aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/InstructionSimplify.cpp
blob: cf50668cb01a17a3d1af69de2c0e29b8c2e4a895 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for folding instructions into simpler forms
// that do not require creating new instructions.  This does constant folding
// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
// simplified: This is usually true and assuming it simplifies the logic (if
// they have not been simplified then results are correct but maybe suboptimal).
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "instsimplify"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
using namespace llvm::PatternMatch;

#define RecursionLimit 3

STATISTIC(NumExpand,  "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc, "Number of reassociations");

static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
                              const DominatorTree *, unsigned);
static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
                            const DominatorTree *, unsigned);
static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
                              const DominatorTree *, unsigned);
static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
                             const DominatorTree *, unsigned);
static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
                              const DominatorTree *, unsigned);

/// ValueDominatesPHI - Does the given value dominate the specified phi node?
static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    // Arguments and constants dominate all instructions.
    return true;

  // If we have a DominatorTree then do a precise test.
  if (DT)
    return DT->dominates(I, P);

  // Otherwise, if the instruction is in the entry block, and is not an invoke,
  // then it obviously dominates all phi nodes.
  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
      !isa<InvokeInst>(I))
    return true;

  return false;
}

/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
/// Returns the simplified value, or null if no simplification was performed.
static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                          unsigned OpcToExpand, const TargetData *TD,
                          const DominatorTree *DT, unsigned MaxRecurse) {
  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  // Check whether the expression has the form "(A op' B) op C".
  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    if (Op0->getOpcode() == OpcodeToExpand) {
      // It does!  Try turning it into "(A op C) op' (B op C)".
      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
      // Do "A op C" and "B op C" both simplify?
      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
          // They do! Return "L op' R" if it simplifies or is already available.
          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
                                     && L == B && R == A)) {
            ++NumExpand;
            return LHS;
          }
          // Otherwise return "L op' R" if it simplifies.
          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
                                       MaxRecurse)) {
            ++NumExpand;
            return V;
          }
        }
    }

  // Check whether the expression has the form "A op (B op' C)".
  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    if (Op1->getOpcode() == OpcodeToExpand) {
      // It does!  Try turning it into "(A op B) op' (A op C)".
      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
      // Do "A op B" and "A op C" both simplify?
      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
          // They do! Return "L op' R" if it simplifies or is already available.
          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
                                     && L == C && R == B)) {
            ++NumExpand;
            return RHS;
          }
          // Otherwise return "L op' R" if it simplifies.
          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
                                       MaxRecurse)) {
            ++NumExpand;
            return V;
          }
        }
    }

  return 0;
}

/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
/// Returns the simplified value, or null if no simplification was performed.
static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                             unsigned OpcToExtract, const TargetData *TD,
                             const DominatorTree *DT, unsigned MaxRecurse) {
  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);

  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
      !Op1 || Op1->getOpcode() != OpcodeToExtract)
    return 0;

  // The expression has the form "(A op' B) op (C op' D)".
  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);

  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
  // commutative case, "(A op' B) op (C op' A)"?
  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
    Value *DD = A == C ? D : C;
    // Form "A op' (B op DD)" if it simplifies completely.
    // Does "B op DD" simplify?
    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
      // It does!  Return "A op' V" if it simplifies or is already available.
      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
      // "A op' V" is just the RHS.
      if (V == B || V == DD) {
        ++NumFactor;
        return V == B ? LHS : RHS;
      }
      // Otherwise return "A op' V" if it simplifies.
      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
        ++NumFactor;
        return W;
      }
    }
  }

  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
  // commutative case, "(A op' B) op (B op' D)"?
  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
    Value *CC = B == D ? C : D;
    // Form "(A op CC) op' B" if it simplifies completely..
    // Does "A op CC" simplify?
    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
      // It does!  Return "V op' B" if it simplifies or is already available.
      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
      // "V op' B" is just the RHS.
      if (V == A || V == CC) {
        ++NumFactor;
        return V == A ? LHS : RHS;
      }
      // Otherwise return "V op' B" if it simplifies.
      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
        ++NumFactor;
        return W;
      }
    }
  }

  return 0;
}

/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
/// operations.  Returns the simpler value, or null if none was found.
static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
                                       const TargetData *TD,
                                       const DominatorTree *DT,
                                       unsigned MaxRecurse) {
  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");

  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);

  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
  if (Op0 && Op0->getOpcode() == Opcode) {
    Value *A = Op0->getOperand(0);
    Value *B = Op0->getOperand(1);
    Value *C = RHS;

    // Does "B op C" simplify?
    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
      // It does!  Return "A op V" if it simplifies or is already available.
      // If V equals B then "A op V" is just the LHS.
      if (V == B) return LHS;
      // Otherwise return "A op V" if it simplifies.
      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
        ++NumReassoc;
        return W;
      }
    }
  }

  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
  if (Op1 && Op1->getOpcode() == Opcode) {
    Value *A = LHS;
    Value *B = Op1->getOperand(0);
    Value *C = Op1->getOperand(1);

    // Does "A op B" simplify?
    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
      // It does!  Return "V op C" if it simplifies or is already available.
      // If V equals B then "V op C" is just the RHS.
      if (V == B) return RHS;
      // Otherwise return "V op C" if it simplifies.
      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
        ++NumReassoc;
        return W;
      }
    }
  }

  // The remaining transforms require commutativity as well as associativity.
  if (!Instruction::isCommutative(Opcode))
    return 0;

  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
  if (Op0 && Op0->getOpcode() == Opcode) {
    Value *A = Op0->getOperand(0);
    Value *B = Op0->getOperand(1);
    Value *C = RHS;

    // Does "C op A" simplify?
    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
      // It does!  Return "V op B" if it simplifies or is already available.
      // If V equals A then "V op B" is just the LHS.
      if (V == A) return LHS;
      // Otherwise return "V op B" if it simplifies.
      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
        ++NumReassoc;
        return W;
      }
    }
  }

  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
  if (Op1 && Op1->getOpcode() == Opcode) {
    Value *A = LHS;
    Value *B = Op1->getOperand(0);
    Value *C = Op1->getOperand(1);

    // Does "C op A" simplify?
    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
      // It does!  Return "B op V" if it simplifies or is already available.
      // If V equals C then "B op V" is just the RHS.
      if (V == C) return RHS;
      // Otherwise return "B op V" if it simplifies.
      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
        ++NumReassoc;
        return W;
      }
    }
  }

  return 0;
}

/// ThreadBinOpOverSelect - In the case of a binary operation with a select
/// instruction as an operand, try to simplify the binop by seeing whether
/// evaluating it on both branches of the select results in the same value.
/// Returns the common value if so, otherwise returns null.
static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
                                    const TargetData *TD,
                                    const DominatorTree *DT,
                                    unsigned MaxRecurse) {
  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  SelectInst *SI;
  if (isa<SelectInst>(LHS)) {
    SI = cast<SelectInst>(LHS);
  } else {
    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    SI = cast<SelectInst>(RHS);
  }

  // Evaluate the BinOp on the true and false branches of the select.
  Value *TV;
  Value *FV;
  if (SI == LHS) {
    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
  } else {
    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
  }

  // If they simplified to the same value, then return the common value.
  // If they both failed to simplify then return null.
  if (TV == FV)
    return TV;

  // If one branch simplified to undef, return the other one.
  if (TV && isa<UndefValue>(TV))
    return FV;
  if (FV && isa<UndefValue>(FV))
    return TV;

  // If applying the operation did not change the true and false select values,
  // then the result of the binop is the select itself.
  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    return SI;

  // If one branch simplified and the other did not, and the simplified
  // value is equal to the unsimplified one, return the simplified value.
  // For example, select (cond, X, X & Z) & Z -> X & Z.
  if ((FV && !TV) || (TV && !FV)) {
    // Check that the simplified value has the form "X op Y" where "op" is the
    // same as the original operation.
    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    if (Simplified && Simplified->getOpcode() == Opcode) {
      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
      // We already know that "op" is the same as for the simplified value.  See
      // if the operands match too.  If so, return the simplified value.
      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
          Simplified->getOperand(1) == UnsimplifiedRHS)
        return Simplified;
      if (Simplified->isCommutative() &&
          Simplified->getOperand(1) == UnsimplifiedLHS &&
          Simplified->getOperand(0) == UnsimplifiedRHS)
        return Simplified;
    }
  }

  return 0;
}

/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
/// try to simplify the comparison by seeing whether both branches of the select
/// result in the same value.  Returns the common value if so, otherwise returns
/// null.
static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
                                  Value *RHS, const TargetData *TD,
                                  const DominatorTree *DT,
                                  unsigned MaxRecurse) {
  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  // Make sure the select is on the LHS.
  if (!isa<SelectInst>(LHS)) {
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }
  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
  SelectInst *SI = cast<SelectInst>(LHS);

  // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
  // Does "cmp TV, RHS" simplify?
  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
                                    MaxRecurse))
    // It does!  Does "cmp FV, RHS" simplify?
    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
                                      MaxRecurse))
      // It does!  If they simplified to the same value, then use it as the
      // result of the original comparison.
      if (TCmp == FCmp)
        return TCmp;
  return 0;
}

/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
/// it on the incoming phi values yields the same result for every value.  If so
/// returns the common value, otherwise returns null.
static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
                                 const TargetData *TD, const DominatorTree *DT,
                                 unsigned MaxRecurse) {
  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  PHINode *PI;
  if (isa<PHINode>(LHS)) {
    PI = cast<PHINode>(LHS);
    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    if (!ValueDominatesPHI(RHS, PI, DT))
      return 0;
  } else {
    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    PI = cast<PHINode>(RHS);
    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    if (!ValueDominatesPHI(LHS, PI, DT))
      return 0;
  }

  // Evaluate the BinOp on the incoming phi values.
  Value *CommonValue = 0;
  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = PI->getIncomingValue(i);
    // If the incoming value is the phi node itself, it can safely be skipped.
    if (Incoming == PI) continue;
    Value *V = PI == LHS ?
      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
    // If the operation failed to simplify, or simplified to a different value
    // to previously, then give up.
    if (!V || (CommonValue && V != CommonValue))
      return 0;
    CommonValue = V;
  }

  return CommonValue;
}

/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
/// try to simplify the comparison by seeing whether comparing with all of the
/// incoming phi values yields the same result every time.  If so returns the
/// common result, otherwise returns null.
static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
                               const TargetData *TD, const DominatorTree *DT,
                               unsigned MaxRecurse) {
  // Recursion is always used, so bail out at once if we already hit the limit.
  if (!MaxRecurse--)
    return 0;

  // Make sure the phi is on the LHS.
  if (!isa<PHINode>(LHS)) {
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }
  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
  PHINode *PI = cast<PHINode>(LHS);

  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
  if (!ValueDominatesPHI(RHS, PI, DT))
    return 0;

  // Evaluate the BinOp on the incoming phi values.
  Value *CommonValue = 0;
  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = PI->getIncomingValue(i);
    // If the incoming value is the phi node itself, it can safely be skipped.
    if (Incoming == PI) continue;
    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
    // If the operation failed to simplify, or simplified to a different value
    // to previously, then give up.
    if (!V || (CommonValue && V != CommonValue))
      return 0;
    CommonValue = V;
  }

  return CommonValue;
}

/// SimplifyAddInst - Given operands for an Add, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                              const TargetData *TD, const DominatorTree *DT,
                              unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // X + undef -> undef
  if (isa<UndefValue>(Op1))
    return Op1;

  // X + 0 -> X
  if (match(Op1, m_Zero()))
    return Op0;

  // X + (Y - X) -> Y
  // (Y - X) + X -> Y
  // Eg: X + -X -> 0
  Value *Y = 0;
  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    return Y;

  // X + ~X -> -1   since   ~X = -X-1
  if (match(Op0, m_Not(m_Specific(Op1))) ||
      match(Op1, m_Not(m_Specific(Op0))))
    return Constant::getAllOnesValue(Op0->getType());

  /// i1 add -> xor.
  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
      return V;

  // Try some generic simplifications for associative operations.
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
                                          MaxRecurse))
    return V;

  // Mul distributes over Add.  Try some generic simplifications based on this.
  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
                                TD, DT, MaxRecurse))
    return V;

  // Threading Add over selects and phi nodes is pointless, so don't bother.
  // Threading over the select in "A + select(cond, B, C)" means evaluating
  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
  // only if B and C are equal.  If B and C are equal then (since we assume
  // that operands have already been simplified) "select(cond, B, C)" should
  // have been simplified to the common value of B and C already.  Analysing
  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
  // for threading over phi nodes.

  return 0;
}

Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                             const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
}

/// SimplifySubInst - Given operands for a Sub, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                              const TargetData *TD, const DominatorTree *DT,
                              unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0))
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
                                      Ops, 2, TD);
    }

  // X - undef -> undef
  // undef - X -> undef
  if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
    return UndefValue::get(Op0->getType());

  // X - 0 -> X
  if (match(Op1, m_Zero()))
    return Op0;

  // X - X -> 0
  if (Op0 == Op1)
    return Constant::getNullValue(Op0->getType());

  // (X*2) - X -> X
  // (X<<1) - X -> X
  Value *X = 0;
  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
      match(Op0, m_Shl(m_Specific(Op1), m_One())))
    return Op1;

  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
  Value *Y = 0, *Z = Op1;
  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    // See if "V === Y - Z" simplifies.
    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
      // It does!  Now see if "X + V" simplifies.
      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
                                   MaxRecurse-1)) {
        // It does, we successfully reassociated!
        ++NumReassoc;
        return W;
      }
    // See if "V === X - Z" simplifies.
    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
      // It does!  Now see if "Y + V" simplifies.
      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
                                   MaxRecurse-1)) {
        // It does, we successfully reassociated!
        ++NumReassoc;
        return W;
      }
  }

  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
  // For example, X - (X + 1) -> -1
  X = Op0;
  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    // See if "V === X - Y" simplifies.
    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
      // It does!  Now see if "V - Z" simplifies.
      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
                                   MaxRecurse-1)) {
        // It does, we successfully reassociated!
        ++NumReassoc;
        return W;
      }
    // See if "V === X - Z" simplifies.
    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
      // It does!  Now see if "V - Y" simplifies.
      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
                                   MaxRecurse-1)) {
        // It does, we successfully reassociated!
        ++NumReassoc;
        return W;
      }
  }

  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
  // For example, X - (X - Y) -> Y.
  Z = Op0;
  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    // See if "V === Z - X" simplifies.
    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
      // It does!  Now see if "V + Y" simplifies.
      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
                                   MaxRecurse-1)) {
        // It does, we successfully reassociated!
        ++NumReassoc;
        return W;
      }

  // Mul distributes over Sub.  Try some generic simplifications based on this.
  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
                                TD, DT, MaxRecurse))
    return V;

  // i1 sub -> xor.
  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
      return V;

  // Threading Sub over selects and phi nodes is pointless, so don't bother.
  // Threading over the select in "A - select(cond, B, C)" means evaluating
  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
  // only if B and C are equal.  If B and C are equal then (since we assume
  // that operands have already been simplified) "select(cond, B, C)" should
  // have been simplified to the common value of B and C already.  Analysing
  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
  // for threading over phi nodes.

  return 0;
}

Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                             const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
}

/// SimplifyMulInst - Given operands for a Mul, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT, unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // X * undef -> 0
  if (isa<UndefValue>(Op1))
    return Constant::getNullValue(Op0->getType());

  // X * 0 -> 0
  if (match(Op1, m_Zero()))
    return Op1;

  // X * 1 -> X
  if (match(Op1, m_One()))
    return Op0;

  // i1 mul -> and.
  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
      return V;

  // Try some generic simplifications for associative operations.
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
                                          MaxRecurse))
    return V;

  // Mul distributes over Add.  Try some generic simplifications based on this.
  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
                             TD, DT, MaxRecurse))
    return V;

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
                                         MaxRecurse))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
                                      MaxRecurse))
      return V;

  return 0;
}

Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT) {
  return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyDiv(unsigned Opcode, Value *Op0, Value *Op1,
                          const TargetData *TD, const DominatorTree *DT,
                          unsigned MaxRecurse) {
  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { C0, C1 };
      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
    }
  }

  bool isSigned = Opcode == Instruction::SDiv;

  // X / undef -> undef
  if (isa<UndefValue>(Op1))
    return Op1;

  // undef / X -> 0
  if (isa<UndefValue>(Op0))
    return Constant::getNullValue(Op0->getType());

  // 0 / X -> 0, we don't need to preserve faults!
  if (match(Op0, m_Zero()))
    return Op0;

  // X / 1 -> X
  if (match(Op1, m_One()))
    return Op0;
  // Vector case. TODO: Have m_One match vectors.
  if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
    if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
      if (X->isOne())
        return Op0;
  }

  if (Op0->getType()->isIntegerTy(1))
    // It can't be division by zero, hence it must be division by one.
    return Op0;

  // X / X -> 1
  if (Op0 == Op1)
    return ConstantInt::get(Op0->getType(), 1);

  // (X * Y) / Y -> X if the multiplication does not overflow.
  Value *X = 0, *Y = 0;
  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
    BinaryOperator *Mul = cast<BinaryOperator>(Op0);
    // If the Mul knows it does not overflow, then we are good to go.
    if ((isSigned && Mul->hasNoSignedWrap()) ||
        (!isSigned && Mul->hasNoUnsignedWrap()))
      return X;
    // If X has the form X = A / Y then X * Y cannot overflow.
    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
        return X;
  }

  // (X rem Y) / Y -> 0
  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
    return Constant::getNullValue(Op0->getType());

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
      return V;

  return 0;
}

/// SimplifySDivInst - Given operands for an SDiv, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
                               const DominatorTree *DT, unsigned MaxRecurse) {
  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
    return V;

  return 0;
}

Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT) {
  return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyUDivInst - Given operands for a UDiv, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
                               const DominatorTree *DT, unsigned MaxRecurse) {
  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
    return V;

  return 0;
}

Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT) {
  return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
}

static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
                               const DominatorTree *DT, unsigned MaxRecurse) {
  // undef / X -> undef    (the undef could be a snan).
  if (isa<UndefValue>(Op0))
    return Op0;

  // X / undef -> undef
  if (isa<UndefValue>(Op1))
    return Op1;

  return 0;
}

Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT) {
  return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
                            const TargetData *TD, const DominatorTree *DT,
                            unsigned MaxRecurse) {
  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { C0, C1 };
      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
    }
  }

  // 0 shift by X -> 0
  if (match(Op0, m_Zero()))
    return Op0;

  // X shift by 0 -> X
  if (match(Op1, m_Zero()))
    return Op0;

  // X shift by undef -> undef because it may shift by the bitwidth.
  if (isa<UndefValue>(Op1))
    return Op1;

  // Shifting by the bitwidth or more is undefined.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
    if (CI->getValue().getLimitedValue() >=
        Op0->getType()->getScalarSizeInBits())
      return UndefValue::get(Op0->getType());

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
      return V;

  return 0;
}

/// SimplifyShlInst - Given operands for an Shl, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT, unsigned MaxRecurse) {
  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
    return V;

  // undef << X -> 0
  if (isa<UndefValue>(Op0))
    return Constant::getNullValue(Op0->getType());

  return 0;
}

Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT) {
  return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyLShrInst - Given operands for an LShr, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
                               const DominatorTree *DT, unsigned MaxRecurse) {
  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
    return V;

  // undef >>l X -> 0
  if (isa<UndefValue>(Op0))
    return Constant::getNullValue(Op0->getType());

  return 0;
}

Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT) {
  return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyAShrInst - Given operands for an AShr, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT, unsigned MaxRecurse) {
  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
    return V;

  // all ones >>a X -> all ones
  if (match(Op0, m_AllOnes()))
    return Op0;

  // undef >>a X -> all ones
  if (isa<UndefValue>(Op0))
    return Constant::getAllOnesValue(Op0->getType());

  return 0;
}

Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT) {
  return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT, unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // X & undef -> 0
  if (isa<UndefValue>(Op1))
    return Constant::getNullValue(Op0->getType());

  // X & X = X
  if (Op0 == Op1)
    return Op0;

  // X & 0 = 0
  if (match(Op1, m_Zero()))
    return Op1;

  // X & -1 = X
  if (match(Op1, m_AllOnes()))
    return Op0;

  // A & ~A  =  ~A & A  =  0
  Value *A = 0, *B = 0;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getNullValue(Op0->getType());

  // (A | ?) & A = A
  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op1;

  // A & (A | ?) = A
  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op0;

  // Try some generic simplifications for associative operations.
  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
                                          MaxRecurse))
    return V;

  // And distributes over Or.  Try some generic simplifications based on this.
  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
                             TD, DT, MaxRecurse))
    return V;

  // And distributes over Xor.  Try some generic simplifications based on this.
  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
                             TD, DT, MaxRecurse))
    return V;

  // Or distributes over And.  Try some generic simplifications based on this.
  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
                                TD, DT, MaxRecurse))
    return V;

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
                                         MaxRecurse))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
                                      MaxRecurse))
      return V;

  return 0;
}

Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT) {
  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyOrInst - Given operands for an Or, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT, unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // X | undef -> -1
  if (isa<UndefValue>(Op1))
    return Constant::getAllOnesValue(Op0->getType());

  // X | X = X
  if (Op0 == Op1)
    return Op0;

  // X | 0 = X
  if (match(Op1, m_Zero()))
    return Op0;

  // X | -1 = -1
  if (match(Op1, m_AllOnes()))
    return Op1;

  // A | ~A  =  ~A | A  =  -1
  Value *A = 0, *B = 0;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getAllOnesValue(Op0->getType());

  // (A & ?) | A = A
  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op1;

  // A | (A & ?) = A
  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op0;

  // Try some generic simplifications for associative operations.
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
                                          MaxRecurse))
    return V;

  // Or distributes over And.  Try some generic simplifications based on this.
  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
                             TD, DT, MaxRecurse))
    return V;

  // And distributes over Or.  Try some generic simplifications based on this.
  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
                                TD, DT, MaxRecurse))
    return V;

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
                                         MaxRecurse))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
                                      MaxRecurse))
      return V;

  return 0;
}

Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
                            const DominatorTree *DT) {
  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyXorInst - Given operands for a Xor, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT, unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // A ^ undef -> undef
  if (isa<UndefValue>(Op1))
    return Op1;

  // A ^ 0 = A
  if (match(Op1, m_Zero()))
    return Op0;

  // A ^ A = 0
  if (Op0 == Op1)
    return Constant::getNullValue(Op0->getType());

  // A ^ ~A  =  ~A ^ A  =  -1
  Value *A = 0;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getAllOnesValue(Op0->getType());

  // Try some generic simplifications for associative operations.
  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
                                          MaxRecurse))
    return V;

  // And distributes over Xor.  Try some generic simplifications based on this.
  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
                                TD, DT, MaxRecurse))
    return V;

  // Threading Xor over selects and phi nodes is pointless, so don't bother.
  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
  // only if B and C are equal.  If B and C are equal then (since we assume
  // that operands have already been simplified) "select(cond, B, C)" should
  // have been simplified to the common value of B and C already.  Analysing
  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
  // for threading over phi nodes.

  return 0;
}

Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT) {
  return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
}

static const Type *GetCompareTy(Value *Op) {
  return CmpInst::makeCmpResultType(Op->getType());
}

/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                               const TargetData *TD, const DominatorTree *DT,
                               unsigned MaxRecurse) {
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");

  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);

    // If we have a constant, make sure it is on the RHS.
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }

  const Type *ITy = GetCompareTy(LHS); // The return type.
  const Type *OpTy = LHS->getType();   // The operand type.

  // icmp X, X -> true/false
  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
  // because X could be 0.
  if (LHS == RHS || isa<UndefValue>(RHS))
    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));

  // Special case logic when the operands have i1 type.
  if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
       cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
    switch (Pred) {
    default: break;
    case ICmpInst::ICMP_EQ:
      // X == 1 -> X
      if (match(RHS, m_One()))
        return LHS;
      break;
    case ICmpInst::ICMP_NE:
      // X != 0 -> X
      if (match(RHS, m_Zero()))
        return LHS;
      break;
    case ICmpInst::ICMP_UGT:
      // X >u 0 -> X
      if (match(RHS, m_Zero()))
        return LHS;
      break;
    case ICmpInst::ICMP_UGE:
      // X >=u 1 -> X
      if (match(RHS, m_One()))
        return LHS;
      break;
    case ICmpInst::ICMP_SLT:
      // X <s 0 -> X
      if (match(RHS, m_Zero()))
        return LHS;
      break;
    case ICmpInst::ICMP_SLE:
      // X <=s -1 -> X
      if (match(RHS, m_One()))
        return LHS;
      break;
    }
  }

  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
  // different addresses, and what's more the address of a stack variable is
  // never null or equal to the address of a global.  Note that generalizing
  // to the case where LHS is a global variable address or null is pointless,
  // since if both LHS and RHS are constants then we already constant folded
  // the compare, and if only one of them is then we moved it to RHS already.
  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
                               isa<ConstantPointerNull>(RHS)))
    // We already know that LHS != LHS.
    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));

  // If we are comparing with zero then try hard since this is a common case.
  if (match(RHS, m_Zero())) {
    bool LHSKnownNonNegative, LHSKnownNegative;
    switch (Pred) {
    default:
      assert(false && "Unknown ICmp predicate!");
    case ICmpInst::ICMP_ULT:
      return ConstantInt::getFalse(LHS->getContext());
    case ICmpInst::ICMP_UGE:
      return ConstantInt::getTrue(LHS->getContext());
    case ICmpInst::ICMP_EQ:
    case ICmpInst::ICMP_ULE:
      if (isKnownNonZero(LHS, TD))
        return ConstantInt::getFalse(LHS->getContext());
      break;
    case ICmpInst::ICMP_NE:
    case ICmpInst::ICMP_UGT:
      if (isKnownNonZero(LHS, TD))
        return ConstantInt::getTrue(LHS->getContext());
      break;
    case ICmpInst::ICMP_SLT:
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
      if (LHSKnownNegative)
        return ConstantInt::getTrue(LHS->getContext());
      if (LHSKnownNonNegative)
        return ConstantInt::getFalse(LHS->getContext());
      break;
    case ICmpInst::ICMP_SLE:
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
      if (LHSKnownNegative)
        return ConstantInt::getTrue(LHS->getContext());
      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
        return ConstantInt::getFalse(LHS->getContext());
      break;
    case ICmpInst::ICMP_SGE:
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
      if (LHSKnownNegative)
        return ConstantInt::getFalse(LHS->getContext());
      if (LHSKnownNonNegative)
        return ConstantInt::getTrue(LHS->getContext());
      break;
    case ICmpInst::ICMP_SGT:
      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
      if (LHSKnownNegative)
        return ConstantInt::getFalse(LHS->getContext());
      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
        return ConstantInt::getTrue(LHS->getContext());
      break;
    }
  }

  // See if we are doing a comparison with a constant integer.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    switch (Pred) {
    default: break;
    case ICmpInst::ICMP_UGT:
      if (CI->isMaxValue(false))                 // A >u MAX -> FALSE
        return ConstantInt::getFalse(CI->getContext());
      break;
    case ICmpInst::ICMP_UGE:
      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_ULT:
      if (CI->isMinValue(false))                 // A <u MIN -> FALSE
        return ConstantInt::getFalse(CI->getContext());
      break;
    case ICmpInst::ICMP_ULE:
      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_SGT:
      if (CI->isMaxValue(true))                  // A >s MAX -> FALSE
        return ConstantInt::getFalse(CI->getContext());
      break;
    case ICmpInst::ICMP_SGE:
      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_SLT:
      if (CI->isMinValue(true))                  // A <s MIN -> FALSE
        return ConstantInt::getFalse(CI->getContext());
      break;
    case ICmpInst::ICMP_SLE:
      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    }
  }

  // Compare of cast, for example (zext X) != 0 -> X != 0
  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
    Instruction *LI = cast<CastInst>(LHS);
    Value *SrcOp = LI->getOperand(0);
    const Type *SrcTy = SrcOp->getType();
    const Type *DstTy = LI->getType();

    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
    // if the integer type is the same size as the pointer type.
    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
        // Transfer the cast to the constant.
        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
                                        TD, DT, MaxRecurse-1))
          return V;
      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
        if (RI->getOperand(0)->getType() == SrcTy)
          // Compare without the cast.
          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
                                          TD, DT, MaxRecurse-1))
            return V;
      }
    }

    if (isa<ZExtInst>(LHS)) {
      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
      // same type.
      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
          // Compare X and Y.  Note that signed predicates become unsigned.
          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
                                          SrcOp, RI->getOperand(0), TD, DT,
                                          MaxRecurse-1))
            return V;
      }
      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
      // too.  If not, then try to deduce the result of the comparison.
      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
        // Compute the constant that would happen if we truncated to SrcTy then
        // reextended to DstTy.
        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);

        // If the re-extended constant didn't change then this is effectively
        // also a case of comparing two zero-extended values.
        if (RExt == CI && MaxRecurse)
          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
                                          SrcOp, Trunc, TD, DT, MaxRecurse-1))
            return V;

        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
        // there.  Use this to work out the result of the comparison.
        if (RExt != CI) {
          switch (Pred) {
          default:
            assert(false && "Unknown ICmp predicate!");
          // LHS <u RHS.
          case ICmpInst::ICMP_EQ:
          case ICmpInst::ICMP_UGT:
          case ICmpInst::ICMP_UGE:
            return ConstantInt::getFalse(CI->getContext());

          case ICmpInst::ICMP_NE:
          case ICmpInst::ICMP_ULT:
          case ICmpInst::ICMP_ULE:
            return ConstantInt::getTrue(CI->getContext());

          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
          // is non-negative then LHS <s RHS.
          case ICmpInst::ICMP_SGT:
          case ICmpInst::ICMP_SGE:
            return CI->getValue().isNegative() ?
              ConstantInt::getTrue(CI->getContext()) :
              ConstantInt::getFalse(CI->getContext());

          case ICmpInst::ICMP_SLT:
          case ICmpInst::ICMP_SLE:
            return CI->getValue().isNegative() ?
              ConstantInt::getFalse(CI->getContext()) :
              ConstantInt::getTrue(CI->getContext());
          }
        }
      }
    }

    if (isa<SExtInst>(LHS)) {
      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
      // same type.
      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
          // Compare X and Y.  Note that the predicate does not change.
          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
                                          TD, DT, MaxRecurse-1))
            return V;
      }
      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
      // too.  If not, then try to deduce the result of the comparison.
      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
        // Compute the constant that would happen if we truncated to SrcTy then
        // reextended to DstTy.
        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);

        // If the re-extended constant didn't change then this is effectively
        // also a case of comparing two sign-extended values.
        if (RExt == CI && MaxRecurse)
          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
                                          MaxRecurse-1))
            return V;

        // Otherwise the upper bits of LHS are all equal, while RHS has varying
        // bits there.  Use this to work out the result of the comparison.
        if (RExt != CI) {
          switch (Pred) {
          default:
            assert(false && "Unknown ICmp predicate!");
          case ICmpInst::ICMP_EQ:
            return ConstantInt::getFalse(CI->getContext());
          case ICmpInst::ICMP_NE:
            return ConstantInt::getTrue(CI->getContext());

          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
          // LHS >s RHS.
          case ICmpInst::ICMP_SGT:
          case ICmpInst::ICMP_SGE:
            return CI->getValue().isNegative() ?
              ConstantInt::getTrue(CI->getContext()) :
              ConstantInt::getFalse(CI->getContext());
          case ICmpInst::ICMP_SLT:
          case ICmpInst::ICMP_SLE:
            return CI->getValue().isNegative() ?
              ConstantInt::getFalse(CI->getContext()) :
              ConstantInt::getTrue(CI->getContext());

          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
          // LHS >u RHS.
          case ICmpInst::ICMP_UGT:
          case ICmpInst::ICMP_UGE:
            // Comparison is true iff the LHS <s 0.
            if (MaxRecurse)
              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
                                              Constant::getNullValue(SrcTy),
                                              TD, DT, MaxRecurse-1))
                return V;
            break;
          case ICmpInst::ICMP_ULT:
          case ICmpInst::ICMP_ULE:
            // Comparison is true iff the LHS >=s 0.
            if (MaxRecurse)
              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
                                              Constant::getNullValue(SrcTy),
                                              TD, DT, MaxRecurse-1))
                return V;
            break;
          }
        }
      }
    }
  }

  // If the comparison is with the result of a select instruction, check whether
  // comparing with either branch of the select always yields the same value.
  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
      return V;

  // If the comparison is with the result of a phi instruction, check whether
  // doing the compare with each incoming phi value yields a common result.
  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
      return V;

  return 0;
}

Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                               const TargetData *TD, const DominatorTree *DT,
                               unsigned MaxRecurse) {
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");

  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);

    // If we have a constant, make sure it is on the RHS.
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }

  // Fold trivial predicates.
  if (Pred == FCmpInst::FCMP_FALSE)
    return ConstantInt::get(GetCompareTy(LHS), 0);
  if (Pred == FCmpInst::FCMP_TRUE)
    return ConstantInt::get(GetCompareTy(LHS), 1);

  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
    return UndefValue::get(GetCompareTy(LHS));

  // fcmp x,x -> true/false.  Not all compares are foldable.
  if (LHS == RHS) {
    if (CmpInst::isTrueWhenEqual(Pred))
      return ConstantInt::get(GetCompareTy(LHS), 1);
    if (CmpInst::isFalseWhenEqual(Pred))
      return ConstantInt::get(GetCompareTy(LHS), 0);
  }

  // Handle fcmp with constant RHS
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    // If the constant is a nan, see if we can fold the comparison based on it.
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
      if (CFP->getValueAPF().isNaN()) {
        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
          return ConstantInt::getFalse(CFP->getContext());
        assert(FCmpInst::isUnordered(Pred) &&
               "Comparison must be either ordered or unordered!");
        // True if unordered.
        return ConstantInt::getTrue(CFP->getContext());
      }
      // Check whether the constant is an infinity.
      if (CFP->getValueAPF().isInfinity()) {
        if (CFP->getValueAPF().isNegative()) {
          switch (Pred) {
          case FCmpInst::FCMP_OLT:
            // No value is ordered and less than negative infinity.
            return ConstantInt::getFalse(CFP->getContext());
          case FCmpInst::FCMP_UGE:
            // All values are unordered with or at least negative infinity.
            return ConstantInt::getTrue(CFP->getContext());
          default:
            break;
          }
        } else {
          switch (Pred) {
          case FCmpInst::FCMP_OGT:
            // No value is ordered and greater than infinity.
            return ConstantInt::getFalse(CFP->getContext());
          case FCmpInst::FCMP_ULE:
            // All values are unordered with and at most infinity.
            return ConstantInt::getTrue(CFP->getContext());
          default:
            break;
          }
        }
      }
    }
  }

  // If the comparison is with the result of a select instruction, check whether
  // comparing with either branch of the select always yields the same value.
  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
      return V;

  // If the comparison is with the result of a phi instruction, check whether
  // doing the compare with each incoming phi value yields a common result.
  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
      return V;

  return 0;
}

Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
/// the result.  If not, this returns null.
Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
                                const TargetData *TD, const DominatorTree *) {
  // select true, X, Y  -> X
  // select false, X, Y -> Y
  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
    return CB->getZExtValue() ? TrueVal : FalseVal;

  // select C, X, X -> X
  if (TrueVal == FalseVal)
    return TrueVal;

  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
    return FalseVal;
  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
    return TrueVal;
  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
    if (isa<Constant>(TrueVal))
      return TrueVal;
    return FalseVal;
  }

  return 0;
}

/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
                             const TargetData *TD, const DominatorTree *) {
  // The type of the GEP pointer operand.
  const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());

  // getelementptr P -> P.
  if (NumOps == 1)
    return Ops[0];

  if (isa<UndefValue>(Ops[0])) {
    // Compute the (pointer) type returned by the GEP instruction.
    const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
                                                             NumOps-1);
    const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
    return UndefValue::get(GEPTy);
  }

  if (NumOps == 2) {
    // getelementptr P, 0 -> P.
    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
      if (C->isZero())
        return Ops[0];
    // getelementptr P, N -> P if P points to a type of zero size.
    if (TD) {
      const Type *Ty = PtrTy->getElementType();
      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
        return Ops[0];
    }
  }

  // Check to see if this is constant foldable.
  for (unsigned i = 0; i != NumOps; ++i)
    if (!isa<Constant>(Ops[i]))
      return 0;

  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
                                        (Constant *const*)Ops+1, NumOps-1);
}

/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
  // If all of the PHI's incoming values are the same then replace the PHI node
  // with the common value.
  Value *CommonValue = 0;
  bool HasUndefInput = false;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = PN->getIncomingValue(i);
    // If the incoming value is the phi node itself, it can safely be skipped.
    if (Incoming == PN) continue;
    if (isa<UndefValue>(Incoming)) {
      // Remember that we saw an undef value, but otherwise ignore them.
      HasUndefInput = true;
      continue;
    }
    if (CommonValue && Incoming != CommonValue)
      return 0;  // Not the same, bail out.
    CommonValue = Incoming;
  }

  // If CommonValue is null then all of the incoming values were either undef or
  // equal to the phi node itself.
  if (!CommonValue)
    return UndefValue::get(PN->getType());

  // If we have a PHI node like phi(X, undef, X), where X is defined by some
  // instruction, we cannot return X as the result of the PHI node unless it
  // dominates the PHI block.
  if (HasUndefInput)
    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;

  return CommonValue;
}


//=== Helper functions for higher up the class hierarchy.

/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                            const TargetData *TD, const DominatorTree *DT,
                            unsigned MaxRecurse) {
  switch (Opcode) {
  case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
                                                /* isNUW */ false, TD, DT,
                                                MaxRecurse);
  case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
                                                /* isNUW */ false, TD, DT,
                                                MaxRecurse);
  case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
  default:
    if (Constant *CLHS = dyn_cast<Constant>(LHS))
      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
        Constant *COps[] = {CLHS, CRHS};
        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
      }

    // If the operation is associative, try some generic simplifications.
    if (Instruction::isAssociative(Opcode))
      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
                                              MaxRecurse))
        return V;

    // If the operation is with the result of a select instruction, check whether
    // operating on either branch of the select always yields the same value.
    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
                                           MaxRecurse))
        return V;

    // If the operation is with the result of a phi instruction, check whether
    // operating on all incoming values of the phi always yields the same value.
    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
        return V;

    return 0;
  }
}

Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                           const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
/// fold the result.
static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD, const DominatorTree *DT,
                              unsigned MaxRecurse) {
  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
}

Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                             const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction.  If not, this returns null.
Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
                                 const DominatorTree *DT) {
  Value *Result;

  switch (I->getOpcode()) {
  default:
    Result = ConstantFoldInstruction(I, TD);
    break;
  case Instruction::Add:
    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
                             TD, DT);
    break;
  case Instruction::Sub:
    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
                             TD, DT);
    break;
  case Instruction::Mul:
    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::SDiv:
    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::UDiv:
    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::FDiv:
    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::Shl:
    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::LShr:
    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::AShr:
    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::And:
    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::Or:
    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::Xor:
    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::ICmp:
    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
                              I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::FCmp:
    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
                              I->getOperand(0), I->getOperand(1), TD, DT);
    break;
  case Instruction::Select:
    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
                                I->getOperand(2), TD, DT);
    break;
  case Instruction::GetElementPtr: {
    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
    Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
    break;
  }
  case Instruction::PHI:
    Result = SimplifyPHINode(cast<PHINode>(I), DT);
    break;
  }

  /// If called on unreachable code, the above logic may report that the
  /// instruction simplified to itself.  Make life easier for users by
  /// detecting that case here, returning a safe value instead.
  return Result == I ? UndefValue::get(I->getType()) : Result;
}

/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
/// delete the From instruction.  In addition to a basic RAUW, this does a
/// recursive simplification of the newly formed instructions.  This catches
/// things where one simplification exposes other opportunities.  This only
/// simplifies and deletes scalar operations, it does not change the CFG.
///
void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
                                     const TargetData *TD,
                                     const DominatorTree *DT) {
  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");

  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
  // we can know if it gets deleted out from under us or replaced in a
  // recursive simplification.
  WeakVH FromHandle(From);
  WeakVH ToHandle(To);

  while (!From->use_empty()) {
    // Update the instruction to use the new value.
    Use &TheUse = From->use_begin().getUse();
    Instruction *User = cast<Instruction>(TheUse.getUser());
    TheUse = To;

    // Check to see if the instruction can be folded due to the operand
    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
    // the 'or' with -1.
    Value *SimplifiedVal;
    {
      // Sanity check to make sure 'User' doesn't dangle across
      // SimplifyInstruction.
      AssertingVH<> UserHandle(User);

      SimplifiedVal = SimplifyInstruction(User, TD, DT);
      if (SimplifiedVal == 0) continue;
    }

    // Recursively simplify this user to the new value.
    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
    To = ToHandle;

    assert(ToHandle && "To value deleted by recursive simplification?");

    // If the recursive simplification ended up revisiting and deleting
    // 'From' then we're done.
    if (From == 0)
      return;
  }

  // If 'From' has value handles referring to it, do a real RAUW to update them.
  From->replaceAllUsesWith(To);

  From->eraseFromParent();
}