDTActive = false;
  SDT.clear();
}

//===----------------------------------------------------------------------===//
//                               Union-Find
//===----------------------------------------------------------------------===//

// Unite nodes First and Second, returning the one which is now the
// representative node.  First and Second are indexes into GraphNodes
unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
                               bool UnionByRank) {
  assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
          "Attempting to merge nodes that don't exist");

  Node *FirstNode = &GraphNodes[First];
  Node *SecondNode = &GraphNodes[Second];

  assert (SecondNode->isRep() && FirstNode->isRep() &&
          "Trying to unite two non-representative nodes!");
  if (First == Second)
    return First;

  if (UnionByRank) {
    int RankFirst  = (int) FirstNode ->NodeRep;
    int RankSecond = (int) SecondNode->NodeRep;

    // Rank starts at -1 and gets decremented as it increases.
    // Translation: higher rank, lower NodeRep value, which is always negative.
    if (RankFirst > RankSecond) {
      unsigned t = First; First = Second; Second = t;
      Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
    } else if (RankFirst == RankSecond) {
      FirstNode->NodeRep = (unsigned) (RankFirst - 1);
    }
  }

  SecondNode->NodeRep = First;
#if !FULL_UNIVERSAL
  if (First >= NumberSpecialNodes)
#endif
  if (FirstNode->PointsTo && SecondNode->PointsTo)
    FirstNode->PointsTo |= *(SecondNode->PointsTo);
  if (FirstNode->Edges && SecondNode->Edges)
    FirstNode->Edges |= *(SecondNode->Edges);
  if (!SecondNode->Constraints.empty())
    FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
                                  SecondNode->Constraints);
  if (FirstNode->OldPointsTo) {
    delete FirstNode->OldPointsTo;
    FirstNode->OldPointsTo = new SparseBitVector<>;
  }

  // Destroy interesting parts of the merged-from node.
  delete SecondNode->OldPointsTo;
  delete SecondNode->Edges;
  delete SecondNode->PointsTo;
  SecondNode->Edges = NULL;
  SecondNode->PointsTo = NULL;
  SecondNode->OldPointsTo = NULL;

  NumUnified++;
  DOUT << "Unified Node ";
  DEBUG(PrintNode(FirstNode));
  DOUT << " and Node ";
  DEBUG(PrintNode(SecondNode));
  DOUT << "\n";

  if (SDTActive)
    if (SDT[Second] >= 0) {
      if (SDT[First] < 0)
        SDT[First] = SDT[Second];
      else {
        UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) );
        First = FindNode(First);
      }
    }

  return First;
}

// Find the index into GraphNodes of the node representing Node, performing
// path compression along the way
unsigned Andersens::FindNode(unsigned NodeIndex) {
  assert (NodeIndex < GraphNodes.size()
          && "Attempting to find a node that can't exist");
  Node *N = &GraphNodes[NodeIndex];
  if (N->isRep())
    return NodeIndex;
  else
    return (N->NodeRep = FindNode(N->NodeRep));
}

// Find the index into GraphNodes of the node representing Node, 
// don't perform path compression along the way (for Print)
unsigned Andersens::FindNode(unsigned NodeIndex) const {
  assert (NodeIndex < GraphNodes.size()
          && "Attempting to find a node that can't exist");
  const Node *N = &GraphNodes[NodeIndex];
  if (N->isRep())
    return NodeIndex;
  else
    return FindNode(N->NodeRep);
}

//===----------------------------------------------------------------------===//
//                               Debugging Output
//===----------------------------------------------------------------------===//

void Andersens::PrintNode(const Node *N) const {
  if (N == &GraphNodes[UniversalSet]) {
    cerr << "<universal>";
    return;
  } else if (N == &GraphNodes[NullPtr]) {
    cerr << "<nullptr>";
    return;
  } else if (N == &GraphNodes[NullObject]) {
    cerr << "<null>";
    return;
  }
  if (!N->getValue()) {
    cerr << "artificial" << (intptr_t) N;
    return;
  }

  assert(N->getValue() != 0 && "Never set node label!");
  Value *V = N->getValue();
  if (Function *F = dyn_cast<Function>(V)) {
    if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
        N == &GraphNodes[getReturnNode(F)]) {
      cerr << F->getName() << ":retval";
      return;
    } else if (F->getFunctionType()->isVarArg() &&
               N == &GraphNodes[getVarargNode(F)]) {
      cerr << F->getName() << ":vararg";
      return;
    }
  }

  if (Instruction *I = dyn_cast<Instruction>(V))
    cerr << I->getParent()->getParent()->getName() << ":";
  else if (Argument *Arg = dyn_cast<Argument>(V))
    cerr << Arg->getParent()->getName() << ":";

  if (V->hasName())
    cerr << V->getName();
  else
    cerr << "(unnamed)";

  if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
    if (N == &GraphNodes[getObject(V)])
      cerr << "<mem>";
}
void Andersens::PrintConstraint(const Constraint &C) const {
  if (C.Type == Constraint::Store) {
    cerr << "*";
    if (C.Offset != 0)
      cerr << "(";
  }
  PrintNode(&GraphNodes[C.Dest]);
  if (C.Type == Constraint::Store && C.Offset != 0)
    cerr << " + " << C.Offset << ")";
  cerr << " = ";
  if (C.Type == Constraint::Load) {
    cerr << "*";
    if (C.Offset != 0)
      cerr << "(";
  }
  else if (C.Type == Constraint::AddressOf)
    cerr << "&";
  PrintNode(&GraphNodes[C.Src]);
  if (C.Offset != 0 && C.Type != Constraint::Store)
    cerr << " + " << C.Offset;
  if (C.Type == Constraint::Load && C.Offset != 0)
    cerr << ")";
  cerr << "\n";
}

void Andersens::PrintConstraints() const {
  cerr << "Constraints:\n";

  for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
    PrintConstraint(Constraints[i]);
}

void Andersens::PrintPointsToGraph() const {
  cerr << "Points-to graph:\n";
  for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
    const Node *N = &GraphNodes[i];
    if (FindNode(i) != i) {
      PrintNode(N);
      cerr << "\t--> same as ";
      PrintNode(&GraphNodes[FindNode(i)]);
      cerr << "\n";
    } else {
      cerr << "[" << (N->PointsTo->count()) << "] ";
      PrintNode(N);
      cerr << "\t--> ";

      bool first = true;
      for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
           bi != N->PointsTo->end();
           ++bi) {
        if (!first)
          cerr << ", ";
        PrintNode(&GraphNodes[*bi]);
        first = false;
      }
      cerr << "\n";
    }
  }
}