1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inline cost analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Support/CallSite.h"
#include "llvm/CallingConv.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
// CountCodeReductionForConstant - Figure out an approximation for how many
// instructions will be constant folded if the specified value is constant.
//
unsigned InlineCostAnalyzer::FunctionInfo::
CountCodeReductionForConstant(Value *V) {
unsigned Reduction = 0;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
if (isa<BranchInst>(*UI))
Reduction += 40; // Eliminating a conditional branch is a big win
else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
// Eliminating a switch is a big win, proportional to the number of edges
// deleted.
Reduction += (SI->getNumSuccessors()-1) * 40;
else if (isa<IndBrInst>(*UI))
// Eliminating an indirect branch is a big win.
Reduction += 200;
else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
// Turning an indirect call into a direct call is a BIG win
Reduction += CI->getCalledValue() == V ? 500 : 0;
} else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
// Turning an indirect call into a direct call is a BIG win
Reduction += II->getCalledValue() == V ? 500 : 0;
} else {
// Figure out if this instruction will be removed due to simple constant
// propagation.
Instruction &Inst = cast<Instruction>(**UI);
// We can't constant propagate instructions which have effects or
// read memory.
//
// FIXME: It would be nice to capture the fact that a load from a
// pointer-to-constant-global is actually a *really* good thing to zap.
// Unfortunately, we don't know the pointer that may get propagated here,
// so we can't make this decision.
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
isa<AllocaInst>(Inst))
continue;
bool AllOperandsConstant = true;
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
AllOperandsConstant = false;
break;
}
if (AllOperandsConstant) {
// We will get to remove this instruction...
Reduction += 7;
// And any other instructions that use it which become constants
// themselves.
Reduction += CountCodeReductionForConstant(&Inst);
}
}
return Reduction;
}
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
// the function will be if it is inlined into a context where an argument
// becomes an alloca.
//
unsigned InlineCostAnalyzer::FunctionInfo::
CountCodeReductionForAlloca(Value *V) {
if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
unsigned Reduction = 0;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Instruction *I = cast<Instruction>(*UI);
if (isa<LoadInst>(I) || isa<StoreInst>(I))
Reduction += 10;
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
// If the GEP has variable indices, we won't be able to do much with it.
if (!GEP->hasAllConstantIndices())
Reduction += CountCodeReductionForAlloca(GEP)+15;
} else {
// If there is some other strange instruction, we're not going to be able
// to do much if we inline this.
return 0;
}
}
return Reduction;
}
/// analyzeBasicBlock - Fill in the current structure with information gleaned
/// from the specified block.
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
++NumBlocks;
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
II != E; ++II) {
if (isa<PHINode>(II)) continue; // PHI nodes don't count.
// Special handling for calls.
if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
if (isa<DbgInfoIntrinsic>(II))
continue; // Debug intrinsics don't count as size.
CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
// If this function contains a call to setjmp or _setjmp, never inline
// it. This is a hack because we depend on the user marking their local
// variables as volatile if they are live across a setjmp call, and they
// probably won't do this in callers.
if (Function *F = CS.getCalledFunction())
if (F->isDeclaration() &&
(F->getName() == "setjmp" || F->getName() == "_setjmp"))
NeverInline = true;
// Calls often compile into many machine instructions. Bump up their
// cost to reflect this.
if (!isa<IntrinsicInst>(II))
NumInsts += InlineConstants::CallPenalty;
}
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
if (!AI->isStaticAlloca())
this->usesDynamicAlloca = true;
}
if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
++NumVectorInsts;
// Noop casts, including ptr <-> int, don't count.
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
isa<PtrToIntInst>(CI))
continue;
} else if (const GetElementPtrInst *GEPI =
dyn_cast<GetElementPtrInst>(II)) {
// If a GEP has all constant indices, it will probably be folded with
// a load/store.
if (GEPI->hasAllConstantIndices())
continue;
}
if (isa<ReturnInst>(II))
++NumRets;
++NumInsts;
}
}
/// analyzeFunction - Fill in the current structure with information gleaned
/// from the specified function.
void CodeMetrics::analyzeFunction(Function *F) {
// Look at the size of the callee.
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
analyzeBasicBlock(&*BB);
}
/// analyzeFunction - Fill in the current structure with information gleaned
/// from the specified function.
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
Metrics.analyzeFunction(F);
// A function with exactly one return has it removed during the inlining
// process (see InlineFunction), so don't count it.
// FIXME: This knowledge should really be encoded outside of FunctionInfo.
if (Metrics.NumRets==1)
--Metrics.NumInsts;
// Check out all of the arguments to the function, figuring out how much
// code can be eliminated if one of the arguments is a constant.
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
CountCodeReductionForAlloca(I)));
}
// getInlineCost - The heuristic used to determine if we should inline the
// function call or not.
//
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
SmallPtrSet<const Function *, 16> &NeverInline) {
Instruction *TheCall = CS.getInstruction();
Function *Callee = CS.getCalledFunction();
Function *Caller = TheCall->getParent()->getParent();
// Don't inline functions which can be redefined at link-time to mean
// something else. Don't inline functions marked noinline.
if (Callee->mayBeOverridden() ||
Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee))
return llvm::InlineCost::getNever();
// InlineCost - This value measures how good of an inline candidate this call
// site is to inline. A lower inline cost make is more likely for the call to
// be inlined. This value may go negative.
//
int InlineCost = 0;
// If there is only one call of the function, and it has internal linkage,
// make it almost guaranteed to be inlined.
//
if (Callee->hasLocalLinkage() && Callee->hasOneUse())
InlineCost += InlineConstants::LastCallToStaticBonus;
// If this function uses the coldcc calling convention, prefer not to inline
// it.
if (Callee->getCallingConv() == CallingConv::Cold)
InlineCost += InlineConstants::ColdccPenalty;
// If the instruction after the call, or if the normal destination of the
// invoke is an unreachable instruction, the function is noreturn. As such,
// there is little point in inlining this.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
InlineCost += InlineConstants::NoreturnPenalty;
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
InlineCost += InlineConstants::NoreturnPenalty;
// Get information about the callee...
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
// If we haven't calculated this information yet, do so now.
if (CalleeFI.Metrics.NumBlocks == 0)
CalleeFI.analyzeFunction(Callee);
// If we should never inline this, return a huge cost.
if (CalleeFI.Metrics.NeverInline)
return InlineCost::getNever();
// FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
// could move this up and avoid computing the FunctionInfo for
// things we are going to just return always inline for. This
// requires handling setjmp somewhere else, however.
if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
return InlineCost::getAlways();
if (CalleeFI.Metrics.usesDynamicAlloca) {
// Get infomation about the caller...
FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
// If we haven't calculated this information yet, do so now.
if (CallerFI.Metrics.NumBlocks == 0)
CallerFI.analyzeFunction(Caller);
// Don't inline a callee with dynamic alloca into a caller without them.
// Functions containing dynamic alloca's are inefficient in various ways;
// don't create more inefficiency.
if (!CallerFI.Metrics.usesDynamicAlloca)
return InlineCost::getNever();
}
// Add to the inline quality for properties that make the call valuable to
// inline. This includes factors that indicate that the result of inlining
// the function will be optimizable. Currently this just looks at arguments
// passed into the function.
//
unsigned ArgNo = 0;
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I, ++ArgNo) {
// Each argument passed in has a cost at both the caller and the callee
// sides. This favors functions that take many arguments over functions
// that take few arguments.
InlineCost -= 20;
// If this is a function being passed in, it is very likely that we will be
// able to turn an indirect function call into a direct function call.
if (isa<Function>(I))
InlineCost -= 100;
// If an alloca is passed in, inlining this function is likely to allow
// significant future optimization possibilities (like scalar promotion, and
// scalarization), so encourage the inlining of the function.
//
else if (isa<AllocaInst>(I)) {
if (ArgNo < CalleeFI.ArgumentWeights.size())
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
// If this is a constant being passed into the function, use the argument
// weights calculated for the callee to determine how much will be folded
// away with this information.
} else if (isa<Constant>(I)) {
if (ArgNo < CalleeFI.ArgumentWeights.size())
InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
}
}
// Now that we have considered all of the factors that make the call site more
// likely to be inlined, look at factors that make us not want to inline it.
// Don't inline into something too big, which would make it bigger.
// "size" here is the number of basic blocks, not instructions.
//
InlineCost += Caller->size()/15;
// Look at the size of the callee. Each instruction counts as 5.
InlineCost += CalleeFI.Metrics.NumInsts*5;
return llvm::InlineCost::get(InlineCost);
}
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
// higher threshold to determine if the function call should be inlined.
float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
Function *Callee = CS.getCalledFunction();
// Get information about the callee...
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
// If we haven't calculated this information yet, do so now.
if (CalleeFI.Metrics.NumBlocks == 0)
CalleeFI.analyzeFunction(Callee);
float Factor = 1.0f;
// Single BB functions are often written to be inlined.
if (CalleeFI.Metrics.NumBlocks == 1)
Factor += 0.5f;
// Be more aggressive if the function contains a good chunk (if it mades up
// at least 10% of the instructions) of vector instructions.
if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
Factor += 2.0f;
else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
Factor += 1.5f;
return Factor;
}
|