1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This simple pass provides alias and mod/ref information for global values
// that do not have their address taken, and keeps track of whether functions
// read or write memory (are "pure"). For this simple (but very common) case,
// we can provide pretty accurate and useful information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include <set>
using namespace llvm;
#define DEBUG_TYPE "globalsmodref-aa"
STATISTIC(NumNonAddrTakenGlobalVars,
"Number of global vars without address taken");
STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
namespace {
/// FunctionRecord - One instance of this structure is stored for every
/// function in the program. Later, the entries for these functions are
/// removed if the function is found to call an external function (in which
/// case we know nothing about it.
struct FunctionRecord {
/// GlobalInfo - Maintain mod/ref info for all of the globals without
/// addresses taken that are read or written (transitively) by this
/// function.
std::map<const GlobalValue*, unsigned> GlobalInfo;
/// MayReadAnyGlobal - May read global variables, but it is not known which.
bool MayReadAnyGlobal;
unsigned getInfoForGlobal(const GlobalValue *GV) const {
unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
std::map<const GlobalValue*, unsigned>::const_iterator I =
GlobalInfo.find(GV);
if (I != GlobalInfo.end())
Effect |= I->second;
return Effect;
}
/// FunctionEffect - Capture whether or not this function reads or writes to
/// ANY memory. If not, we can do a lot of aggressive analysis on it.
unsigned FunctionEffect;
FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
};
/// GlobalsModRef - The actual analysis pass.
class GlobalsModRef : public ModulePass, public AliasAnalysis {
/// NonAddressTakenGlobals - The globals that do not have their addresses
/// taken.
std::set<const GlobalValue*> NonAddressTakenGlobals;
/// IndirectGlobals - The memory pointed to by this global is known to be
/// 'owned' by the global.
std::set<const GlobalValue*> IndirectGlobals;
/// AllocsForIndirectGlobals - If an instruction allocates memory for an
/// indirect global, this map indicates which one.
std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
/// FunctionInfo - For each function, keep track of what globals are
/// modified or read.
std::map<const Function*, FunctionRecord> FunctionInfo;
public:
static char ID;
GlobalsModRef() : ModulePass(ID) {
initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
InitializeAliasAnalysis(this, &M.getDataLayout());
// Find non-addr taken globals.
AnalyzeGlobals(M);
// Propagate on CG.
AnalyzeCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph(), M);
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AliasAnalysis::getAnalysisUsage(AU);
AU.addRequired<CallGraphWrapperPass>();
AU.setPreservesAll(); // Does not transform code
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Location &LocA, const Location &LocB) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
ModRefBehavior getModRefBehavior(const Function *F) override {
ModRefBehavior Min = UnknownModRefBehavior;
if (FunctionRecord *FR = getFunctionInfo(F)) {
if (FR->FunctionEffect == 0)
Min = DoesNotAccessMemory;
else if ((FR->FunctionEffect & Mod) == 0)
Min = OnlyReadsMemory;
}
return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
ModRefBehavior Min = UnknownModRefBehavior;
if (const Function* F = CS.getCalledFunction())
if (FunctionRecord *FR = getFunctionInfo(F)) {
if (FR->FunctionEffect == 0)
Min = DoesNotAccessMemory;
else if ((FR->FunctionEffect & Mod) == 0)
Min = OnlyReadsMemory;
}
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
void deleteValue(Value *V) override;
void copyValue(Value *From, Value *To) override;
void addEscapingUse(Use &U) override;
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
void *getAdjustedAnalysisPointer(AnalysisID PI) override {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
}
private:
/// getFunctionInfo - Return the function info for the function, or null if
/// we don't have anything useful to say about it.
FunctionRecord *getFunctionInfo(const Function *F) {
std::map<const Function*, FunctionRecord>::iterator I =
FunctionInfo.find(F);
if (I != FunctionInfo.end())
return &I->second;
return nullptr;
}
void AnalyzeGlobals(Module &M);
void AnalyzeCallGraph(CallGraph &CG, Module &M);
bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
std::vector<Function*> &Writers,
GlobalValue *OkayStoreDest = nullptr);
bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
};
}
char GlobalsModRef::ID = 0;
INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
"globalsmodref-aa", "Simple mod/ref analysis for globals",
false, true, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
"globalsmodref-aa", "Simple mod/ref analysis for globals",
false, true, false)
Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
/// AnalyzeGlobals - Scan through the users of all of the internal
/// GlobalValue's in the program. If none of them have their "address taken"
/// (really, their address passed to something nontrivial), record this fact,
/// and record the functions that they are used directly in.
void GlobalsModRef::AnalyzeGlobals(Module &M) {
std::vector<Function*> Readers, Writers;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->hasLocalLinkage()) {
if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
// Remember that we are tracking this global.
NonAddressTakenGlobals.insert(I);
++NumNonAddrTakenFunctions;
}
Readers.clear(); Writers.clear();
}
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (I->hasLocalLinkage()) {
if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
// Remember that we are tracking this global, and the mod/ref fns
NonAddressTakenGlobals.insert(I);
for (unsigned i = 0, e = Readers.size(); i != e; ++i)
FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
if (!I->isConstant()) // No need to keep track of writers to constants
for (unsigned i = 0, e = Writers.size(); i != e; ++i)
FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
++NumNonAddrTakenGlobalVars;
// If this global holds a pointer type, see if it is an indirect global.
if (I->getType()->getElementType()->isPointerTy() &&
AnalyzeIndirectGlobalMemory(I))
++NumIndirectGlobalVars;
}
Readers.clear(); Writers.clear();
}
}
/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
/// If this is used by anything complex (i.e., the address escapes), return
/// true. Also, while we are at it, keep track of those functions that read and
/// write to the value.
///
/// If OkayStoreDest is non-null, stores into this global are allowed.
bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
std::vector<Function*> &Readers,
std::vector<Function*> &Writers,
GlobalValue *OkayStoreDest) {
if (!V->getType()->isPointerTy()) return true;
for (Use &U : V->uses()) {
User *I = U.getUser();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Readers.push_back(LI->getParent()->getParent());
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (V == SI->getOperand(1)) {
Writers.push_back(SI->getParent()->getParent());
} else if (SI->getOperand(1) != OkayStoreDest) {
return true; // Storing the pointer
}
} else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
if (AnalyzeUsesOfPointer(I, Readers, Writers))
return true;
} else if (Operator::getOpcode(I) == Instruction::BitCast) {
if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
return true;
} else if (CallSite CS = I) {
// Make sure that this is just the function being called, not that it is
// passing into the function.
if (!CS.isCallee(&U)) {
// Detect calls to free.
if (isFreeCall(I, TLI))
Writers.push_back(CS->getParent()->getParent());
else
return true; // Argument of an unknown call.
}
} else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
return true; // Allow comparison against null.
} else {
return true;
}
}
return false;
}
/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
/// which holds a pointer type. See if the global always points to non-aliased
/// heap memory: that is, all initializers of the globals are allocations, and
/// those allocations have no use other than initialization of the global.
/// Further, all loads out of GV must directly use the memory, not store the
/// pointer somewhere. If this is true, we consider the memory pointed to by
/// GV to be owned by GV and can disambiguate other pointers from it.
bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
// Keep track of values related to the allocation of the memory, f.e. the
// value produced by the malloc call and any casts.
std::vector<Value*> AllocRelatedValues;
// Walk the user list of the global. If we find anything other than a direct
// load or store, bail out.
for (User *U : GV->users()) {
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
// The pointer loaded from the global can only be used in simple ways:
// we allow addressing of it and loading storing to it. We do *not* allow
// storing the loaded pointer somewhere else or passing to a function.
std::vector<Function*> ReadersWriters;
if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
return false; // Loaded pointer escapes.
// TODO: Could try some IP mod/ref of the loaded pointer.
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
// Storing the global itself.
if (SI->getOperand(0) == GV) return false;
// If storing the null pointer, ignore it.
if (isa<ConstantPointerNull>(SI->getOperand(0)))
continue;
// Check the value being stored.
Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
GV->getParent()->getDataLayout());
if (!isAllocLikeFn(Ptr, TLI))
return false; // Too hard to analyze.
// Analyze all uses of the allocation. If any of them are used in a
// non-simple way (e.g. stored to another global) bail out.
std::vector<Function*> ReadersWriters;
if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
return false; // Loaded pointer escapes.
// Remember that this allocation is related to the indirect global.
AllocRelatedValues.push_back(Ptr);
} else {
// Something complex, bail out.
return false;
}
}
// Okay, this is an indirect global. Remember all of the allocations for
// this global in AllocsForIndirectGlobals.
while (!AllocRelatedValues.empty()) {
AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
AllocRelatedValues.pop_back();
}
IndirectGlobals.insert(GV);
return true;
}
/// AnalyzeCallGraph - At this point, we know the functions where globals are
/// immediately stored to and read from. Propagate this information up the call
/// graph to all callers and compute the mod/ref info for all memory for each
/// function.
void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
// We do a bottom-up SCC traversal of the call graph. In other words, we
// visit all callees before callers (leaf-first).
for (scc_iterator<CallGraph*> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
const std::vector<CallGraphNode *> &SCC = *I;
assert(!SCC.empty() && "SCC with no functions?");
if (!SCC[0]->getFunction()) {
// Calls externally - can't say anything useful. Remove any existing
// function records (may have been created when scanning globals).
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
FunctionInfo.erase(SCC[i]->getFunction());
continue;
}
FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
bool KnowNothing = false;
unsigned FunctionEffect = 0;
// Collect the mod/ref properties due to called functions. We only compute
// one mod-ref set.
for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
Function *F = SCC[i]->getFunction();
if (!F) {
KnowNothing = true;
break;
}
if (F->isDeclaration()) {
// Try to get mod/ref behaviour from function attributes.
if (F->doesNotAccessMemory()) {
// Can't do better than that!
} else if (F->onlyReadsMemory()) {
FunctionEffect |= Ref;
if (!F->isIntrinsic())
// This function might call back into the module and read a global -
// consider every global as possibly being read by this function.
FR.MayReadAnyGlobal = true;
} else {
FunctionEffect |= ModRef;
// Can't say anything useful unless it's an intrinsic - they don't
// read or write global variables of the kind considered here.
KnowNothing = !F->isIntrinsic();
}
continue;
}
for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
CI != E && !KnowNothing; ++CI)
if (Function *Callee = CI->second->getFunction()) {
if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
// Propagate function effect up.
FunctionEffect |= CalleeFR->FunctionEffect;
// Incorporate callee's effects on globals into our info.
for (const auto &G : CalleeFR->GlobalInfo)
FR.GlobalInfo[G.first] |= G.second;
FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
} else {
// Can't say anything about it. However, if it is inside our SCC,
// then nothing needs to be done.
CallGraphNode *CalleeNode = CG[Callee];
if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
KnowNothing = true;
}
} else {
KnowNothing = true;
}
}
// If we can't say anything useful about this SCC, remove all SCC functions
// from the FunctionInfo map.
if (KnowNothing) {
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
FunctionInfo.erase(SCC[i]->getFunction());
continue;
}
// Scan the function bodies for explicit loads or stores.
for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
E = inst_end(SCC[i]->getFunction());
II != E && FunctionEffect != ModRef; ++II)
if (LoadInst *LI = dyn_cast<LoadInst>(&*II)) {
FunctionEffect |= Ref;
if (LI->isVolatile())
// Volatile loads may have side-effects, so mark them as writing
// memory (for example, a flag inside the processor).
FunctionEffect |= Mod;
} else if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) {
FunctionEffect |= Mod;
if (SI->isVolatile())
// Treat volatile stores as reading memory somewhere.
FunctionEffect |= Ref;
} else if (isAllocationFn(&*II, TLI) || isFreeCall(&*II, TLI)) {
FunctionEffect |= ModRef;
} else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
// The callgraph doesn't include intrinsic calls.
Function *Callee = Intrinsic->getCalledFunction();
ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
FunctionEffect |= (Behaviour & ModRef);
}
if ((FunctionEffect & Mod) == 0)
++NumReadMemFunctions;
if (FunctionEffect == 0)
++NumNoMemFunctions;
FR.FunctionEffect = FunctionEffect;
// Finally, now that we know the full effect on this SCC, clone the
// information to each function in the SCC.
for (unsigned i = 1, e = SCC.size(); i != e; ++i)
FunctionInfo[SCC[i]->getFunction()] = FR;
}
}
/// alias - If one of the pointers is to a global that we are tracking, and the
/// other is some random pointer, we know there cannot be an alias, because the
/// address of the global isn't taken.
AliasAnalysis::AliasResult
GlobalsModRef::alias(const Location &LocA,
const Location &LocB) {
// Get the base object these pointers point to.
const Value *UV1 = GetUnderlyingObject(LocA.Ptr, *DL);
const Value *UV2 = GetUnderlyingObject(LocB.Ptr, *DL);
// If either of the underlying values is a global, they may be non-addr-taken
// globals, which we can answer queries about.
const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
if (GV1 || GV2) {
// If the global's address is taken, pretend we don't know it's a pointer to
// the global.
if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = nullptr;
if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = nullptr;
// If the two pointers are derived from two different non-addr-taken
// globals, or if one is and the other isn't, we know these can't alias.
if ((GV1 || GV2) && GV1 != GV2)
return NoAlias;
// Otherwise if they are both derived from the same addr-taken global, we
// can't know the two accesses don't overlap.
}
// These pointers may be based on the memory owned by an indirect global. If
// so, we may be able to handle this. First check to see if the base pointer
// is a direct load from an indirect global.
GV1 = GV2 = nullptr;
if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
if (IndirectGlobals.count(GV))
GV1 = GV;
if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
if (IndirectGlobals.count(GV))
GV2 = GV;
// These pointers may also be from an allocation for the indirect global. If
// so, also handle them.
if (AllocsForIndirectGlobals.count(UV1))
GV1 = AllocsForIndirectGlobals[UV1];
if (AllocsForIndirectGlobals.count(UV2))
GV2 = AllocsForIndirectGlobals[UV2];
// Now that we know whether the two pointers are related to indirect globals,
// use this to disambiguate the pointers. If either pointer is based on an
// indirect global and if they are not both based on the same indirect global,
// they cannot alias.
if ((GV1 || GV2) && GV1 != GV2)
return NoAlias;
return AliasAnalysis::alias(LocA, LocB);
}
AliasAnalysis::ModRefResult
GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
const Location &Loc) {
unsigned Known = ModRef;
// If we are asking for mod/ref info of a direct call with a pointer to a
// global we are tracking, return information if we have it.
const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
if (const GlobalValue *GV =
dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
if (GV->hasLocalLinkage())
if (const Function *F = CS.getCalledFunction())
if (NonAddressTakenGlobals.count(GV))
if (const FunctionRecord *FR = getFunctionInfo(F))
Known = FR->getInfoForGlobal(GV);
if (Known == NoModRef)
return NoModRef; // No need to query other mod/ref analyses
return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
}
//===----------------------------------------------------------------------===//
// Methods to update the analysis as a result of the client transformation.
//
void GlobalsModRef::deleteValue(Value *V) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (NonAddressTakenGlobals.erase(GV)) {
// This global might be an indirect global. If so, remove it and remove
// any AllocRelatedValues for it.
if (IndirectGlobals.erase(GV)) {
// Remove any entries in AllocsForIndirectGlobals for this global.
for (std::map<const Value*, const GlobalValue*>::iterator
I = AllocsForIndirectGlobals.begin(),
E = AllocsForIndirectGlobals.end(); I != E; ) {
if (I->second == GV) {
AllocsForIndirectGlobals.erase(I++);
} else {
++I;
}
}
}
}
}
// Otherwise, if this is an allocation related to an indirect global, remove
// it.
AllocsForIndirectGlobals.erase(V);
AliasAnalysis::deleteValue(V);
}
void GlobalsModRef::copyValue(Value *From, Value *To) {
AliasAnalysis::copyValue(From, To);
}
void GlobalsModRef::addEscapingUse(Use &U) {
// For the purposes of this analysis, it is conservatively correct to treat
// a newly escaping value equivalently to a deleted one. We could perhaps
// be more precise by processing the new use and attempting to update our
// saved analysis results to accommodate it.
deleteValue(U);
AliasAnalysis::addEscapingUse(U);
}
|