aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/Lint.cpp
blob: 65a90d7bcd8748eb0ea691ab4cc4441fb85b7d21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass statically checks for common and easily-identified constructs
// which produce undefined or likely unintended behavior in LLVM IR.
//
// It is not a guarantee of correctness, in two ways. First, it isn't
// comprehensive. There are checks which could be done statically which are
// not yet implemented. Some of these are indicated by TODO comments, but
// those aren't comprehensive either. Second, many conditions cannot be
// checked statically. This pass does no dynamic instrumentation, so it
// can't check for all possible problems.
//
// Another limitation is that it assumes all code will be executed. A store
// through a null pointer in a basic block which is never reached is harmless,
// but this pass will warn about it anyway. This is the main reason why most
// of these checks live here instead of in the Verifier pass.
//
// Optimization passes may make conditions that this pass checks for more or
// less obvious. If an optimization pass appears to be introducing a warning,
// it may be that the optimization pass is merely exposing an existing
// condition in the code.
//
// This code may be run before instcombine. In many cases, instcombine checks
// for the same kinds of things and turns instructions with undefined behavior
// into unreachable (or equivalent). Because of this, this pass makes some
// effort to look through bitcasts and so on.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Lint.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
  namespace MemRef {
    static const unsigned Read     = 1;
    static const unsigned Write    = 2;
    static const unsigned Callee   = 4;
    static const unsigned Branchee = 8;
  }

  class Lint : public FunctionPass, public InstVisitor<Lint> {
    friend class InstVisitor<Lint>;

    void visitFunction(Function &F);

    void visitCallSite(CallSite CS);
    void visitMemoryReference(Instruction &I, Value *Ptr,
                              uint64_t Size, unsigned Align,
                              Type *Ty, unsigned Flags);
    void visitEHBeginCatch(IntrinsicInst *II);
    void visitEHEndCatch(IntrinsicInst *II);

    void visitCallInst(CallInst &I);
    void visitInvokeInst(InvokeInst &I);
    void visitReturnInst(ReturnInst &I);
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitXor(BinaryOperator &I);
    void visitSub(BinaryOperator &I);
    void visitLShr(BinaryOperator &I);
    void visitAShr(BinaryOperator &I);
    void visitShl(BinaryOperator &I);
    void visitSDiv(BinaryOperator &I);
    void visitUDiv(BinaryOperator &I);
    void visitSRem(BinaryOperator &I);
    void visitURem(BinaryOperator &I);
    void visitAllocaInst(AllocaInst &I);
    void visitVAArgInst(VAArgInst &I);
    void visitIndirectBrInst(IndirectBrInst &I);
    void visitExtractElementInst(ExtractElementInst &I);
    void visitInsertElementInst(InsertElementInst &I);
    void visitUnreachableInst(UnreachableInst &I);

    Value *findValue(Value *V, const DataLayout &DL, bool OffsetOk) const;
    Value *findValueImpl(Value *V, const DataLayout &DL, bool OffsetOk,
                         SmallPtrSetImpl<Value *> &Visited) const;

  public:
    Module *Mod;
    AliasAnalysis *AA;
    AssumptionCache *AC;
    DominatorTree *DT;
    TargetLibraryInfo *TLI;

    std::string Messages;
    raw_string_ostream MessagesStr;

    static char ID; // Pass identification, replacement for typeid
    Lint() : FunctionPass(ID), MessagesStr(Messages) {
      initializeLintPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<DominatorTreeWrapperPass>();
    }
    void print(raw_ostream &O, const Module *M) const override {}

    void WriteValues(ArrayRef<const Value *> Vs) {
      for (const Value *V : Vs) {
        if (!V)
          continue;
        if (isa<Instruction>(V)) {
          MessagesStr << *V << '\n';
        } else {
          V->printAsOperand(MessagesStr, true, Mod);
          MessagesStr << '\n';
        }
      }
    }

    /// \brief A check failed, so printout out the condition and the message.
    ///
    /// This provides a nice place to put a breakpoint if you want to see why
    /// something is not correct.
    void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }

    /// \brief A check failed (with values to print).
    ///
    /// This calls the Message-only version so that the above is easier to set
    /// a breakpoint on.
    template <typename T1, typename... Ts>
    void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
      CheckFailed(Message);
      WriteValues({V1, Vs...});
    }
  };
}

char Lint::ID = 0;
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
                      false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
                    false, true)

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
    do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)

// Lint::run - This is the main Analysis entry point for a
// function.
//
bool Lint::runOnFunction(Function &F) {
  Mod = F.getParent();
  AA = &getAnalysis<AliasAnalysis>();
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  visit(F);
  dbgs() << MessagesStr.str();
  Messages.clear();
  return false;
}

void Lint::visitFunction(Function &F) {
  // This isn't undefined behavior, it's just a little unusual, and it's a
  // fairly common mistake to neglect to name a function.
  Assert(F.hasName() || F.hasLocalLinkage(),
         "Unusual: Unnamed function with non-local linkage", &F);

  // TODO: Check for irreducible control flow.
}

void Lint::visitCallSite(CallSite CS) {
  Instruction &I = *CS.getInstruction();
  Value *Callee = CS.getCalledValue();
  const DataLayout &DL = CS->getModule()->getDataLayout();

  visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
                       0, nullptr, MemRef::Callee);

  if (Function *F = dyn_cast<Function>(findValue(Callee, DL,
                                                 /*OffsetOk=*/false))) {
    Assert(CS.getCallingConv() == F->getCallingConv(),
           "Undefined behavior: Caller and callee calling convention differ",
           &I);

    FunctionType *FT = F->getFunctionType();
    unsigned NumActualArgs = CS.arg_size();

    Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
                          : FT->getNumParams() == NumActualArgs,
           "Undefined behavior: Call argument count mismatches callee "
           "argument count",
           &I);

    Assert(FT->getReturnType() == I.getType(),
           "Undefined behavior: Call return type mismatches "
           "callee return type",
           &I);

    // Check argument types (in case the callee was casted) and attributes.
    // TODO: Verify that caller and callee attributes are compatible.
    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    for (; AI != AE; ++AI) {
      Value *Actual = *AI;
      if (PI != PE) {
        Argument *Formal = PI++;
        Assert(Formal->getType() == Actual->getType(),
               "Undefined behavior: Call argument type mismatches "
               "callee parameter type",
               &I);

        // Check that noalias arguments don't alias other arguments. This is
        // not fully precise because we don't know the sizes of the dereferenced
        // memory regions.
        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
            if (AI != BI && (*BI)->getType()->isPointerTy()) {
              AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
              Assert(Result != AliasAnalysis::MustAlias &&
                         Result != AliasAnalysis::PartialAlias,
                     "Unusual: noalias argument aliases another argument", &I);
            }

        // Check that an sret argument points to valid memory.
        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
          Type *Ty =
            cast<PointerType>(Formal->getType())->getElementType();
          visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
                               DL.getABITypeAlignment(Ty), Ty,
                               MemRef::Read | MemRef::Write);
        }
      }
    }
  }

  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
    for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
         AI != AE; ++AI) {
      Value *Obj = findValue(*AI, DL, /*OffsetOk=*/true);
      Assert(!isa<AllocaInst>(Obj),
             "Undefined behavior: Call with \"tail\" keyword references "
             "alloca",
             &I);
    }


  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    switch (II->getIntrinsicID()) {
    default: break;

    // TODO: Check more intrinsics

    case Intrinsic::memcpy: {
      MemCpyInst *MCI = cast<MemCpyInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
                           MCI->getAlignment(), nullptr,
                           MemRef::Write);
      visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
                           MCI->getAlignment(), nullptr,
                           MemRef::Read);

      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
      // isn't expressive enough for what we really want to do. Known partial
      // overlap is not distinguished from the case where nothing is known.
      uint64_t Size = 0;
      if (const ConstantInt *Len =
              dyn_cast<ConstantInt>(findValue(MCI->getLength(), DL,
                                              /*OffsetOk=*/false)))
        if (Len->getValue().isIntN(32))
          Size = Len->getValue().getZExtValue();
      Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
                 AliasAnalysis::MustAlias,
             "Undefined behavior: memcpy source and destination overlap", &I);
      break;
    }
    case Intrinsic::memmove: {
      MemMoveInst *MMI = cast<MemMoveInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
                           MMI->getAlignment(), nullptr,
                           MemRef::Write);
      visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
                           MMI->getAlignment(), nullptr,
                           MemRef::Read);
      break;
    }
    case Intrinsic::memset: {
      MemSetInst *MSI = cast<MemSetInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
                           MSI->getAlignment(), nullptr,
                           MemRef::Write);
      break;
    }

    case Intrinsic::vastart:
      Assert(I.getParent()->getParent()->isVarArg(),
             "Undefined behavior: va_start called in a non-varargs function",
             &I);

      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, nullptr, MemRef::Read | MemRef::Write);
      break;
    case Intrinsic::vacopy:
      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, nullptr, MemRef::Write);
      visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
                           0, nullptr, MemRef::Read);
      break;
    case Intrinsic::vaend:
      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, nullptr, MemRef::Read | MemRef::Write);
      break;

    case Intrinsic::stackrestore:
      // Stackrestore doesn't read or write memory, but it sets the
      // stack pointer, which the compiler may read from or write to
      // at any time, so check it for both readability and writeability.
      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, nullptr, MemRef::Read | MemRef::Write);
      break;

    case Intrinsic::eh_begincatch:
      visitEHBeginCatch(II);
      break;
    case Intrinsic::eh_endcatch:
      visitEHEndCatch(II);
      break;
    }
}

void Lint::visitCallInst(CallInst &I) {
  return visitCallSite(&I);
}

void Lint::visitInvokeInst(InvokeInst &I) {
  return visitCallSite(&I);
}

void Lint::visitReturnInst(ReturnInst &I) {
  Function *F = I.getParent()->getParent();
  Assert(!F->doesNotReturn(),
         "Unusual: Return statement in function with noreturn attribute", &I);

  if (Value *V = I.getReturnValue()) {
    Value *Obj =
        findValue(V, F->getParent()->getDataLayout(), /*OffsetOk=*/true);
    Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
  }
}

// TODO: Check that the reference is in bounds.
// TODO: Check readnone/readonly function attributes.
void Lint::visitMemoryReference(Instruction &I,
                                Value *Ptr, uint64_t Size, unsigned Align,
                                Type *Ty, unsigned Flags) {
  // If no memory is being referenced, it doesn't matter if the pointer
  // is valid.
  if (Size == 0)
    return;

  Value *UnderlyingObject =
      findValue(Ptr, I.getModule()->getDataLayout(), /*OffsetOk=*/true);
  Assert(!isa<ConstantPointerNull>(UnderlyingObject),
         "Undefined behavior: Null pointer dereference", &I);
  Assert(!isa<UndefValue>(UnderlyingObject),
         "Undefined behavior: Undef pointer dereference", &I);
  Assert(!isa<ConstantInt>(UnderlyingObject) ||
             !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
         "Unusual: All-ones pointer dereference", &I);
  Assert(!isa<ConstantInt>(UnderlyingObject) ||
             !cast<ConstantInt>(UnderlyingObject)->isOne(),
         "Unusual: Address one pointer dereference", &I);

  if (Flags & MemRef::Write) {
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
      Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
             &I);
    Assert(!isa<Function>(UnderlyingObject) &&
               !isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Write to text section", &I);
  }
  if (Flags & MemRef::Read) {
    Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
           &I);
    Assert(!isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Load from block address", &I);
  }
  if (Flags & MemRef::Callee) {
    Assert(!isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Call to block address", &I);
  }
  if (Flags & MemRef::Branchee) {
    Assert(!isa<Constant>(UnderlyingObject) ||
               isa<BlockAddress>(UnderlyingObject),
           "Undefined behavior: Branch to non-blockaddress", &I);
  }

  // Check for buffer overflows and misalignment.
  // Only handles memory references that read/write something simple like an
  // alloca instruction or a global variable.
  auto &DL = I.getModule()->getDataLayout();
  int64_t Offset = 0;
  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    // something we can handle and if so extract the size of this base object
    // along with its alignment.
    uint64_t BaseSize = AliasAnalysis::UnknownSize;
    unsigned BaseAlign = 0;

    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
      Type *ATy = AI->getAllocatedType();
      if (!AI->isArrayAllocation() && ATy->isSized())
        BaseSize = DL.getTypeAllocSize(ATy);
      BaseAlign = AI->getAlignment();
      if (BaseAlign == 0 && ATy->isSized())
        BaseAlign = DL.getABITypeAlignment(ATy);
    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
      // If the global may be defined differently in another compilation unit
      // then don't warn about funky memory accesses.
      if (GV->hasDefinitiveInitializer()) {
        Type *GTy = GV->getType()->getElementType();
        if (GTy->isSized())
          BaseSize = DL.getTypeAllocSize(GTy);
        BaseAlign = GV->getAlignment();
        if (BaseAlign == 0 && GTy->isSized())
          BaseAlign = DL.getABITypeAlignment(GTy);
      }
    }

    // Accesses from before the start or after the end of the object are not
    // defined.
    Assert(Size == AliasAnalysis::UnknownSize ||
               BaseSize == AliasAnalysis::UnknownSize ||
               (Offset >= 0 && Offset + Size <= BaseSize),
           "Undefined behavior: Buffer overflow", &I);

    // Accesses that say that the memory is more aligned than it is are not
    // defined.
    if (Align == 0 && Ty && Ty->isSized())
      Align = DL.getABITypeAlignment(Ty);
    Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
           "Undefined behavior: Memory reference address is misaligned", &I);
  }
}

void Lint::visitLoadInst(LoadInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       AA->getTypeStoreSize(I.getType()), I.getAlignment(),
                       I.getType(), MemRef::Read);
}

void Lint::visitStoreInst(StoreInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       AA->getTypeStoreSize(I.getOperand(0)->getType()),
                       I.getAlignment(),
                       I.getOperand(0)->getType(), MemRef::Write);
}

void Lint::visitXor(BinaryOperator &I) {
  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
         "Undefined result: xor(undef, undef)", &I);
}

void Lint::visitSub(BinaryOperator &I) {
  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
         "Undefined result: sub(undef, undef)", &I);
}

void Lint::visitLShr(BinaryOperator &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(
          findValue(I.getOperand(1), I.getModule()->getDataLayout(),
                    /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

void Lint::visitAShr(BinaryOperator &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(
          I.getOperand(1), I.getModule()->getDataLayout(), /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

void Lint::visitShl(BinaryOperator &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(
          I.getOperand(1), I.getModule()->getDataLayout(), /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
           "Undefined result: Shift count out of range", &I);
}

static bool
allPredsCameFromLandingPad(BasicBlock *BB,
                           SmallSet<BasicBlock *, 4> &VisitedBlocks) {
  VisitedBlocks.insert(BB);
  if (BB->isLandingPad())
    return true;
  // If we find a block with no predecessors, the search failed.
  if (pred_empty(BB))
    return false;
  for (BasicBlock *Pred : predecessors(BB)) {
    if (VisitedBlocks.count(Pred))
      continue;
    if (!allPredsCameFromLandingPad(Pred, VisitedBlocks))
      return false;
  }
  return true;
}

static bool
allSuccessorsReachEndCatch(BasicBlock *BB, BasicBlock::iterator InstBegin,
                           IntrinsicInst **SecondBeginCatch,
                           SmallSet<BasicBlock *, 4> &VisitedBlocks) {
  VisitedBlocks.insert(BB);
  for (BasicBlock::iterator I = InstBegin, E = BB->end(); I != E; ++I) {
    IntrinsicInst *IC = dyn_cast<IntrinsicInst>(I);
    if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch)
      return true;
    // If we find another begincatch while looking for an endcatch,
    // that's also an error.
    if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch) {
      *SecondBeginCatch = IC;
      return false;
    }
  }

  // If we reach a block with no successors while searching, the
  // search has failed.
  if (succ_empty(BB))
    return false;
  // Otherwise, search all of the successors.
  for (BasicBlock *Succ : successors(BB)) {
    if (VisitedBlocks.count(Succ))
      continue;
    if (!allSuccessorsReachEndCatch(Succ, Succ->begin(), SecondBeginCatch,
                                    VisitedBlocks))
      return false;
  }
  return true;
}

void Lint::visitEHBeginCatch(IntrinsicInst *II) {
  // The checks in this function make a potentially dubious assumption about
  // the CFG, namely that any block involved in a catch is only used for the
  // catch.  This will very likely be true of IR generated by a front end,
  // but it may cease to be true, for example, if the IR is run through a
  // pass which combines similar blocks.
  //
  // In general, if we encounter a block the isn't dominated by the catch
  // block while we are searching the catch block's successors for a call
  // to end catch intrinsic, then it is possible that it will be legal for
  // a path through this block to never reach a call to llvm.eh.endcatch.
  // An analogous statement could be made about our search for a landing
  // pad among the catch block's predecessors.
  //
  // What is actually required is that no path is possible at runtime that
  // reaches a call to llvm.eh.begincatch without having previously visited
  // a landingpad instruction and that no path is possible at runtime that
  // calls llvm.eh.begincatch and does not subsequently call llvm.eh.endcatch
  // (mentally adjusting for the fact that in reality these calls will be
  // removed before code generation).
  //
  // Because this is a lint check, we take a pessimistic approach and warn if
  // the control flow is potentially incorrect.

  SmallSet<BasicBlock *, 4> VisitedBlocks;
  BasicBlock *CatchBB = II->getParent();

  // The begin catch must occur in a landing pad block or all paths
  // to it must have come from a landing pad.
  Assert(allPredsCameFromLandingPad(CatchBB, VisitedBlocks),
         "llvm.eh.begincatch may be reachable without passing a landingpad",
         II);

  // Reset the visited block list.
  VisitedBlocks.clear();

  IntrinsicInst *SecondBeginCatch = nullptr;

  // This has to be called before it is asserted.  Otherwise, the first assert
  // below can never be hit.
  bool EndCatchFound = allSuccessorsReachEndCatch(
      CatchBB, std::next(static_cast<BasicBlock::iterator>(II)),
      &SecondBeginCatch, VisitedBlocks);
  Assert(
      SecondBeginCatch == nullptr,
      "llvm.eh.begincatch may be called a second time before llvm.eh.endcatch",
      II, SecondBeginCatch);
  Assert(EndCatchFound,
         "Some paths from llvm.eh.begincatch may not reach llvm.eh.endcatch",
         II);
}

static bool allPredCameFromBeginCatch(
    BasicBlock *BB, BasicBlock::reverse_iterator InstRbegin,
    IntrinsicInst **SecondEndCatch, SmallSet<BasicBlock *, 4> &VisitedBlocks) {
  VisitedBlocks.insert(BB);
  // Look for a begincatch in this block.
  for (BasicBlock::reverse_iterator RI = InstRbegin, RE = BB->rend(); RI != RE;
       ++RI) {
    IntrinsicInst *IC = dyn_cast<IntrinsicInst>(&*RI);
    if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch)
      return true;
    // If we find another end catch before we find a begin catch, that's
    // an error.
    if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch) {
      *SecondEndCatch = IC;
      return false;
    }
    // If we encounter a landingpad instruction, the search failed.
    if (isa<LandingPadInst>(*RI))
      return false;
  }
  // If while searching we find a block with no predeccesors,
  // the search failed.
  if (pred_empty(BB))
    return false;
  // Search any predecessors we haven't seen before.
  for (BasicBlock *Pred : predecessors(BB)) {
    if (VisitedBlocks.count(Pred))
      continue;
    if (!allPredCameFromBeginCatch(Pred, Pred->rbegin(), SecondEndCatch,
                                   VisitedBlocks))
      return false;
  }
  return true;
}

void Lint::visitEHEndCatch(IntrinsicInst *II) {
  // The check in this function makes a potentially dubious assumption about
  // the CFG, namely that any block involved in a catch is only used for the
  // catch.  This will very likely be true of IR generated by a front end,
  // but it may cease to be true, for example, if the IR is run through a
  // pass which combines similar blocks.
  //
  // In general, if we encounter a block the isn't post-dominated by the
  // end catch block while we are searching the end catch block's predecessors
  // for a call to the begin catch intrinsic, then it is possible that it will
  // be legal for a path to reach the end catch block without ever having
  // called llvm.eh.begincatch.
  //
  // What is actually required is that no path is possible at runtime that
  // reaches a call to llvm.eh.endcatch without having previously visited
  // a call to llvm.eh.begincatch (mentally adjusting for the fact that in
  // reality these calls will be removed before code generation).
  //
  // Because this is a lint check, we take a pessimistic approach and warn if
  // the control flow is potentially incorrect.

  BasicBlock *EndCatchBB = II->getParent();

  // Alls paths to the end catch call must pass through a begin catch call.

  // If llvm.eh.begincatch wasn't called in the current block, we'll use this
  // lambda to recursively look for it in predecessors.
  SmallSet<BasicBlock *, 4> VisitedBlocks;
  IntrinsicInst *SecondEndCatch = nullptr;

  // This has to be called before it is asserted.  Otherwise, the first assert
  // below can never be hit.
  bool BeginCatchFound =
      allPredCameFromBeginCatch(EndCatchBB, BasicBlock::reverse_iterator(II),
                                &SecondEndCatch, VisitedBlocks);
  Assert(
      SecondEndCatch == nullptr,
      "llvm.eh.endcatch may be called a second time after llvm.eh.begincatch",
      II, SecondEndCatch);
  Assert(BeginCatchFound,
         "llvm.eh.endcatch may be reachable without passing llvm.eh.begincatch",
         II);
}

static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
                   AssumptionCache *AC) {
  // Assume undef could be zero.
  if (isa<UndefValue>(V))
    return true;

  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
  if (!VecTy) {
    unsigned BitWidth = V->getType()->getIntegerBitWidth();
    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
                     dyn_cast<Instruction>(V), DT);
    return KnownZero.isAllOnesValue();
  }

  // Per-component check doesn't work with zeroinitializer
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  if (C->isZeroValue())
    return true;

  // For a vector, KnownZero will only be true if all values are zero, so check
  // this per component
  unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
    Constant *Elem = C->getAggregateElement(I);
    if (isa<UndefValue>(Elem))
      return true;

    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    computeKnownBits(Elem, KnownZero, KnownOne, DL);
    if (KnownZero.isAllOnesValue())
      return true;
  }

  return false;
}

void Lint::visitSDiv(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitUDiv(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitSRem(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitURem(BinaryOperator &I) {
  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
         "Undefined behavior: Division by zero", &I);
}

void Lint::visitAllocaInst(AllocaInst &I) {
  if (isa<ConstantInt>(I.getArraySize()))
    // This isn't undefined behavior, it's just an obvious pessimization.
    Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
           "Pessimization: Static alloca outside of entry block", &I);

  // TODO: Check for an unusual size (MSB set?)
}

void Lint::visitVAArgInst(VAArgInst &I) {
  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
                       nullptr, MemRef::Read | MemRef::Write);
}

void Lint::visitIndirectBrInst(IndirectBrInst &I) {
  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
                       nullptr, MemRef::Branchee);

  Assert(I.getNumDestinations() != 0,
         "Undefined behavior: indirectbr with no destinations", &I);
}

void Lint::visitExtractElementInst(ExtractElementInst &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(
          findValue(I.getIndexOperand(), I.getModule()->getDataLayout(),
                    /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
           "Undefined result: extractelement index out of range", &I);
}

void Lint::visitInsertElementInst(InsertElementInst &I) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(
          findValue(I.getOperand(2), I.getModule()->getDataLayout(),
                    /*OffsetOk=*/false)))
    Assert(CI->getValue().ult(I.getType()->getNumElements()),
           "Undefined result: insertelement index out of range", &I);
}

void Lint::visitUnreachableInst(UnreachableInst &I) {
  // This isn't undefined behavior, it's merely suspicious.
  Assert(&I == I.getParent()->begin() ||
             std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
         "Unusual: unreachable immediately preceded by instruction without "
         "side effects",
         &I);
}

/// findValue - Look through bitcasts and simple memory reference patterns
/// to identify an equivalent, but more informative, value.  If OffsetOk
/// is true, look through getelementptrs with non-zero offsets too.
///
/// Most analysis passes don't require this logic, because instcombine
/// will simplify most of these kinds of things away. But it's a goal of
/// this Lint pass to be useful even on non-optimized IR.
Value *Lint::findValue(Value *V, const DataLayout &DL, bool OffsetOk) const {
  SmallPtrSet<Value *, 4> Visited;
  return findValueImpl(V, DL, OffsetOk, Visited);
}

/// findValueImpl - Implementation helper for findValue.
Value *Lint::findValueImpl(Value *V, const DataLayout &DL, bool OffsetOk,
                           SmallPtrSetImpl<Value *> &Visited) const {
  // Detect self-referential values.
  if (!Visited.insert(V).second)
    return UndefValue::get(V->getType());

  // TODO: Look through sext or zext cast, when the result is known to
  // be interpreted as signed or unsigned, respectively.
  // TODO: Look through eliminable cast pairs.
  // TODO: Look through calls with unique return values.
  // TODO: Look through vector insert/extract/shuffle.
  V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    BasicBlock::iterator BBI = L;
    BasicBlock *BB = L->getParent();
    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    for (;;) {
      if (!VisitedBlocks.insert(BB).second)
        break;
      if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
                                              BB, BBI, 6, AA))
        return findValueImpl(U, DL, OffsetOk, Visited);
      if (BBI != BB->begin()) break;
      BB = BB->getUniquePredecessor();
      if (!BB) break;
      BBI = BB->end();
    }
  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    if (Value *W = PN->hasConstantValue())
      if (W != V)
        return findValueImpl(W, DL, OffsetOk, Visited);
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    if (CI->isNoopCast(DL))
      return findValueImpl(CI->getOperand(0), DL, OffsetOk, Visited);
  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
                                     Ex->getIndices()))
      if (W != V)
        return findValueImpl(W, DL, OffsetOk, Visited);
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    // Same as above, but for ConstantExpr instead of Instruction.
    if (Instruction::isCast(CE->getOpcode())) {
      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
                               CE->getOperand(0)->getType(), CE->getType(),
                               DL.getIntPtrType(V->getType())))
        return findValueImpl(CE->getOperand(0), DL, OffsetOk, Visited);
    } else if (CE->getOpcode() == Instruction::ExtractValue) {
      ArrayRef<unsigned> Indices = CE->getIndices();
      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
        if (W != V)
          return findValueImpl(W, DL, OffsetOk, Visited);
    }
  }

  // As a last resort, try SimplifyInstruction or constant folding.
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AC))
      return findValueImpl(W, DL, OffsetOk, Visited);
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
      if (W != V)
        return findValueImpl(W, DL, OffsetOk, Visited);
  }

  return V;
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createLintPass() {
  return new Lint();
}

/// lintFunction - Check a function for errors, printing messages on stderr.
///
void llvm::lintFunction(const Function &f) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot lint external functions");

  legacy::FunctionPassManager FPM(F.getParent());
  Lint *V = new Lint();
  FPM.add(V);
  FPM.run(F);
}

/// lintModule - Check a module for errors, printing messages on stderr.
///
void llvm::lintModule(const Module &M) {
  legacy::PassManager PM;
  Lint *V = new Lint();
  PM.add(V);
  PM.run(const_cast<Module&>(M));
}