aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/LoopInfo.cpp
blob: af35462544e7bf9848ff6c769226048181d2e687 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG.  Note that the
// loops identified may actually be several natural loops that share the same
// header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
using namespace llvm;

// Always verify loopinfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyLoopInfo = true;
#else
static bool VerifyLoopInfo = false;
#endif
static cl::opt<bool,true>
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
                cl::desc("Verify loop info (time consuming)"));

char LoopInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)

//===----------------------------------------------------------------------===//
// Loop implementation
//

/// isLoopInvariant - Return true if the specified value is loop invariant
///
bool Loop::isLoopInvariant(Value *V) const {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return !contains(I);
  return true;  // All non-instructions are loop invariant
}

/// hasLoopInvariantOperands - Return true if all the operands of the
/// specified instruction are loop invariant.
bool Loop::hasLoopInvariantOperands(Instruction *I) const {
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (!isLoopInvariant(I->getOperand(i)))
      return false;

  return true;
}

/// makeLoopInvariant - If the given value is an instruciton inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the value after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
                             Instruction *InsertPt) const {
  if (Instruction *I = dyn_cast<Instruction>(V))
    return makeLoopInvariant(I, Changed, InsertPt);
  return true;  // All non-instructions are loop-invariant.
}

/// makeLoopInvariant - If the given instruction is inside of the
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
/// Return true if the instruction after any hoisting is loop invariant. This
/// function can be used as a slightly more aggressive replacement for
/// isLoopInvariant.
///
/// If InsertPt is specified, it is the point to hoist instructions to.
/// If null, the terminator of the loop preheader is used.
///
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
                             Instruction *InsertPt) const {
  // Test if the value is already loop-invariant.
  if (isLoopInvariant(I))
    return true;
  if (!I->isSafeToSpeculativelyExecute())
    return false;
  if (I->mayReadFromMemory())
    return false;
  // Determine the insertion point, unless one was given.
  if (!InsertPt) {
    BasicBlock *Preheader = getLoopPreheader();
    // Without a preheader, hoisting is not feasible.
    if (!Preheader)
      return false;
    InsertPt = Preheader->getTerminator();
  }
  // Don't hoist instructions with loop-variant operands.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
      return false;

  // Hoist.
  I->moveBefore(InsertPt);
  Changed = true;
  return true;
}

/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable: an integer recurrence that starts at 0 and increments
/// by one each time through the loop.  If so, return the phi node that
/// corresponds to it.
///
/// The IndVarSimplify pass transforms loops to have a canonical induction
/// variable.
///
PHINode *Loop::getCanonicalInductionVariable() const {
  BasicBlock *H = getHeader();

  BasicBlock *Incoming = 0, *Backedge = 0;
  pred_iterator PI = pred_begin(H);
  assert(PI != pred_end(H) &&
         "Loop must have at least one backedge!");
  Backedge = *PI++;
  if (PI == pred_end(H)) return 0;  // dead loop
  Incoming = *PI++;
  if (PI != pred_end(H)) return 0;  // multiple backedges?

  if (contains(Incoming)) {
    if (contains(Backedge))
      return 0;
    std::swap(Incoming, Backedge);
  } else if (!contains(Backedge))
    return 0;

  // Loop over all of the PHI nodes, looking for a canonical indvar.
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (ConstantInt *CI =
        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
      if (CI->isNullValue())
        if (Instruction *Inc =
            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
          if (Inc->getOpcode() == Instruction::Add &&
                Inc->getOperand(0) == PN)
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
              if (CI->equalsInt(1))
                return PN;
  }
  return 0;
}

/// getTripCount - Return a loop-invariant LLVM value indicating the number of
/// times the loop will be executed.  Note that this means that the backedge
/// of the loop executes N-1 times.  If the trip-count cannot be determined,
/// this returns null.
///
/// The IndVarSimplify pass transforms loops to have a form that this
/// function easily understands.
///
Value *Loop::getTripCount() const {
  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
  // canonical induction variable and V is the trip count of the loop.
  PHINode *IV = getCanonicalInductionVariable();
  if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;

  bool P0InLoop = contains(IV->getIncomingBlock(0));
  Value *Inc = IV->getIncomingValue(!P0InLoop);
  BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);

  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
    if (BI->isConditional()) {
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
        if (ICI->getOperand(0) == Inc) {
          if (BI->getSuccessor(0) == getHeader()) {
            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
              return ICI->getOperand(1);
          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
            return ICI->getOperand(1);
          }
        }
      }
    }

  return 0;
}

/// getSmallConstantTripCount - Returns the trip count of this loop as a
/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
/// or not constant. Will also return 0 if the trip count is very large
/// (>= 2^32)
unsigned Loop::getSmallConstantTripCount() const {
  Value* TripCount = this->getTripCount();
  if (TripCount) {
    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
      // Guard against huge trip counts.
      if (TripCountC->getValue().getActiveBits() <= 32) {
        return (unsigned)TripCountC->getZExtValue();
      }
    }
  }
  return 0;
}

/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
/// trip count of this loop as a normal unsigned value, if possible. This
/// means that the actual trip count is always a multiple of the returned
/// value (don't forget the trip count could very well be zero as well!).
///
/// Returns 1 if the trip count is unknown or not guaranteed to be the
/// multiple of a constant (which is also the case if the trip count is simply
/// constant, use getSmallConstantTripCount for that case), Will also return 1
/// if the trip count is very large (>= 2^32).
unsigned Loop::getSmallConstantTripMultiple() const {
  Value* TripCount = this->getTripCount();
  // This will hold the ConstantInt result, if any
  ConstantInt *Result = NULL;
  if (TripCount) {
    // See if the trip count is constant itself
    Result = dyn_cast<ConstantInt>(TripCount);
    // if not, see if it is a multiplication
    if (!Result)
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
        switch (BO->getOpcode()) {
        case BinaryOperator::Mul:
          Result = dyn_cast<ConstantInt>(BO->getOperand(1));
          break;
        case BinaryOperator::Shl:
          if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
            if (CI->getValue().getActiveBits() <= 5)
              return 1u << CI->getZExtValue();
          break;
        default:
          break;
        }
      }
  }
  // Guard against huge trip counts.
  if (Result && Result->getValue().getActiveBits() <= 32) {
    return (unsigned)Result->getZExtValue();
  } else {
    return 1;
  }
}

/// isLCSSAForm - Return true if the Loop is in LCSSA form
bool Loop::isLCSSAForm(DominatorTree &DT) const {
  // Sort the blocks vector so that we can use binary search to do quick
  // lookups.
  SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());

  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
    BasicBlock *BB = *BI;
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
           ++UI) {
        User *U = *UI;
        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
        if (PHINode *P = dyn_cast<PHINode>(U))
          UserBB = P->getIncomingBlock(UI);

        // Check the current block, as a fast-path, before checking whether
        // the use is anywhere in the loop.  Most values are used in the same
        // block they are defined in.  Also, blocks not reachable from the
        // entry are special; uses in them don't need to go through PHIs.
        if (UserBB != BB &&
            !LoopBBs.count(UserBB) &&
            DT.isReachableFromEntry(UserBB))
          return false;
      }
  }

  return true;
}

/// isLoopSimplifyForm - Return true if the Loop is in the form that
/// the LoopSimplify form transforms loops to, which is sometimes called
/// normal form.
bool Loop::isLoopSimplifyForm() const {
  // Normal-form loops have a preheader, a single backedge, and all of their
  // exits have all their predecessors inside the loop.
  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
}

/// hasDedicatedExits - Return true if no exit block for the loop
/// has a predecessor that is outside the loop.
bool Loop::hasDedicatedExits() const {
  // Sort the blocks vector so that we can use binary search to do quick
  // lookups.
  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
  // Each predecessor of each exit block of a normal loop is contained
  // within the loop.
  SmallVector<BasicBlock *, 4> ExitBlocks;
  getExitBlocks(ExitBlocks);
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
      if (!LoopBBs.count(*PI))
        return false;
  // All the requirements are met.
  return true;
}

/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
/// These are the blocks _outside of the current loop_ which are branched to.
/// This assumes that loop exits are in canonical form.
///
void
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
  assert(hasDedicatedExits() &&
         "getUniqueExitBlocks assumes the loop has canonical form exits!");

  // Sort the blocks vector so that we can use binary search to do quick
  // lookups.
  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
  std::sort(LoopBBs.begin(), LoopBBs.end());

  SmallVector<BasicBlock *, 32> switchExitBlocks;

  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {

    BasicBlock *current = *BI;
    switchExitBlocks.clear();

    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
      // If block is inside the loop then it is not a exit block.
      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
        continue;

      pred_iterator PI = pred_begin(*I);
      BasicBlock *firstPred = *PI;

      // If current basic block is this exit block's first predecessor
      // then only insert exit block in to the output ExitBlocks vector.
      // This ensures that same exit block is not inserted twice into
      // ExitBlocks vector.
      if (current != firstPred)
        continue;

      // If a terminator has more then two successors, for example SwitchInst,
      // then it is possible that there are multiple edges from current block
      // to one exit block.
      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
        ExitBlocks.push_back(*I);
        continue;
      }

      // In case of multiple edges from current block to exit block, collect
      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
      // duplicate edges.
      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
          == switchExitBlocks.end()) {
        switchExitBlocks.push_back(*I);
        ExitBlocks.push_back(*I);
      }
    }
  }
}

/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
/// block, return that block. Otherwise return null.
BasicBlock *Loop::getUniqueExitBlock() const {
  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
  getUniqueExitBlocks(UniqueExitBlocks);
  if (UniqueExitBlocks.size() == 1)
    return UniqueExitBlocks[0];
  return 0;
}

void Loop::dump() const {
  print(dbgs());
}

//===----------------------------------------------------------------------===//
// UnloopUpdater implementation
//

/// Find the new parent loop for all blocks within the "unloop" whose last
/// backedges has just been removed.
class UnloopUpdater {
  Loop *Unloop;
  LoopInfo *LI;

  LoopBlocksDFS DFS;

  // Map unloop's immediate subloops to their nearest reachable parents. Nested
  // loops within these subloops will not change parents. However, an immediate
  // subloop's new parent will be the nearest loop reachable from either its own
  // exits *or* any of its nested loop's exits.
  DenseMap<Loop*, Loop*> SubloopParents;

  // Flag the presence of an irreducible backedge whose destination is a block
  // directly contained by the original unloop.
  bool FoundIB;

public:
  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}

  void updateBlockParents();

  void removeBlocksFromAncestors();

  void updateSubloopParents();

protected:
  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
};

/// updateBlockParents - Update the parent loop for all blocks that are directly
/// contained within the original "unloop".
void UnloopUpdater::updateBlockParents() {
  if (Unloop->getNumBlocks()) {
    // Perform a post order CFG traversal of all blocks within this loop,
    // propagating the nearest loop from sucessors to predecessors.
    LoopBlocksTraversal Traversal(DFS, LI);
    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
           POE = Traversal.end(); POI != POE; ++POI) {

      Loop *L = LI->getLoopFor(*POI);
      Loop *NL = getNearestLoop(*POI, L);

      if (NL != L) {
        // For reducible loops, NL is now an ancestor of Unloop.
        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
               "uninitialized successor");
        LI->changeLoopFor(*POI, NL);
      }
      else {
        // Or the current block is part of a subloop, in which case its parent
        // is unchanged.
        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
      }
    }
  }
  // Each irreducible loop within the unloop induces a round of iteration using
  // the DFS result cached by Traversal.
  bool Changed = FoundIB;
  for (unsigned NIters = 0; Changed; ++NIters) {
    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");

    // Iterate over the postorder list of blocks, propagating the nearest loop
    // from successors to predecessors as before.
    Changed = false;
    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
           POE = DFS.endPostorder(); POI != POE; ++POI) {

      Loop *L = LI->getLoopFor(*POI);
      Loop *NL = getNearestLoop(*POI, L);
      if (NL != L) {
        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
               "uninitialized successor");
        LI->changeLoopFor(*POI, NL);
        Changed = true;
      }
    }
  }
}

/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
/// their new parents.
void UnloopUpdater::removeBlocksFromAncestors() {
  // Remove unloop's blocks from all ancestors below their new parents.
  for (Loop::block_iterator BI = Unloop->block_begin(),
         BE = Unloop->block_end(); BI != BE; ++BI) {
    Loop *NewParent = LI->getLoopFor(*BI);
    // If this block is an immediate subloop, remove all blocks (including
    // nested subloops) from ancestors below the new parent loop.
    // Otherwise, if this block is in a nested subloop, skip it.
    if (SubloopParents.count(NewParent))
      NewParent = SubloopParents[NewParent];
    else if (Unloop->contains(NewParent))
      continue;

    // Remove blocks from former Ancestors except Unloop itself which will be
    // deleted.
    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent;
         OldParent = OldParent->getParentLoop()) {
      assert(OldParent && "new loop is not an ancestor of the original");
      OldParent->removeBlockFromLoop(*BI);
    }
  }
}

/// updateSubloopParents - Update the parent loop for all subloops directly
/// nested within unloop.
void UnloopUpdater::updateSubloopParents() {
  while (!Unloop->empty()) {
    Loop *Subloop = *llvm::prior(Unloop->end());
    Unloop->removeChildLoop(llvm::prior(Unloop->end()));

    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    if (SubloopParents[Subloop])
      SubloopParents[Subloop]->addChildLoop(Subloop);
  }
}

/// getNearestLoop - Return the nearest parent loop among this block's
/// successors. If a successor is a subloop header, consider its parent to be
/// the nearest parent of the subloop's exits.
///
/// For subloop blocks, simply update SubloopParents and return NULL.
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {

  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
  // is considered uninitialized.
  Loop *NearLoop = BBLoop;

  Loop *Subloop = 0;
  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
    Subloop = NearLoop;
    // Find the subloop ancestor that is directly contained within Unloop.
    while (Subloop->getParentLoop() != Unloop) {
      Subloop = Subloop->getParentLoop();
      assert(Subloop && "subloop is not an ancestor of the original loop");
    }
    // Get the current nearest parent of the Subloop exits, initially Unloop.
    if (!SubloopParents.count(Subloop))
      SubloopParents[Subloop] = Unloop;
    NearLoop = SubloopParents[Subloop];
  }

  succ_iterator I = succ_begin(BB), E = succ_end(BB);
  if (I == E) {
    assert(!Subloop && "subloop blocks must have a successor");
    NearLoop = 0; // unloop blocks may now exit the function.
  }
  for (; I != E; ++I) {
    if (*I == BB)
      continue; // self loops are uninteresting

    Loop *L = LI->getLoopFor(*I);
    if (L == Unloop) {
      // This successor has not been processed. This path must lead to an
      // irreducible backedge.
      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
      FoundIB = true;
    }
    if (L != Unloop && Unloop->contains(L)) {
      // Successor is in a subloop.
      if (Subloop)
        continue; // Branching within subloops. Ignore it.

      // BB branches from the original into a subloop header.
      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");

      // Get the current nearest parent of the Subloop's exits.
      L = SubloopParents[L];
      // L could be Unloop if the only exit was an irreducible backedge.
    }
    if (L == Unloop) {
      continue;
    }
    // Handle critical edges from Unloop into a sibling loop.
    if (L && !L->contains(Unloop)) {
      L = L->getParentLoop();
    }
    // Remember the nearest parent loop among successors or subloop exits.
    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
      NearLoop = L;
  }
  if (Subloop) {
    SubloopParents[Subloop] = NearLoop;
    return BBLoop;
  }
  return NearLoop;
}

//===----------------------------------------------------------------------===//
// LoopInfo implementation
//
bool LoopInfo::runOnFunction(Function &) {
  releaseMemory();
  LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
  return false;
}

/// updateUnloop - The last backedge has been removed from a loop--now the
/// "unloop". Find a new parent for the blocks contained within unloop and
/// update the loop tree. We don't necessarily have valid dominators at this
/// point, but LoopInfo is still valid except for the removal of this loop.
///
/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
/// checking first is illegal.
void LoopInfo::updateUnloop(Loop *Unloop) {

  // First handle the special case of no parent loop to simplify the algorithm.
  if (!Unloop->getParentLoop()) {
    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    for (Loop::block_iterator I = Unloop->block_begin(),
         E = Unloop->block_end(); I != E; ++I) {

      // Don't reparent blocks in subloops.
      if (getLoopFor(*I) != Unloop)
        continue;

      // Blocks no longer have a parent but are still referenced by Unloop until
      // the Unloop object is deleted.
      LI.changeLoopFor(*I, 0);
    }

    // Remove the loop from the top-level LoopInfo object.
    for (LoopInfo::iterator I = LI.begin(), E = LI.end();; ++I) {
      assert(I != E && "Couldn't find loop");
      if (*I == Unloop) {
        LI.removeLoop(I);
        break;
      }
    }

    // Move all of the subloops to the top-level.
    while (!Unloop->empty())
      LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));

    return;
  }

  // Update the parent loop for all blocks within the loop. Blocks within
  // subloops will not change parents.
  UnloopUpdater Updater(Unloop, this);
  Updater.updateBlockParents();

  // Remove blocks from former ancestor loops.
  Updater.removeBlocksFromAncestors();

  // Add direct subloops as children in their new parent loop.
  Updater.updateSubloopParents();

  // Remove unloop from its parent loop.
  Loop *ParentLoop = Unloop->getParentLoop();
  for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();; ++I) {
    assert(I != E && "Couldn't find loop");
    if (*I == Unloop) {
      ParentLoop->removeChildLoop(I);
      break;
    }
  }
}

void LoopInfo::verifyAnalysis() const {
  // LoopInfo is a FunctionPass, but verifying every loop in the function
  // each time verifyAnalysis is called is very expensive. The
  // -verify-loop-info option can enable this. In order to perform some
  // checking by default, LoopPass has been taught to call verifyLoop
  // manually during loop pass sequences.

  if (!VerifyLoopInfo) return;

  for (iterator I = begin(), E = end(); I != E; ++I) {
    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    (*I)->verifyLoopNest();
  }

  // TODO: check BBMap consistency.
}

void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<DominatorTree>();
}

void LoopInfo::print(raw_ostream &OS, const Module*) const {
  LI.print(OS);
}

//===----------------------------------------------------------------------===//
// LoopBlocksDFS implementation
//

/// Traverse the loop blocks and store the DFS result.
/// Useful for clients that just want the final DFS result and don't need to
/// visit blocks during the initial traversal.
void LoopBlocksDFS::perform(LoopInfo *LI) {
  LoopBlocksTraversal Traversal(*this, LI);
  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
         POE = Traversal.end(); POI != POE; ++POI) ;
}