aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/Lint.cpp
blob: 2c8fc0bba4149608337e9b513d80cab531274bf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass statically checks for common and easily-identified constructs
// which produce undefined or likely unintended behavior in LLVM IR.
//
// It is not a guarantee of correctness, in two ways. First, it isn't
// comprehensive. There are checks which could be done statically which are
// not yet implemented. Some of these are indicated by TODO comments, but
// those aren't comprehensive either. Second, many conditions cannot be
// checked statically. This pass does no dynamic instrumentation, so it
// can't check for all possible problems.
// 
// Another limitation is that it assumes all code will be executed. A store
// through a null pointer in a basic block which is never reached is harmless,
// but this pass will warn about it anyway. This is the main reason why most
// of these checks live here instead of in the Verifier pass.
//
// Optimization passes may make conditions that this pass checks for more or
// less obvious. If an optimization pass appears to be introducing a warning,
// it may be that the optimization pass is merely exposing an existing
// condition in the code.
// 
// This code may be run before instcombine. In many cases, instcombine checks
// for the same kinds of things and turns instructions with undefined behavior
// into unreachable (or equivalent). Because of this, this pass makes some
// effort to look through bitcasts and so on.
// 
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Lint.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/InstVisitor.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;

namespace {
  namespace MemRef {
    static unsigned Read     = 1;
    static unsigned Write    = 2;
    static unsigned Callee   = 4;
    static unsigned Branchee = 8;
  }

  class Lint : public FunctionPass, public InstVisitor<Lint> {
    friend class InstVisitor<Lint>;

    void visitFunction(Function &F);

    void visitCallSite(CallSite CS);
    void visitMemoryReference(Instruction &I, Value *Ptr,
                              uint64_t Size, unsigned Align,
                              Type *Ty, unsigned Flags);

    void visitCallInst(CallInst &I);
    void visitInvokeInst(InvokeInst &I);
    void visitReturnInst(ReturnInst &I);
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitXor(BinaryOperator &I);
    void visitSub(BinaryOperator &I);
    void visitLShr(BinaryOperator &I);
    void visitAShr(BinaryOperator &I);
    void visitShl(BinaryOperator &I);
    void visitSDiv(BinaryOperator &I);
    void visitUDiv(BinaryOperator &I);
    void visitSRem(BinaryOperator &I);
    void visitURem(BinaryOperator &I);
    void visitAllocaInst(AllocaInst &I);
    void visitVAArgInst(VAArgInst &I);
    void visitIndirectBrInst(IndirectBrInst &I);
    void visitExtractElementInst(ExtractElementInst &I);
    void visitInsertElementInst(InsertElementInst &I);
    void visitUnreachableInst(UnreachableInst &I);

    Value *findValue(Value *V, bool OffsetOk) const;
    Value *findValueImpl(Value *V, bool OffsetOk,
                         SmallPtrSet<Value *, 4> &Visited) const;

  public:
    Module *Mod;
    AliasAnalysis *AA;
    DominatorTree *DT;
    DataLayout *TD;
    TargetLibraryInfo *TLI;

    std::string Messages;
    raw_string_ostream MessagesStr;

    static char ID; // Pass identification, replacement for typeid
    Lint() : FunctionPass(ID), MessagesStr(Messages) {
      initializeLintPass(*PassRegistry::getPassRegistry());
    }

    virtual bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<TargetLibraryInfo>();
      AU.addRequired<DominatorTree>();
    }
    virtual void print(raw_ostream &O, const Module *M) const {}

    void WriteValue(const Value *V) {
      if (!V) return;
      if (isa<Instruction>(V)) {
        MessagesStr << *V << '\n';
      } else {
        WriteAsOperand(MessagesStr, V, true, Mod);
        MessagesStr << '\n';
      }
    }

    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    void CheckFailed(const Twine &Message,
                     const Value *V1 = 0, const Value *V2 = 0,
                     const Value *V3 = 0, const Value *V4 = 0) {
      MessagesStr << Message.str() << "\n";
      WriteValue(V1);
      WriteValue(V2);
      WriteValue(V3);
      WriteValue(V4);
    }
  };
}

char Lint::ID = 0;
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
                      false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
                    false, true)

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
    do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
    do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
    do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
    do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
    do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)

// Lint::run - This is the main Analysis entry point for a
// function.
//
bool Lint::runOnFunction(Function &F) {
  Mod = F.getParent();
  AA = &getAnalysis<AliasAnalysis>();
  DT = &getAnalysis<DominatorTree>();
  TD = getAnalysisIfAvailable<DataLayout>();
  TLI = &getAnalysis<TargetLibraryInfo>();
  visit(F);
  dbgs() << MessagesStr.str();
  Messages.clear();
  return false;
}

void Lint::visitFunction(Function &F) {
  // This isn't undefined behavior, it's just a little unusual, and it's a
  // fairly common mistake to neglect to name a function.
  Assert1(F.hasName() || F.hasLocalLinkage(),
          "Unusual: Unnamed function with non-local linkage", &F);

  // TODO: Check for irreducible control flow.
}

void Lint::visitCallSite(CallSite CS) {
  Instruction &I = *CS.getInstruction();
  Value *Callee = CS.getCalledValue();

  visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
                       0, 0, MemRef::Callee);

  if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
    Assert1(CS.getCallingConv() == F->getCallingConv(),
            "Undefined behavior: Caller and callee calling convention differ",
            &I);

    FunctionType *FT = F->getFunctionType();
    unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());

    Assert1(FT->isVarArg() ?
              FT->getNumParams() <= NumActualArgs :
              FT->getNumParams() == NumActualArgs,
            "Undefined behavior: Call argument count mismatches callee "
            "argument count", &I);

    Assert1(FT->getReturnType() == I.getType(),
            "Undefined behavior: Call return type mismatches "
            "callee return type", &I);

    // Check argument types (in case the callee was casted) and attributes.
    // TODO: Verify that caller and callee attributes are compatible.
    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    for (; AI != AE; ++AI) {
      Value *Actual = *AI;
      if (PI != PE) {
        Argument *Formal = PI++;
        Assert1(Formal->getType() == Actual->getType(),
                "Undefined behavior: Call argument type mismatches "
                "callee parameter type", &I);

        // Check that noalias arguments don't alias other arguments. This is
        // not fully precise because we don't know the sizes of the dereferenced
        // memory regions.
        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
            if (AI != BI && (*BI)->getType()->isPointerTy()) {
              AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
              Assert1(Result != AliasAnalysis::MustAlias &&
                      Result != AliasAnalysis::PartialAlias,
                      "Unusual: noalias argument aliases another argument", &I);
            }

        // Check that an sret argument points to valid memory.
        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
          Type *Ty =
            cast<PointerType>(Formal->getType())->getElementType();
          visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
                               TD ? TD->getABITypeAlignment(Ty) : 0,
                               Ty, MemRef::Read | MemRef::Write);
        }
      }
    }
  }

  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
    for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
         AI != AE; ++AI) {
      Value *Obj = findValue(*AI, /*OffsetOk=*/true);
      Assert1(!isa<AllocaInst>(Obj),
              "Undefined behavior: Call with \"tail\" keyword references "
              "alloca", &I);
    }


  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    switch (II->getIntrinsicID()) {
    default: break;

    // TODO: Check more intrinsics

    case Intrinsic::memcpy: {
      MemCpyInst *MCI = cast<MemCpyInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
                           MCI->getAlignment(), 0,
                           MemRef::Write);
      visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
                           MCI->getAlignment(), 0,
                           MemRef::Read);

      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
      // isn't expressive enough for what we really want to do. Known partial
      // overlap is not distinguished from the case where nothing is known.
      uint64_t Size = 0;
      if (const ConstantInt *Len =
            dyn_cast<ConstantInt>(findValue(MCI->getLength(),
                                            /*OffsetOk=*/false)))
        if (Len->getValue().isIntN(32))
          Size = Len->getValue().getZExtValue();
      Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
              AliasAnalysis::MustAlias,
              "Undefined behavior: memcpy source and destination overlap", &I);
      break;
    }
    case Intrinsic::memmove: {
      MemMoveInst *MMI = cast<MemMoveInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
                           MMI->getAlignment(), 0,
                           MemRef::Write);
      visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
                           MMI->getAlignment(), 0,
                           MemRef::Read);
      break;
    }
    case Intrinsic::memset: {
      MemSetInst *MSI = cast<MemSetInst>(&I);
      // TODO: If the size is known, use it.
      visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
                           MSI->getAlignment(), 0,
                           MemRef::Write);
      break;
    }

    case Intrinsic::vastart:
      Assert1(I.getParent()->getParent()->isVarArg(),
              "Undefined behavior: va_start called in a non-varargs function",
              &I);

      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, 0, MemRef::Read | MemRef::Write);
      break;
    case Intrinsic::vacopy:
      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, 0, MemRef::Write);
      visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
                           0, 0, MemRef::Read);
      break;
    case Intrinsic::vaend:
      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, 0, MemRef::Read | MemRef::Write);
      break;

    case Intrinsic::stackrestore:
      // Stackrestore doesn't read or write memory, but it sets the
      // stack pointer, which the compiler may read from or write to
      // at any time, so check it for both readability and writeability.
      visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
                           0, 0, MemRef::Read | MemRef::Write);
      break;
    }
}

void Lint::visitCallInst(CallInst &I) {
  return visitCallSite(&I);
}

void Lint::visitInvokeInst(InvokeInst &I) {
  return visitCallSite(&I);
}

void Lint::visitReturnInst(ReturnInst &I) {
  Function *F = I.getParent()->getParent();
  Assert1(!F->doesNotReturn(),
          "Unusual: Return statement in function with noreturn attribute",
          &I);

  if (Value *V = I.getReturnValue()) {
    Value *Obj = findValue(V, /*OffsetOk=*/true);
    Assert1(!isa<AllocaInst>(Obj),
            "Unusual: Returning alloca value", &I);
  }
}

// TODO: Check that the reference is in bounds.
// TODO: Check readnone/readonly function attributes.
void Lint::visitMemoryReference(Instruction &I,
                                Value *Ptr, uint64_t Size, unsigned Align,
                                Type *Ty, unsigned Flags) {
  // If no memory is being referenced, it doesn't matter if the pointer
  // is valid.
  if (Size == 0)
    return;

  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
  Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
          "Undefined behavior: Null pointer dereference", &I);
  Assert1(!isa<UndefValue>(UnderlyingObject),
          "Undefined behavior: Undef pointer dereference", &I);
  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
          !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
          "Unusual: All-ones pointer dereference", &I);
  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
          !cast<ConstantInt>(UnderlyingObject)->isOne(),
          "Unusual: Address one pointer dereference", &I);

  if (Flags & MemRef::Write) {
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
      Assert1(!GV->isConstant(),
              "Undefined behavior: Write to read-only memory", &I);
    Assert1(!isa<Function>(UnderlyingObject) &&
            !isa<BlockAddress>(UnderlyingObject),
            "Undefined behavior: Write to text section", &I);
  }
  if (Flags & MemRef::Read) {
    Assert1(!isa<Function>(UnderlyingObject),
            "Unusual: Load from function body", &I);
    Assert1(!isa<BlockAddress>(UnderlyingObject),
            "Undefined behavior: Load from block address", &I);
  }
  if (Flags & MemRef::Callee) {
    Assert1(!isa<BlockAddress>(UnderlyingObject),
            "Undefined behavior: Call to block address", &I);
  }
  if (Flags & MemRef::Branchee) {
    Assert1(!isa<Constant>(UnderlyingObject) ||
            isa<BlockAddress>(UnderlyingObject),
            "Undefined behavior: Branch to non-blockaddress", &I);
  }

  // Check for buffer overflows and misalignment.
  // Only handles memory references that read/write something simple like an
  // alloca instruction or a global variable.
  int64_t Offset = 0;
  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    // something we can handle and if so extract the size of this base object
    // along with its alignment.
    uint64_t BaseSize = AliasAnalysis::UnknownSize;
    unsigned BaseAlign = 0;

    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
      Type *ATy = AI->getAllocatedType();
      if (TD && !AI->isArrayAllocation() && ATy->isSized())
        BaseSize = TD->getTypeAllocSize(ATy);
      BaseAlign = AI->getAlignment();
      if (TD && BaseAlign == 0 && ATy->isSized())
        BaseAlign = TD->getABITypeAlignment(ATy);
    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
      // If the global may be defined differently in another compilation unit
      // then don't warn about funky memory accesses.
      if (GV->hasDefinitiveInitializer()) {
        Type *GTy = GV->getType()->getElementType();
        if (TD && GTy->isSized())
          BaseSize = TD->getTypeAllocSize(GTy);
        BaseAlign = GV->getAlignment();
        if (TD && BaseAlign == 0 && GTy->isSized())
          BaseAlign = TD->getABITypeAlignment(GTy);
      }
    }

    // Accesses from before the start or after the end of the object are not
    // defined.
    Assert1(Size == AliasAnalysis::UnknownSize ||
            BaseSize == AliasAnalysis::UnknownSize ||
            (Offset >= 0 && Offset + Size <= BaseSize),
            "Undefined behavior: Buffer overflow", &I);

    // Accesses that say that the memory is more aligned than it is are not
    // defined.
    if (TD && Align == 0 && Ty && Ty->isSized())
      Align = TD->getABITypeAlignment(Ty);
    Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
            "Undefined behavior: Memory reference address is misaligned", &I);
  }
}

void Lint::visitLoadInst(LoadInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       AA->getTypeStoreSize(I.getType()), I.getAlignment(),
                       I.getType(), MemRef::Read);
}

void Lint::visitStoreInst(StoreInst &I) {
  visitMemoryReference(I, I.getPointerOperand(),
                       AA->getTypeStoreSize(I.getOperand(0)->getType()),
                       I.getAlignment(),
                       I.getOperand(0)->getType(), MemRef::Write);
}

void Lint::visitXor(BinaryOperator &I) {
  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
          !isa<UndefValue>(I.getOperand(1)),
          "Undefined result: xor(undef, undef)", &I);
}

void Lint::visitSub(BinaryOperator &I) {
  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
          !isa<UndefValue>(I.getOperand(1)),
          "Undefined result: sub(undef, undef)", &I);
}

void Lint::visitLShr(BinaryOperator &I) {
  if (ConstantInt *CI =
        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
            "Undefined result: Shift count out of range", &I);
}

void Lint::visitAShr(BinaryOperator &I) {
  if (ConstantInt *CI =
        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
            "Undefined result: Shift count out of range", &I);
}

void Lint::visitShl(BinaryOperator &I) {
  if (ConstantInt *CI =
        dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
            "Undefined result: Shift count out of range", &I);
}

static bool isZero(Value *V, DataLayout *DL) {
  // Assume undef could be zero.
  if (isa<UndefValue>(V))
    return true;

  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
  if (!VecTy) {
    unsigned BitWidth = V->getType()->getIntegerBitWidth();
    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    ComputeMaskedBits(V, KnownZero, KnownOne, DL);
    return KnownZero.isAllOnesValue();
  }

  // Per-component check doesn't work with zeroinitializer
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  if (C->isZeroValue())
    return true;

  // For a vector, KnownZero will only be true if all values are zero, so check
  // this per component
  unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
    Constant *Elem = C->getAggregateElement(I);
    if (isa<UndefValue>(Elem))
      return true;

    APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    ComputeMaskedBits(Elem, KnownZero, KnownOne, DL);
    if (KnownZero.isAllOnesValue())
      return true;
  }

  return false;
}

void Lint::visitSDiv(BinaryOperator &I) {
  Assert1(!isZero(I.getOperand(1), TD),
          "Undefined behavior: Division by zero", &I);
}

void Lint::visitUDiv(BinaryOperator &I) {
  Assert1(!isZero(I.getOperand(1), TD),
          "Undefined behavior: Division by zero", &I);
}

void Lint::visitSRem(BinaryOperator &I) {
  Assert1(!isZero(I.getOperand(1), TD),
          "Undefined behavior: Division by zero", &I);
}

void Lint::visitURem(BinaryOperator &I) {
  Assert1(!isZero(I.getOperand(1), TD),
          "Undefined behavior: Division by zero", &I);
}

void Lint::visitAllocaInst(AllocaInst &I) {
  if (isa<ConstantInt>(I.getArraySize()))
    // This isn't undefined behavior, it's just an obvious pessimization.
    Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
            "Pessimization: Static alloca outside of entry block", &I);

  // TODO: Check for an unusual size (MSB set?)
}

void Lint::visitVAArgInst(VAArgInst &I) {
  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
                       MemRef::Read | MemRef::Write);
}

void Lint::visitIndirectBrInst(IndirectBrInst &I) {
  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
                       MemRef::Branchee);

  Assert1(I.getNumDestinations() != 0,
          "Undefined behavior: indirectbr with no destinations", &I);
}

void Lint::visitExtractElementInst(ExtractElementInst &I) {
  if (ConstantInt *CI =
        dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
                                        /*OffsetOk=*/false)))
    Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
            "Undefined result: extractelement index out of range", &I);
}

void Lint::visitInsertElementInst(InsertElementInst &I) {
  if (ConstantInt *CI =
        dyn_cast<ConstantInt>(findValue(I.getOperand(2),
                                        /*OffsetOk=*/false)))
    Assert1(CI->getValue().ult(I.getType()->getNumElements()),
            "Undefined result: insertelement index out of range", &I);
}

void Lint::visitUnreachableInst(UnreachableInst &I) {
  // This isn't undefined behavior, it's merely suspicious.
  Assert1(&I == I.getParent()->begin() ||
          prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
          "Unusual: unreachable immediately preceded by instruction without "
          "side effects", &I);
}

/// findValue - Look through bitcasts and simple memory reference patterns
/// to identify an equivalent, but more informative, value.  If OffsetOk
/// is true, look through getelementptrs with non-zero offsets too.
///
/// Most analysis passes don't require this logic, because instcombine
/// will simplify most of these kinds of things away. But it's a goal of
/// this Lint pass to be useful even on non-optimized IR.
Value *Lint::findValue(Value *V, bool OffsetOk) const {
  SmallPtrSet<Value *, 4> Visited;
  return findValueImpl(V, OffsetOk, Visited);
}

/// findValueImpl - Implementation helper for findValue.
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
                           SmallPtrSet<Value *, 4> &Visited) const {
  // Detect self-referential values.
  if (!Visited.insert(V))
    return UndefValue::get(V->getType());

  // TODO: Look through sext or zext cast, when the result is known to
  // be interpreted as signed or unsigned, respectively.
  // TODO: Look through eliminable cast pairs.
  // TODO: Look through calls with unique return values.
  // TODO: Look through vector insert/extract/shuffle.
  V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    BasicBlock::iterator BBI = L;
    BasicBlock *BB = L->getParent();
    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    for (;;) {
      if (!VisitedBlocks.insert(BB)) break;
      if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
                                              BB, BBI, 6, AA))
        return findValueImpl(U, OffsetOk, Visited);
      if (BBI != BB->begin()) break;
      BB = BB->getUniquePredecessor();
      if (!BB) break;
      BBI = BB->end();
    }
  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    if (Value *W = PN->hasConstantValue())
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
                            Type::getInt64Ty(V->getContext())))
      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
                                     Ex->getIndices()))
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    // Same as above, but for ConstantExpr instead of Instruction.
    if (Instruction::isCast(CE->getOpcode())) {
      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
                               CE->getOperand(0)->getType(),
                               CE->getType(),
                               TD ? TD->getIntPtrType(V->getContext()) :
                                    Type::getInt64Ty(V->getContext())))
        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    } else if (CE->getOpcode() == Instruction::ExtractValue) {
      ArrayRef<unsigned> Indices = CE->getIndices();
      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
        if (W != V)
          return findValueImpl(W, OffsetOk, Visited);
    }
  }

  // As a last resort, try SimplifyInstruction or constant folding.
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
      return findValueImpl(W, OffsetOk, Visited);
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
      if (W != V)
        return findValueImpl(W, OffsetOk, Visited);
  }

  return V;
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createLintPass() {
  return new Lint();
}

/// lintFunction - Check a function for errors, printing messages on stderr.
///
void llvm::lintFunction(const Function &f) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot lint external functions");

  FunctionPassManager FPM(F.getParent());
  Lint *V = new Lint();
  FPM.add(V);
  FPM.run(F);
}

/// lintModule - Check a module for errors, printing messages on stderr.
///
void llvm::lintModule(const Module &M) {
  PassManager PM;
  Lint *V = new Lint();
  PM.add(V);
  PM.run(const_cast<Module&>(M));
}