aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/InstructionSimplify.cpp
blob: c540d6fd2c03e22ad21f39f470d7025472febdfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for folding instructions into simpler forms
// that do not require creating new instructions.  For example, this does
// constant folding, and can handle identities like (X&0)->0.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
using namespace llvm;
using namespace llvm::PatternMatch;

#define RecursionLimit 3

static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
                            const DominatorTree *, unsigned);
static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
                              const DominatorTree *, unsigned);

/// ValueDominatesPHI - Does the given value dominate the specified phi node?
static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    // Arguments and constants dominate all instructions.
    return true;

  // If we have a DominatorTree then do a precise test.
  if (DT)
    return DT->dominates(I, P);

  // Otherwise, if the instruction is in the entry block, and is not an invoke,
  // then it obviously dominates all phi nodes.
  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
      !isa<InvokeInst>(I))
    return true;

  return false;
}

/// ThreadBinOpOverSelect - In the case of a binary operation with a select
/// instruction as an operand, try to simplify the binop by seeing whether
/// evaluating it on both branches of the select results in the same value.
/// Returns the common value if so, otherwise returns null.
static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
                                    const TargetData *TD,
                                    const DominatorTree *DT,
                                    unsigned MaxRecurse) {
  SelectInst *SI;
  if (isa<SelectInst>(LHS)) {
    SI = cast<SelectInst>(LHS);
  } else {
    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    SI = cast<SelectInst>(RHS);
  }

  // Evaluate the BinOp on the true and false branches of the select.
  Value *TV;
  Value *FV;
  if (SI == LHS) {
    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
  } else {
    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
  }

  // If they simplified to the same value, then return the common value.
  // If they both failed to simplify then return null.
  if (TV == FV)
    return TV;

  // If one branch simplified to undef, return the other one.
  if (TV && isa<UndefValue>(TV))
    return FV;
  if (FV && isa<UndefValue>(FV))
    return TV;

  // If applying the operation did not change the true and false select values,
  // then the result of the binop is the select itself.
  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    return SI;

  // If one branch simplified and the other did not, and the simplified
  // value is equal to the unsimplified one, return the simplified value.
  // For example, select (cond, X, X & Z) & Z -> X & Z.
  if ((FV && !TV) || (TV && !FV)) {
    // Check that the simplified value has the form "X op Y" where "op" is the
    // same as the original operation.
    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    if (Simplified && Simplified->getOpcode() == Opcode) {
      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
      // We already know that "op" is the same as for the simplified value.  See
      // if the operands match too.  If so, return the simplified value.
      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
          Simplified->getOperand(1) == UnsimplifiedRHS)
        return Simplified;
      if (Simplified->isCommutative() &&
          Simplified->getOperand(1) == UnsimplifiedLHS &&
          Simplified->getOperand(0) == UnsimplifiedRHS)
        return Simplified;
    }
  }

  return 0;
}

/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
/// try to simplify the comparison by seeing whether both branches of the select
/// result in the same value.  Returns the common value if so, otherwise returns
/// null.
static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
                                  Value *RHS, const TargetData *TD,
                                  const DominatorTree *DT,
                                  unsigned MaxRecurse) {
  // Make sure the select is on the LHS.
  if (!isa<SelectInst>(LHS)) {
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }
  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
  SelectInst *SI = cast<SelectInst>(LHS);

  // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
  // Does "cmp TV, RHS" simplify?
  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
                                    MaxRecurse))
    // It does!  Does "cmp FV, RHS" simplify?
    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
                                      MaxRecurse))
      // It does!  If they simplified to the same value, then use it as the
      // result of the original comparison.
      if (TCmp == FCmp)
        return TCmp;
  return 0;
}

/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
/// it on the incoming phi values yields the same result for every value.  If so
/// returns the common value, otherwise returns null.
static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
                                 const TargetData *TD, const DominatorTree *DT,
                                 unsigned MaxRecurse) {
  PHINode *PI;
  if (isa<PHINode>(LHS)) {
    PI = cast<PHINode>(LHS);
    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    if (!ValueDominatesPHI(RHS, PI, DT))
      return 0;
  } else {
    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    PI = cast<PHINode>(RHS);
    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    if (!ValueDominatesPHI(LHS, PI, DT))
      return 0;
  }

  // Evaluate the BinOp on the incoming phi values.
  Value *CommonValue = 0;
  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = PI->getIncomingValue(i);
    // If the incoming value is the phi node itself, it can safely be skipped.
    if (Incoming == PI) continue;
    Value *V = PI == LHS ?
      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
    // If the operation failed to simplify, or simplified to a different value
    // to previously, then give up.
    if (!V || (CommonValue && V != CommonValue))
      return 0;
    CommonValue = V;
  }

  return CommonValue;
}

/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
/// try to simplify the comparison by seeing whether comparing with all of the
/// incoming phi values yields the same result every time.  If so returns the
/// common result, otherwise returns null.
static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
                               const TargetData *TD, const DominatorTree *DT,
                               unsigned MaxRecurse) {
  // Make sure the phi is on the LHS.
  if (!isa<PHINode>(LHS)) {
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }
  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
  PHINode *PI = cast<PHINode>(LHS);

  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
  if (!ValueDominatesPHI(RHS, PI, DT))
    return 0;

  // Evaluate the BinOp on the incoming phi values.
  Value *CommonValue = 0;
  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = PI->getIncomingValue(i);
    // If the incoming value is the phi node itself, it can safely be skipped.
    if (Incoming == PI) continue;
    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
    // If the operation failed to simplify, or simplified to a different value
    // to previously, then give up.
    if (!V || (CommonValue && V != CommonValue))
      return 0;
    CommonValue = V;
  }

  return CommonValue;
}

/// SimplifyAddInst - Given operands for an Add, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
                             const TargetData *TD, const DominatorTree *) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
    // X + undef -> undef
    if (isa<UndefValue>(Op1C))
      return Op1C;

    // X + 0 --> X
    if (Op1C->isNullValue())
      return Op0;
  }

  // FIXME: Could pull several more out of instcombine.
  return 0;
}

/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
                              const DominatorTree *DT, unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // X & undef -> 0
  if (isa<UndefValue>(Op1))
    return Constant::getNullValue(Op0->getType());

  // X & X = X
  if (Op0 == Op1)
    return Op0;

  // X & <0,0> = <0,0>
  if (isa<ConstantAggregateZero>(Op1))
    return Op1;

  // X & <-1,-1> = X
  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
    if (CP->isAllOnesValue())
      return Op0;

  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
    // X & 0 = 0
    if (Op1CI->isZero())
      return Op1CI;
    // X & -1 = X
    if (Op1CI->isAllOnesValue())
      return Op0;
  }

  // A & ~A  =  ~A & A  =  0
  Value *A, *B;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getNullValue(Op0->getType());

  // (A | ?) & A = A
  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op1;

  // A & (A | ?) = A
  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op0;

  // (A & B) & A -> A & B
  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op0;

  // A & (A & B) -> A & B
  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op1;

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
                                         MaxRecurse-1))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
                                      MaxRecurse-1))
      return V;

  return 0;
}

Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT) {
  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
}

/// SimplifyOrInst - Given operands for an Or, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
                             const DominatorTree *DT, unsigned MaxRecurse) {
  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
      Constant *Ops[] = { CLHS, CRHS };
      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
                                      Ops, 2, TD);
    }

    // Canonicalize the constant to the RHS.
    std::swap(Op0, Op1);
  }

  // X | undef -> -1
  if (isa<UndefValue>(Op1))
    return Constant::getAllOnesValue(Op0->getType());

  // X | X = X
  if (Op0 == Op1)
    return Op0;

  // X | <0,0> = X
  if (isa<ConstantAggregateZero>(Op1))
    return Op0;

  // X | <-1,-1> = <-1,-1>
  if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1))
    if (CP->isAllOnesValue())
      return Op1;

  if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) {
    // X | 0 = X
    if (Op1CI->isZero())
      return Op0;
    // X | -1 = -1
    if (Op1CI->isAllOnesValue())
      return Op1CI;
  }

  // A | ~A  =  ~A | A  =  -1
  Value *A, *B;
  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
      (match(Op1, m_Not(m_Value(A))) && A == Op0))
    return Constant::getAllOnesValue(Op0->getType());

  // (A & ?) | A = A
  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op1;

  // A | (A & ?) = A
  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op0;

  // (A | B) | A -> A | B
  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op1 || B == Op1))
    return Op0;

  // A | (A | B) -> A | B
  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
      (A == Op0 || B == Op0))
    return Op1;

  // If the operation is with the result of a select instruction, check whether
  // operating on either branch of the select always yields the same value.
  if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
                                         MaxRecurse-1))
      return V;

  // If the operation is with the result of a phi instruction, check whether
  // operating on all incoming values of the phi always yields the same value.
  if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
                                      MaxRecurse-1))
      return V;

  return 0;
}

Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
                            const DominatorTree *DT) {
  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
}

static const Type *GetCompareTy(Value *Op) {
  return CmpInst::makeCmpResultType(Op->getType());
}

/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                               const TargetData *TD, const DominatorTree *DT,
                               unsigned MaxRecurse) {
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");

  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);

    // If we have a constant, make sure it is on the RHS.
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }

  // ITy - This is the return type of the compare we're considering.
  const Type *ITy = GetCompareTy(LHS);

  // icmp X, X -> true/false
  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
  // because X could be 0.
  if (LHS == RHS || isa<UndefValue>(RHS))
    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));

  // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
  // addresses never equal each other!  We already know that Op0 != Op1.
  if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
       isa<ConstantPointerNull>(LHS)) &&
      (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
       isa<ConstantPointerNull>(RHS)))
    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));

  // See if we are doing a comparison with a constant.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    // If we have an icmp le or icmp ge instruction, turn it into the
    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
    // them being folded in the code below.
    switch (Pred) {
    default: break;
    case ICmpInst::ICMP_ULE:
      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_SLE:
      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_UGE:
      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    case ICmpInst::ICMP_SGE:
      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
        return ConstantInt::getTrue(CI->getContext());
      break;
    }
  }

  // If the comparison is with the result of a select instruction, check whether
  // comparing with either branch of the select always yields the same value.
  if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
      return V;

  // If the comparison is with the result of a phi instruction, check whether
  // doing the compare with each incoming phi value yields a common result.
  if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
      return V;

  return 0;
}

Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                               const TargetData *TD, const DominatorTree *DT,
                               unsigned MaxRecurse) {
  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");

  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);

    // If we have a constant, make sure it is on the RHS.
    std::swap(LHS, RHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
  }

  // Fold trivial predicates.
  if (Pred == FCmpInst::FCMP_FALSE)
    return ConstantInt::get(GetCompareTy(LHS), 0);
  if (Pred == FCmpInst::FCMP_TRUE)
    return ConstantInt::get(GetCompareTy(LHS), 1);

  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
    return UndefValue::get(GetCompareTy(LHS));

  // fcmp x,x -> true/false.  Not all compares are foldable.
  if (LHS == RHS) {
    if (CmpInst::isTrueWhenEqual(Pred))
      return ConstantInt::get(GetCompareTy(LHS), 1);
    if (CmpInst::isFalseWhenEqual(Pred))
      return ConstantInt::get(GetCompareTy(LHS), 0);
  }

  // Handle fcmp with constant RHS
  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    // If the constant is a nan, see if we can fold the comparison based on it.
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
      if (CFP->getValueAPF().isNaN()) {
        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
          return ConstantInt::getFalse(CFP->getContext());
        assert(FCmpInst::isUnordered(Pred) &&
               "Comparison must be either ordered or unordered!");
        // True if unordered.
        return ConstantInt::getTrue(CFP->getContext());
      }
      // Check whether the constant is an infinity.
      if (CFP->getValueAPF().isInfinity()) {
        if (CFP->getValueAPF().isNegative()) {
          switch (Pred) {
          case FCmpInst::FCMP_OLT:
            // No value is ordered and less than negative infinity.
            return ConstantInt::getFalse(CFP->getContext());
          case FCmpInst::FCMP_UGE:
            // All values are unordered with or at least negative infinity.
            return ConstantInt::getTrue(CFP->getContext());
          default:
            break;
          }
        } else {
          switch (Pred) {
          case FCmpInst::FCMP_OGT:
            // No value is ordered and greater than infinity.
            return ConstantInt::getFalse(CFP->getContext());
          case FCmpInst::FCMP_ULE:
            // All values are unordered with and at most infinity.
            return ConstantInt::getTrue(CFP->getContext());
          default:
            break;
          }
        }
      }
    }
  }

  // If the comparison is with the result of a select instruction, check whether
  // comparing with either branch of the select always yields the same value.
  if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
      return V;

  // If the comparison is with the result of a phi instruction, check whether
  // doing the compare with each incoming phi value yields a common result.
  if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
      return V;

  return 0;
}

Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
/// the result.  If not, this returns null.
Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
                                const TargetData *TD, const DominatorTree *) {
  // select true, X, Y  -> X
  // select false, X, Y -> Y
  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
    return CB->getZExtValue() ? TrueVal : FalseVal;

  // select C, X, X -> X
  if (TrueVal == FalseVal)
    return TrueVal;

  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
    return FalseVal;
  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
    return TrueVal;
  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
    if (isa<Constant>(TrueVal))
      return TrueVal;
    return FalseVal;
  }

  return 0;
}

/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result.  If not, this returns null.
Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
                             const TargetData *TD, const DominatorTree *) {
  // getelementptr P -> P.
  if (NumOps == 1)
    return Ops[0];

  // TODO.
  //if (isa<UndefValue>(Ops[0]))
  //  return UndefValue::get(GEP.getType());

  // getelementptr P, 0 -> P.
  if (NumOps == 2)
    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
      if (C->isZero())
        return Ops[0];

  // Check to see if this is constant foldable.
  for (unsigned i = 0; i != NumOps; ++i)
    if (!isa<Constant>(Ops[i]))
      return 0;

  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
                                        (Constant *const*)Ops+1, NumOps-1);
}

/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
  // If all of the PHI's incoming values are the same then replace the PHI node
  // with the common value.
  Value *CommonValue = 0;
  bool HasUndefInput = false;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = PN->getIncomingValue(i);
    // If the incoming value is the phi node itself, it can safely be skipped.
    if (Incoming == PN) continue;
    if (isa<UndefValue>(Incoming)) {
      // Remember that we saw an undef value, but otherwise ignore them.
      HasUndefInput = true;
      continue;
    }
    if (CommonValue && Incoming != CommonValue)
      return 0;  // Not the same, bail out.
    CommonValue = Incoming;
  }

  // If CommonValue is null then all of the incoming values were either undef or
  // equal to the phi node itself.
  if (!CommonValue)
    return UndefValue::get(PN->getType());

  // If we have a PHI node like phi(X, undef, X), where X is defined by some
  // instruction, we cannot return X as the result of the PHI node unless it
  // dominates the PHI block.
  if (HasUndefInput)
    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;

  return CommonValue;
}


//=== Helper functions for higher up the class hierarchy.

/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
/// fold the result.  If not, this returns null.
static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                            const TargetData *TD, const DominatorTree *DT,
                            unsigned MaxRecurse) {
  switch (Opcode) {
  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
  default:
    if (Constant *CLHS = dyn_cast<Constant>(LHS))
      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
        Constant *COps[] = {CLHS, CRHS};
        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
      }

    // If the operation is with the result of a select instruction, check whether
    // operating on either branch of the select always yields the same value.
    if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
                                           MaxRecurse-1))
        return V;

    // If the operation is with the result of a phi instruction, check whether
    // operating on all incoming values of the phi always yields the same value.
    if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse-1))
        return V;

    return 0;
  }
}

Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
                           const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
/// fold the result.
static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                              const TargetData *TD, const DominatorTree *DT,
                              unsigned MaxRecurse) {
  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
}

Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
                             const TargetData *TD, const DominatorTree *DT) {
  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
}

/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction.  If not, this returns null.
Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
                                 const DominatorTree *DT) {
  switch (I->getOpcode()) {
  default:
    return ConstantFoldInstruction(I, TD);
  case Instruction::Add:
    return SimplifyAddInst(I->getOperand(0), I->getOperand(1),
                           cast<BinaryOperator>(I)->hasNoSignedWrap(),
                           cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
                           TD, DT);
  case Instruction::And:
    return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
  case Instruction::Or:
    return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
  case Instruction::ICmp:
    return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
                            I->getOperand(0), I->getOperand(1), TD, DT);
  case Instruction::FCmp:
    return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
                            I->getOperand(0), I->getOperand(1), TD, DT);
  case Instruction::Select:
    return SimplifySelectInst(I->getOperand(0), I->getOperand(1),
                              I->getOperand(2), TD, DT);
  case Instruction::GetElementPtr: {
    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
    return SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
  }
  case Instruction::PHI:
    return SimplifyPHINode(cast<PHINode>(I), DT);
  }
}

/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
/// delete the From instruction.  In addition to a basic RAUW, this does a
/// recursive simplification of the newly formed instructions.  This catches
/// things where one simplification exposes other opportunities.  This only
/// simplifies and deletes scalar operations, it does not change the CFG.
///
void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
                                     const TargetData *TD,
                                     const DominatorTree *DT) {
  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");

  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
  // we can know if it gets deleted out from under us or replaced in a
  // recursive simplification.
  WeakVH FromHandle(From);
  WeakVH ToHandle(To);

  while (!From->use_empty()) {
    // Update the instruction to use the new value.
    Use &TheUse = From->use_begin().getUse();
    Instruction *User = cast<Instruction>(TheUse.getUser());
    TheUse = To;

    // Check to see if the instruction can be folded due to the operand
    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
    // the 'or' with -1.
    Value *SimplifiedVal;
    {
      // Sanity check to make sure 'User' doesn't dangle across
      // SimplifyInstruction.
      AssertingVH<> UserHandle(User);

      SimplifiedVal = SimplifyInstruction(User, TD, DT);
      if (SimplifiedVal == 0) continue;
    }

    // Recursively simplify this user to the new value.
    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
    To = ToHandle;

    assert(ToHandle && "To value deleted by recursive simplification?");

    // If the recursive simplification ended up revisiting and deleting
    // 'From' then we're done.
    if (From == 0)
      return;
  }

  // If 'From' has value handles referring to it, do a real RAUW to update them.
  From->replaceAllUsesWith(To);

  From->eraseFromParent();
}