aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/InstructionSimplify.cpp
blob: b53ac13925b17a7930f7c32cf103a419278831a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for folding instructions into simpler forms
// that do not require creating new instructions.  For example, this does
// constant folding, and can handle identities like (X&0)->0.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Instructions.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace llvm::PatternMatch;

/// SimplifyAddInst - Given operands for an Add, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                             const TargetData *TD) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
                                      Ops, 2, TD);
    }
    
    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }
  
  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
    // X + undef -> undef
    if (isa<UndefValue>(Op1C))
      return Op1C;
    
    // X + 0 --> X
    if (Op1C->isNullValue())
      return Op0;
  }
  
  // FIXME: Could pull several more out of instcombine.
  return 0;
}

/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
                                      Ops, 2, TD);
    }
  
    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }
  
  // X & undef -> 0
  if (isa<UndefValue>(Op1))
    return Constant::getNullValue(Op0->getType());
  
  // X & X = X
  if (Op0 == Op1)
    return Op0;
  
  // X & <0,0> = <0,0>
  if (isa<ConstantAggregateZero>(Op1))
    return Op1;
  
  // X & <-1,-1> = X
  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
    if (CP->isAllOnesValue())
      return Op0;
  
  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
    // X & 0 = 0
    if (Op1CI->isZero())
      return Op1CI;
    // X & -1 = X
    if (Op1CI->isAllOnesValue())
      return Op0;
  }
  
  // A & ~A  =  ~A & A  =  0
  Value *A, *B;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getNullValue(Op0->getType());
  
  // (A | ?) & A = A
  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op1;
  
  // A & (A | ?) = A
  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op0;
  
  return 0;
}

/// SimplifyOrInst - Given operands for an Or, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
                                      Ops, 2, TD);
    }
    
    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }
  
  // X | undef -> -1
  if (isa<UndefValue>(Op1))
    return Constant::getAllOnesValue(Op0->getType());
  
  // X | X = X
  if (Op0 == Op1)
    return Op0;

  // X | <0,0> = X
  if (isa<ConstantAggregateZero>(Op1))
    return Op0;
  
  // X | <-1,-1> = <-1,-1>
  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
    if (CP->isAllOnesValue())            
      return Op1;
  
  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
    // X | 0 = X
    if (Op1CI->isZero())
      return Op0;
    // X | -1 = -1
    if (Op1CI->isAllOnesValue())
      return Op1CI;
  }
  
  // A | ~A  =  ~A | A  =  -1
  Value *A, *B;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getAllOnesValue(Op0->getType());
  
  // (A & ?) | A = A
  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op1;
  
  // A | (A & ?) = A
  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op0;
  
  return 0;
}


static const Type *GetCompareTy(Value *Op) {
  return CmpInst::makeCmpResultType(Op->getType());
}


/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD) {
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
  
  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);

    // If we have a constant, make sure it is on the RHS.
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }
  
  // ITy - This is the return type of the compare we're considering.
  const Type *ITy = GetCompareTy(LHS);
  
  // icmp X, X -> true/false
  if (LHS == RHS)
    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));

  if (isa<UndefValue>(RHS))                  // X icmp undef -> undef
    return UndefValue::get(ITy);
  
  // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
  // addresses never equal each other!  We already know that Op0 != Op1.
  if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || 
       isa<ConstantPointerNull>(LHS)) &&
      (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || 
       isa<ConstantPointerNull>(RHS)))
    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
  
  // See if we are doing a comparison with a constant.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    // If we have an icmp le or icmp ge instruction, turn it into the
    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
    // them being folded in the code below.
    switch (Pred) {
    default: break;
    case ICmpInst::ICMP_ULE:
      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_SLE:
      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_UGE:
      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_SGE:
      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    }
  }
  
  
  return 0;
}

/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD) {
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");

  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
   
    // If we have a constant, make sure it is on the RHS.
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }
  
  // Fold trivial predicates.
  if (Pred == FCmpInst::FCMP_FALSE)
    return ConstantInt::get(GetCompareTy(LHS), 0);
  if (Pred == FCmpInst::FCMP_TRUE)
    return ConstantInt::get(GetCompareTy(LHS), 1);

  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
    return UndefValue::get(GetCompareTy(LHS));

  // fcmp x,x -> true/false.  Not all compares are foldable.
  if (LHS == RHS) {
    if (CmpInst::isTrueWhenEqual(Pred))
      return ConstantInt::get(GetCompareTy(LHS), 1);
    if (CmpInst::isFalseWhenEqual(Pred))
      return ConstantInt::get(GetCompareTy(LHS), 0);
  }
  
  // Handle fcmp with constant RHS
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    // If the constant is a nan, see if we can fold the comparison based on it.
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
      if (CFP->getValueAPF().isNaN()) {
        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
          return ConstantInt::getFalse(CFP->getContext());
        assert(FCmpInst::isUnordered(Pred) &&
               "Comparison must be either ordered or unordered!");
        // True if unordered.
        return ConstantInt::getTrue(CFP->getContext());
      }
    }
  }
  
  return 0;
}

/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
                             const TargetData *TD) {
  // getelementptr P -> P.
  if (NumOps == 1)
    return Ops[0];

  // TODO.
  //if (isa<UndefValue>(Ops[0]))
  //  return UndefValue::get(GEP.getType());

  // getelementptr P, 0 -> P.
  if (NumOps == 2)
    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
      if (C->isZero())
        return Ops[0];
  
  // Check to see if this is constant foldable.
  for (unsigned i = 0; i != NumOps; ++i)
    if (!isa<Constant>(Ops[i]))
      return 0;
  
  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
                                        (Constant *const*)Ops+1, NumOps-1);
}


//=== Helper functions for higher up the class hierarchy.

/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 
                           const TargetData *TD) {
  switch (Opcode) {
  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD);
  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD);
  default:
    if (Constant *CLHS = dyn_cast<Constant>(LHS))
      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
        Constant *COps[] = {CLHS, CRHS};
        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
      }
    return 0;
  }
}

/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
/// fold the result.
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                             const TargetData *TD) {
  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
    return SimplifyICmpInst(Predicate, LHS, RHS, TD);
  return SimplifyFCmpInst(Predicate, LHS, RHS, TD);
}


/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction.  If not, this returns null.
Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) {
  switch (I->getOpcode()) {
  default:
    return ConstantFoldInstruction(I, TD);
  case Instruction::Add:
    return SimplifyAddInst(I->getOperand(0), I->getOperand(1),
                           cast<BinaryOperator>(I)->hasNoSignedWrap(),
                           cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD);
  case Instruction::And:
    return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD);
  case Instruction::Or:
    return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD);
  case Instruction::ICmp:
    return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
                            I->getOperand(0), I->getOperand(1), TD);
  case Instruction::FCmp:
    return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
                            I->getOperand(0), I->getOperand(1), TD);
  case Instruction::GetElementPtr: {
    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
    return SimplifyGEPInst(&Ops[0], Ops.size(), TD);
  }
  }
}

/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
/// delete the From instruction.  In addition to a basic RAUW, this does a
/// recursive simplification of the newly formed instructions.  This catches
/// things where one simplification exposes other opportunities.  This only
/// simplifies and deletes scalar operations, it does not change the CFG.
///
void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
                                     const TargetData *TD) {
  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
  
  // FromHandle - This keeps a weakvh on the from value so that we can know if
  // it gets deleted out from under us in a recursive simplification.
  WeakVH FromHandle(From);
  
  while (!From->use_empty()) {
    // Update the instruction to use the new value.
    Use &U = From->use_begin().getUse();
    Instruction *User = cast<Instruction>(U.getUser());
    U = To;
    
    // See if we can simplify it.
    if (Value *V = SimplifyInstruction(User, TD)) {
      // Recursively simplify this.
      ReplaceAndSimplifyAllUses(User, V, TD);
      
      // If the recursive simplification ended up revisiting and deleting 'From'
      // then we're done.
      if (FromHandle == 0)
        return;
    }
  }
  From->eraseFromParent();
}