aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/LazyValueInfo.cpp
blob: 9e7da6ce2de9e212d58cb06264928bc0538a0237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "lazy-value-info"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include <map>
#include <set>
#include <stack>
using namespace llvm;

char LazyValueInfo::ID = 0;
INITIALIZE_PASS(LazyValueInfo, "lazy-value-info",
                "Lazy Value Information Analysis", false, true)

namespace llvm {
  FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
}


//===----------------------------------------------------------------------===//
//                               LVILatticeVal
//===----------------------------------------------------------------------===//

/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
/// value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///
namespace {
class LVILatticeVal {
  enum LatticeValueTy {
    /// undefined - This Value has no known value yet.
    undefined,
    
    /// constant - This Value has a specific constant value.
    constant,
    /// notconstant - This Value is known to not have the specified value.
    notconstant,
    
    /// constantrange - The Value falls within this range.
    constantrange,
    
    /// overdefined - This value is not known to be constant, and we know that
    /// it has a value.
    overdefined
  };
  
  /// Val: This stores the current lattice value along with the Constant* for
  /// the constant if this is a 'constant' or 'notconstant' value.
  LatticeValueTy Tag;
  Constant *Val;
  ConstantRange Range;
  
public:
  LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}

  static LVILatticeVal get(Constant *C) {
    LVILatticeVal Res;
    if (!isa<UndefValue>(C))
      Res.markConstant(C);
    return Res;
  }
  static LVILatticeVal getNot(Constant *C) {
    LVILatticeVal Res;
    if (!isa<UndefValue>(C))
      Res.markNotConstant(C);
    return Res;
  }
  static LVILatticeVal getRange(ConstantRange CR) {
    LVILatticeVal Res;
    Res.markConstantRange(CR);
    return Res;
  }
  
  bool isUndefined() const     { return Tag == undefined; }
  bool isConstant() const      { return Tag == constant; }
  bool isNotConstant() const   { return Tag == notconstant; }
  bool isConstantRange() const { return Tag == constantrange; }
  bool isOverdefined() const   { return Tag == overdefined; }
  
  Constant *getConstant() const {
    assert(isConstant() && "Cannot get the constant of a non-constant!");
    return Val;
  }
  
  Constant *getNotConstant() const {
    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    return Val;
  }
  
  ConstantRange getConstantRange() const {
    assert(isConstantRange() &&
           "Cannot get the constant-range of a non-constant-range!");
    return Range;
  }
  
  /// markOverdefined - Return true if this is a change in status.
  bool markOverdefined() {
    if (isOverdefined())
      return false;
    Tag = overdefined;
    return true;
  }

  /// markConstant - Return true if this is a change in status.
  bool markConstant(Constant *V) {
    assert(V && "Marking constant with NULL");
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
      return markConstantRange(ConstantRange(CI->getValue()));
    if (isa<UndefValue>(V))
      return false;

    assert((!isConstant() || getConstant() == V) &&
           "Marking constant with different value");
    assert(isUndefined());
    Tag = constant;
    Val = V;
    return true;
  }
  
  /// markNotConstant - Return true if this is a change in status.
  bool markNotConstant(Constant *V) {
    assert(V && "Marking constant with NULL");
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
      return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    if (isa<UndefValue>(V))
      return false;

    assert((!isConstant() || getConstant() != V) &&
           "Marking constant !constant with same value");
    assert((!isNotConstant() || getNotConstant() == V) &&
           "Marking !constant with different value");
    assert(isUndefined() || isConstant());
    Tag = notconstant;
    Val = V;
    return true;
  }
  
  /// markConstantRange - Return true if this is a change in status.
  bool markConstantRange(const ConstantRange NewR) {
    if (isConstantRange()) {
      if (NewR.isEmptySet())
        return markOverdefined();
      
      bool changed = Range == NewR;
      Range = NewR;
      return changed;
    }
    
    assert(isUndefined());
    if (NewR.isEmptySet())
      return markOverdefined();
    
    Tag = constantrange;
    Range = NewR;
    return true;
  }
  
  /// mergeIn - Merge the specified lattice value into this one, updating this
  /// one and returning true if anything changed.
  bool mergeIn(const LVILatticeVal &RHS) {
    if (RHS.isUndefined() || isOverdefined()) return false;
    if (RHS.isOverdefined()) return markOverdefined();

    if (isUndefined()) {
      Tag = RHS.Tag;
      Val = RHS.Val;
      Range = RHS.Range;
      return true;
    }

    if (isConstant()) {
      if (RHS.isConstant()) {
        if (Val == RHS.Val)
          return false;
        return markOverdefined();
      }

      if (RHS.isNotConstant()) {
        if (Val == RHS.Val)
          return markOverdefined();

        // Unless we can prove that the two Constants are different, we must
        // move to overdefined.
        // FIXME: use TargetData for smarter constant folding.
        if (ConstantInt *Res = dyn_cast<ConstantInt>(
                ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
                                                getConstant(),
                                                RHS.getNotConstant())))
          if (Res->isOne())
            return markNotConstant(RHS.getNotConstant());

        return markOverdefined();
      }

      // RHS is a ConstantRange, LHS is a non-integer Constant.

      // FIXME: consider the case where RHS is a range [1, 0) and LHS is
      // a function. The correct result is to pick up RHS.

      return markOverdefined();
    }

    if (isNotConstant()) {
      if (RHS.isConstant()) {
        if (Val == RHS.Val)
          return markOverdefined();

        // Unless we can prove that the two Constants are different, we must
        // move to overdefined.
        // FIXME: use TargetData for smarter constant folding.
        if (ConstantInt *Res = dyn_cast<ConstantInt>(
                ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
                                                getNotConstant(),
                                                RHS.getConstant())))
          if (Res->isOne())
            return false;

        return markOverdefined();
      }

      if (RHS.isNotConstant()) {
        if (Val == RHS.Val)
          return false;
        return markOverdefined();
      }

      return markOverdefined();
    }

    assert(isConstantRange() && "New LVILattice type?");
    if (!RHS.isConstantRange())
      return markOverdefined();

    ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    if (NewR.isFullSet())
      return markOverdefined();
    return markConstantRange(NewR);
  }
};
  
} // end anonymous namespace.

namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
  if (Val.isUndefined())
    return OS << "undefined";
  if (Val.isOverdefined())
    return OS << "overdefined";

  if (Val.isNotConstant())
    return OS << "notconstant<" << *Val.getNotConstant() << '>';
  else if (Val.isConstantRange())
    return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
              << Val.getConstantRange().getUpper() << '>';
  return OS << "constant<" << *Val.getConstant() << '>';
}
}

//===----------------------------------------------------------------------===//
//                          LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//

namespace {
  /// LVIValueHandle - A callback value handle update the cache when
  /// values are erased.
  class LazyValueInfoCache;
  struct LVIValueHandle : public CallbackVH {
    LazyValueInfoCache *Parent;
      
    LVIValueHandle(Value *V, LazyValueInfoCache *P)
      : CallbackVH(V), Parent(P) { }
      
    void deleted();
    void allUsesReplacedWith(Value *V) {
      deleted();
    }
  };
}

namespace llvm {
  template<>
  struct DenseMapInfo<LVIValueHandle> {
    typedef DenseMapInfo<Value*> PointerInfo;
    static inline LVIValueHandle getEmptyKey() {
      return LVIValueHandle(PointerInfo::getEmptyKey(),
                            static_cast<LazyValueInfoCache*>(0));
    }
    static inline LVIValueHandle getTombstoneKey() {
      return LVIValueHandle(PointerInfo::getTombstoneKey(),
                            static_cast<LazyValueInfoCache*>(0));
    }
    static unsigned getHashValue(const LVIValueHandle &Val) {
      return PointerInfo::getHashValue(Val);
    }
    static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) {
      return LHS == RHS;
    }
  };
  
  template<>
  struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > {
    typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy;
    typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo;
    typedef DenseMapInfo<Value*> BPointerInfo;
    static inline PairTy getEmptyKey() {
      return std::make_pair(APointerInfo::getEmptyKey(),
                            BPointerInfo::getEmptyKey());
    }
    static inline PairTy getTombstoneKey() {
      return std::make_pair(APointerInfo::getTombstoneKey(), 
                            BPointerInfo::getTombstoneKey());
    }
    static unsigned getHashValue( const PairTy &Val) {
      return APointerInfo::getHashValue(Val.first) ^ 
             BPointerInfo::getHashValue(Val.second);
    }
    static bool isEqual(const PairTy &LHS, const PairTy &RHS) {
      return APointerInfo::isEqual(LHS.first, RHS.first) &&
             BPointerInfo::isEqual(LHS.second, RHS.second);
    }
  };
}

namespace { 
  /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
  /// maintains information about queries across the clients' queries.
  class LazyValueInfoCache {
    /// ValueCacheEntryTy - This is all of the cached block information for
    /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
    /// entries, allowing us to do a lookup with a binary search.
    typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;

    /// ValueCache - This is all of the cached information for all values,
    /// mapped from Value* to key information.
    DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    
    /// OverDefinedCache - This tracks, on a per-block basis, the set of 
    /// values that are over-defined at the end of that block.  This is required
    /// for cache updating.
    typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    DenseSet<OverDefinedPairTy> OverDefinedCache;
    
    /// BlockValueStack - This stack holds the state of the value solver
    /// during a query.  It basically emulates the callstack of the naive
    /// recursive value lookup process.
    std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    
    friend struct LVIValueHandle;
    
    /// OverDefinedCacheUpdater - A helper object that ensures that the
    /// OverDefinedCache is updated whenever solveBlockValue returns.
    struct OverDefinedCacheUpdater {
      LazyValueInfoCache *Parent;
      Value *Val;
      BasicBlock *BB;
      LVILatticeVal &BBLV;
      
      OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
                       LazyValueInfoCache *P)
        : Parent(P), Val(V), BB(B), BBLV(LV) { }
      
      bool markResult(bool changed) { 
        if (changed && BBLV.isOverdefined())
          Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
        return changed;
      }
    };
    


    LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
                      LVILatticeVal &Result);
    bool hasBlockValue(Value *Val, BasicBlock *BB);

    // These methods process one work item and may add more. A false value
    // returned means that the work item was not completely processed and must
    // be revisited after going through the new items.
    bool solveBlockValue(Value *Val, BasicBlock *BB);
    bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
                                 Value *Val, BasicBlock *BB);
    bool solveBlockValuePHINode(LVILatticeVal &BBLV,
                                PHINode *PN, BasicBlock *BB);
    bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
                                      Instruction *BBI, BasicBlock *BB);

    void solve();
    
    ValueCacheEntryTy &lookup(Value *V) {
      return ValueCache[LVIValueHandle(V, this)];
    }

  public:
    /// getValueInBlock - This is the query interface to determine the lattice
    /// value for the specified Value* at the end of the specified block.
    LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);

    /// getValueOnEdge - This is the query interface to determine the lattice
    /// value for the specified Value* that is true on the specified edge.
    LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
    
    /// threadEdge - This is the update interface to inform the cache that an
    /// edge from PredBB to OldSucc has been threaded to be from PredBB to
    /// NewSucc.
    void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    
    /// eraseBlock - This is part of the update interface to inform the cache
    /// that a block has been deleted.
    void eraseBlock(BasicBlock *BB);
    
    /// clear - Empty the cache.
    void clear() {
      ValueCache.clear();
      OverDefinedCache.clear();
    }
  };
} // end anonymous namespace

void LVIValueHandle::deleted() {
  typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
  
  SmallVector<OverDefinedPairTy, 4> ToErase;
  for (DenseSet<OverDefinedPairTy>::iterator 
       I = Parent->OverDefinedCache.begin(),
       E = Parent->OverDefinedCache.end();
       I != E; ++I) {
    if (I->second == getValPtr())
      ToErase.push_back(*I);
  }
  
  for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
       E = ToErase.end(); I != E; ++I)
    Parent->OverDefinedCache.erase(*I);
  
  // This erasure deallocates *this, so it MUST happen after we're done
  // using any and all members of *this.
  Parent->ValueCache.erase(*this);
}

void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
  SmallVector<OverDefinedPairTy, 4> ToErase;
  for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
       E = OverDefinedCache.end(); I != E; ++I) {
    if (I->first == BB)
      ToErase.push_back(*I);
  }
  
  for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
       E = ToErase.end(); I != E; ++I)
    OverDefinedCache.erase(*I);

  for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator
       I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    I->second.erase(BB);
}

void LazyValueInfoCache::solve() {
  while (!BlockValueStack.empty()) {
    std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    if (solveBlockValue(e.second, e.first))
      BlockValueStack.pop();
  }
}

bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
  // If already a constant, there is nothing to compute.
  if (isa<Constant>(Val))
    return true;

  LVIValueHandle ValHandle(Val, this);
  if (!ValueCache.count(ValHandle)) return false;
  return ValueCache[ValHandle].count(BB);
}

LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
  // If already a constant, there is nothing to compute.
  if (Constant *VC = dyn_cast<Constant>(Val))
    return LVILatticeVal::get(VC);

  return lookup(Val)[BB];
}

bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
  if (isa<Constant>(Val))
    return true;

  ValueCacheEntryTy &Cache = lookup(Val);
  LVILatticeVal &BBLV = Cache[BB];
  
  // OverDefinedCacheUpdater is a helper object that will update
  // the OverDefinedCache for us when this method exits.  Make sure to
  // call markResult on it as we exist, passing a bool to indicate if the
  // cache needs updating, i.e. if we have solve a new value or not.
  OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);

  // If we've already computed this block's value, return it.
  if (!BBLV.isUndefined()) {
    DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
    
    // Since we're reusing a cached value here, we don't need to update the 
    // OverDefinedCahce.  The cache will have been properly updated 
    // whenever the cached value was inserted.
    ODCacheUpdater.markResult(false);
    return true;
  }

  // Otherwise, this is the first time we're seeing this block.  Reset the
  // lattice value to overdefined, so that cycles will terminate and be
  // conservatively correct.
  BBLV.markOverdefined();
  
  Instruction *BBI = dyn_cast<Instruction>(Val);
  if (BBI == 0 || BBI->getParent() != BB) {
    return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
  }

  if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
  }

  if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
    BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
    return ODCacheUpdater.markResult(true);
  }

  // We can only analyze the definitions of certain classes of instructions
  // (integral binops and casts at the moment), so bail if this isn't one.
  LVILatticeVal Result;
  if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
     !BBI->getType()->isIntegerTy()) {
    DEBUG(dbgs() << " compute BB '" << BB->getName()
                 << "' - overdefined because inst def found.\n");
    BBLV.markOverdefined();
    return ODCacheUpdater.markResult(true);
  }

  // FIXME: We're currently limited to binops with a constant RHS.  This should
  // be improved.
  BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
  if (BO && !isa<ConstantInt>(BO->getOperand(1))) { 
    DEBUG(dbgs() << " compute BB '" << BB->getName()
                 << "' - overdefined because inst def found.\n");

    BBLV.markOverdefined();
    return ODCacheUpdater.markResult(true);
  }

  return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
}

static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    return L->getPointerAddressSpace() == 0 &&
        GetUnderlyingObject(L->getPointerOperand()) ==
        GetUnderlyingObject(Ptr);
  }
  if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    return S->getPointerAddressSpace() == 0 &&
        GetUnderlyingObject(S->getPointerOperand()) ==
        GetUnderlyingObject(Ptr);
  }
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    if (MI->isVolatile()) return false;
    if (MI->getAddressSpace() != 0) return false;

    // FIXME: check whether it has a valuerange that excludes zero?
    ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    if (!Len || Len->isZero()) return false;

    if (MI->getRawDest() == Ptr || MI->getDest() == Ptr)
      return true;
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
      return MTI->getRawSource() == Ptr || MTI->getSource() == Ptr;
  }
  return false;
}

bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
                                                 Value *Val, BasicBlock *BB) {
  LVILatticeVal Result;  // Start Undefined.

  // If this is a pointer, and there's a load from that pointer in this BB,
  // then we know that the pointer can't be NULL.
  bool NotNull = false;
  if (Val->getType()->isPointerTy()) {
    if (isa<AllocaInst>(Val)) {
      NotNull = true;
    } else {
      for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
        if (InstructionDereferencesPointer(BI, Val)) {
          NotNull = true;
          break;
        }
      }
    }
  }

  // If this is the entry block, we must be asking about an argument.  The
  // value is overdefined.
  if (BB == &BB->getParent()->getEntryBlock()) {
    assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    if (NotNull) {
      const PointerType *PTy = cast<PointerType>(Val->getType());
      Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    } else {
      Result.markOverdefined();
    }
    BBLV = Result;
    return true;
  }

  // Loop over all of our predecessors, merging what we know from them into
  // result.
  bool EdgesMissing = false;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    LVILatticeVal EdgeResult;
    EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    if (EdgesMissing)
      continue;

    Result.mergeIn(EdgeResult);

    // If we hit overdefined, exit early.  The BlockVals entry is already set
    // to overdefined.
    if (Result.isOverdefined()) {
      DEBUG(dbgs() << " compute BB '" << BB->getName()
            << "' - overdefined because of pred.\n");
      // If we previously determined that this is a pointer that can't be null
      // then return that rather than giving up entirely.
      if (NotNull) {
        const PointerType *PTy = cast<PointerType>(Val->getType());
        Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
      }
      
      BBLV = Result;
      return true;
    }
  }
  if (EdgesMissing)
    return false;

  // Return the merged value, which is more precise than 'overdefined'.
  assert(!Result.isOverdefined());
  BBLV = Result;
  return true;
}
  
bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
                                                PHINode *PN, BasicBlock *BB) {
  LVILatticeVal Result;  // Start Undefined.

  // Loop over all of our predecessors, merging what we know from them into
  // result.
  bool EdgesMissing = false;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *PhiBB = PN->getIncomingBlock(i);
    Value *PhiVal = PN->getIncomingValue(i);
    LVILatticeVal EdgeResult;
    EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
    if (EdgesMissing)
      continue;

    Result.mergeIn(EdgeResult);

    // If we hit overdefined, exit early.  The BlockVals entry is already set
    // to overdefined.
    if (Result.isOverdefined()) {
      DEBUG(dbgs() << " compute BB '" << BB->getName()
            << "' - overdefined because of pred.\n");
      
      BBLV = Result;
      return true;
    }
  }
  if (EdgesMissing)
    return false;

  // Return the merged value, which is more precise than 'overdefined'.
  assert(!Result.isOverdefined() && "Possible PHI in entry block?");
  BBLV = Result;
  return true;
}

bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
                                                      Instruction *BBI,
                                                      BasicBlock *BB) {
  // Figure out the range of the LHS.  If that fails, bail.
  if (!hasBlockValue(BBI->getOperand(0), BB)) {
    BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
    return false;
  }

  LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
  if (!LHSVal.isConstantRange()) {
    BBLV.markOverdefined();
    return true;
  }
  
  ConstantRange LHSRange = LHSVal.getConstantRange();
  ConstantRange RHSRange(1);
  const IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
  if (isa<BinaryOperator>(BBI)) {
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
      RHSRange = ConstantRange(RHS->getValue());
    } else {
      BBLV.markOverdefined();
      return true;
    }
  }

  // NOTE: We're currently limited by the set of operations that ConstantRange
  // can evaluate symbolically.  Enhancing that set will allows us to analyze
  // more definitions.
  LVILatticeVal Result;
  switch (BBI->getOpcode()) {
  case Instruction::Add:
    Result.markConstantRange(LHSRange.add(RHSRange));
    break;
  case Instruction::Sub:
    Result.markConstantRange(LHSRange.sub(RHSRange));
    break;
  case Instruction::Mul:
    Result.markConstantRange(LHSRange.multiply(RHSRange));
    break;
  case Instruction::UDiv:
    Result.markConstantRange(LHSRange.udiv(RHSRange));
    break;
  case Instruction::Shl:
    Result.markConstantRange(LHSRange.shl(RHSRange));
    break;
  case Instruction::LShr:
    Result.markConstantRange(LHSRange.lshr(RHSRange));
    break;
  case Instruction::Trunc:
    Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    break;
  case Instruction::SExt:
    Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    break;
  case Instruction::ZExt:
    Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    break;
  case Instruction::BitCast:
    Result.markConstantRange(LHSRange);
    break;
  case Instruction::And:
    Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    break;
  case Instruction::Or:
    Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    break;
  
  // Unhandled instructions are overdefined.
  default:
    DEBUG(dbgs() << " compute BB '" << BB->getName()
                 << "' - overdefined because inst def found.\n");
    Result.markOverdefined();
    break;
  }
  
  BBLV = Result;
  return true;
}

/// getEdgeValue - This method attempts to infer more complex 
bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
                                      BasicBlock *BBTo, LVILatticeVal &Result) {
  // If already a constant, there is nothing to compute.
  if (Constant *VC = dyn_cast<Constant>(Val)) {
    Result = LVILatticeVal::get(VC);
    return true;
  }
  
  // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
  // know that v != 0.
  if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    // If this is a conditional branch and only one successor goes to BBTo, then
    // we maybe able to infer something from the condition. 
    if (BI->isConditional() &&
        BI->getSuccessor(0) != BI->getSuccessor(1)) {
      bool isTrueDest = BI->getSuccessor(0) == BBTo;
      assert(BI->getSuccessor(!isTrueDest) == BBTo &&
             "BBTo isn't a successor of BBFrom");
      
      // If V is the condition of the branch itself, then we know exactly what
      // it is.
      if (BI->getCondition() == Val) {
        Result = LVILatticeVal::get(ConstantInt::get(
                              Type::getInt1Ty(Val->getContext()), isTrueDest));
        return true;
      }
      
      // If the condition of the branch is an equality comparison, we may be
      // able to infer the value.
      ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
      if (ICI && ICI->getOperand(0) == Val &&
          isa<Constant>(ICI->getOperand(1))) {
        if (ICI->isEquality()) {
          // We know that V has the RHS constant if this is a true SETEQ or
          // false SETNE. 
          if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
            Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
          else
            Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
          return true;
        }

        if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
          // Calculate the range of values that would satisfy the comparison.
          ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
          ConstantRange TrueValues =
            ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);

          // If we're interested in the false dest, invert the condition.
          if (!isTrueDest) TrueValues = TrueValues.inverse();
          
          // Figure out the possible values of the query BEFORE this branch.  
          if (!hasBlockValue(Val, BBFrom)) {
            BlockValueStack.push(std::make_pair(BBFrom, Val));
            return false;
          }
          
          LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
          if (!InBlock.isConstantRange()) {
            Result = LVILatticeVal::getRange(TrueValues);
            return true;
          }

          // Find all potential values that satisfy both the input and output
          // conditions.
          ConstantRange PossibleValues =
            TrueValues.intersectWith(InBlock.getConstantRange());

          Result = LVILatticeVal::getRange(PossibleValues);
          return true;
        }
      }
    }
  }

  // If the edge was formed by a switch on the value, then we may know exactly
  // what it is.
  if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    if (SI->getCondition() == Val) {
      // We don't know anything in the default case.
      if (SI->getDefaultDest() == BBTo) {
        Result.markOverdefined();
        return true;
      }
      
      // We only know something if there is exactly one value that goes from
      // BBFrom to BBTo.
      unsigned NumEdges = 0;
      ConstantInt *EdgeVal = 0;
      for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
        if (SI->getSuccessor(i) != BBTo) continue;
        if (NumEdges++) break;
        EdgeVal = SI->getCaseValue(i);
      }
      assert(EdgeVal && "Missing successor?");
      if (NumEdges == 1) {
        Result = LVILatticeVal::get(EdgeVal);
        return true;
      }
    }
  }
  
  // Otherwise see if the value is known in the block.
  if (hasBlockValue(Val, BBFrom)) {
    Result = getBlockValue(Val, BBFrom);
    return true;
  }
  BlockValueStack.push(std::make_pair(BBFrom, Val));
  return false;
}

LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
  DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
        << BB->getName() << "'\n");
  
  BlockValueStack.push(std::make_pair(BB, V));
  solve();
  LVILatticeVal Result = getBlockValue(V, BB);

  DEBUG(dbgs() << "  Result = " << Result << "\n");
  return Result;
}

LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
  DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
        << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
  
  LVILatticeVal Result;
  if (!getEdgeValue(V, FromBB, ToBB, Result)) {
    solve();
    bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
    (void)WasFastQuery;
    assert(WasFastQuery && "More work to do after problem solved?");
  }

  DEBUG(dbgs() << "  Result = " << Result << "\n");
  return Result;
}

void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
                                    BasicBlock *NewSucc) {
  // When an edge in the graph has been threaded, values that we could not 
  // determine a value for before (i.e. were marked overdefined) may be possible
  // to solve now.  We do NOT try to proactively update these values.  Instead,
  // we clear their entries from the cache, and allow lazy updating to recompute
  // them when needed.
  
  // The updating process is fairly simple: we need to dropped cached info
  // for all values that were marked overdefined in OldSucc, and for those same
  // values in any successor of OldSucc (except NewSucc) in which they were
  // also marked overdefined.
  std::vector<BasicBlock*> worklist;
  worklist.push_back(OldSucc);
  
  DenseSet<Value*> ClearSet;
  for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
       E = OverDefinedCache.end(); I != E; ++I) {
    if (I->first == OldSucc)
      ClearSet.insert(I->second);
  }
  
  // Use a worklist to perform a depth-first search of OldSucc's successors.
  // NOTE: We do not need a visited list since any blocks we have already
  // visited will have had their overdefined markers cleared already, and we
  // thus won't loop to their successors.
  while (!worklist.empty()) {
    BasicBlock *ToUpdate = worklist.back();
    worklist.pop_back();
    
    // Skip blocks only accessible through NewSucc.
    if (ToUpdate == NewSucc) continue;
    
    bool changed = false;
    for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
         I != E; ++I) {
      // If a value was marked overdefined in OldSucc, and is here too...
      DenseSet<OverDefinedPairTy>::iterator OI =
        OverDefinedCache.find(std::make_pair(ToUpdate, *I));
      if (OI == OverDefinedCache.end()) continue;

      // Remove it from the caches.
      ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
      ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);

      assert(CI != Entry.end() && "Couldn't find entry to update?");
      Entry.erase(CI);
      OverDefinedCache.erase(OI);

      // If we removed anything, then we potentially need to update 
      // blocks successors too.
      changed = true;
    }

    if (!changed) continue;
    
    worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
  }
}

//===----------------------------------------------------------------------===//
//                            LazyValueInfo Impl
//===----------------------------------------------------------------------===//

/// getCache - This lazily constructs the LazyValueInfoCache.
static LazyValueInfoCache &getCache(void *&PImpl) {
  if (!PImpl)
    PImpl = new LazyValueInfoCache();
  return *static_cast<LazyValueInfoCache*>(PImpl);
}

bool LazyValueInfo::runOnFunction(Function &F) {
  if (PImpl)
    getCache(PImpl).clear();
  
  TD = getAnalysisIfAvailable<TargetData>();
  // Fully lazy.
  return false;
}

void LazyValueInfo::releaseMemory() {
  // If the cache was allocated, free it.
  if (PImpl) {
    delete &getCache(PImpl);
    PImpl = 0;
  }
}

Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
  LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
  
  if (Result.isConstant())
    return Result.getConstant();
  if (Result.isConstantRange()) {
    ConstantRange CR = Result.getConstantRange();
    if (const APInt *SingleVal = CR.getSingleElement())
      return ConstantInt::get(V->getContext(), *SingleVal);
  }
  return 0;
}

/// getConstantOnEdge - Determine whether the specified value is known to be a
/// constant on the specified edge.  Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
                                           BasicBlock *ToBB) {
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
  
  if (Result.isConstant())
    return Result.getConstant();
  if (Result.isConstantRange()) {
    ConstantRange CR = Result.getConstantRange();
    if (const APInt *SingleVal = CR.getSingleElement())
      return ConstantInt::get(V->getContext(), *SingleVal);
  }
  return 0;
}

/// getPredicateOnEdge - Determine whether the specified value comparison
/// with a constant is known to be true or false on the specified CFG edge.
/// Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
                                  BasicBlock *FromBB, BasicBlock *ToBB) {
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
  
  // If we know the value is a constant, evaluate the conditional.
  Constant *Res = 0;
  if (Result.isConstant()) {
    Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
    if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
      return ResCI->isZero() ? False : True;
    return Unknown;
  }
  
  if (Result.isConstantRange()) {
    ConstantInt *CI = dyn_cast<ConstantInt>(C);
    if (!CI) return Unknown;
    
    ConstantRange CR = Result.getConstantRange();
    if (Pred == ICmpInst::ICMP_EQ) {
      if (!CR.contains(CI->getValue()))
        return False;
      
      if (CR.isSingleElement() && CR.contains(CI->getValue()))
        return True;
    } else if (Pred == ICmpInst::ICMP_NE) {
      if (!CR.contains(CI->getValue()))
        return True;
      
      if (CR.isSingleElement() && CR.contains(CI->getValue()))
        return False;
    }
    
    // Handle more complex predicates.
    ConstantRange TrueValues =
        ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
    if (TrueValues.contains(CR))
      return True;
    if (TrueValues.inverse().contains(CR))
      return False;
    return Unknown;
  }
  
  if (Result.isNotConstant()) {
    // If this is an equality comparison, we can try to fold it knowing that
    // "V != C1".
    if (Pred == ICmpInst::ICMP_EQ) {
      // !C1 == C -> false iff C1 == C.
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
                                            Result.getNotConstant(), C, TD);
      if (Res->isNullValue())
        return False;
    } else if (Pred == ICmpInst::ICMP_NE) {
      // !C1 != C -> true iff C1 == C.
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
                                            Result.getNotConstant(), C, TD);
      if (Res->isNullValue())
        return True;
    }
    return Unknown;
  }
  
  return Unknown;
}

void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
                               BasicBlock *NewSucc) {
  if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
}

void LazyValueInfo::eraseBlock(BasicBlock *BB) {
  if (PImpl) getCache(PImpl).eraseBlock(BB);
}