1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG. Note that the
// loops identified may actually be several natural loops that share the same
// header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "Support/DepthFirstIterator.h"
#include <algorithm>
namespace llvm {
static RegisterAnalysis<LoopInfo>
X("loops", "Natural Loop Construction", true);
//===----------------------------------------------------------------------===//
// Loop implementation
//
bool Loop::contains(const BasicBlock *BB) const {
return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
}
bool Loop::isLoopExit(const BasicBlock *BB) const {
for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
if (!contains(*SI))
return true;
}
return false;
}
/// getNumBackEdges - Calculate the number of back edges to the loop header.
///
unsigned Loop::getNumBackEdges() const {
unsigned NumBackEdges = 0;
BasicBlock *H = getHeader();
for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I)
if (contains(*I))
++NumBackEdges;
return NumBackEdges;
}
void Loop::print(std::ostream &OS, unsigned Depth) const {
OS << std::string(Depth*2, ' ') << "Loop Containing: ";
for (unsigned i = 0; i < getBlocks().size(); ++i) {
if (i) OS << ",";
WriteAsOperand(OS, getBlocks()[i], false);
}
if (!ExitBlocks.empty()) {
OS << "\tExitBlocks: ";
for (unsigned i = 0; i < getExitBlocks().size(); ++i) {
if (i) OS << ",";
WriteAsOperand(OS, getExitBlocks()[i], false);
}
}
OS << "\n";
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->print(OS, Depth+2);
}
void Loop::dump() const {
print(std::cerr);
}
//===----------------------------------------------------------------------===//
// LoopInfo implementation
//
void LoopInfo::stub() {}
bool LoopInfo::runOnFunction(Function &) {
releaseMemory();
Calculate(getAnalysis<DominatorSet>()); // Update
return false;
}
void LoopInfo::releaseMemory() {
for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
E = TopLevelLoops.end(); I != E; ++I)
delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear();
}
void LoopInfo::Calculate(const DominatorSet &DS) {
BasicBlock *RootNode = DS.getRoot();
for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
NE = df_end(RootNode); NI != NE; ++NI)
if (Loop *L = ConsiderForLoop(*NI, DS))
TopLevelLoops.push_back(L);
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->setLoopDepth(1);
}
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorSet>();
}
void LoopInfo::print(std::ostream &OS) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->LoopDepth << "\n";
#endif
}
static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
if (SubLoop == 0) return true;
if (SubLoop == ParentLoop) return false;
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
}
Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) {
if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node?
std::vector<BasicBlock *> TodoStack;
// Scan the predecessors of BB, checking to see if BB dominates any of
// them. This identifies backedges which target this node...
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
if (DS.dominates(BB, *I)) // If BB dominates it's predecessor...
TodoStack.push_back(*I);
if (TodoStack.empty()) return 0; // No backedges to this block...
// Create a new loop to represent this basic block...
Loop *L = new Loop(BB);
BBMap[BB] = L;
BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock();
while (!TodoStack.empty()) { // Process all the nodes in the loop
BasicBlock *X = TodoStack.back();
TodoStack.pop_back();
if (!L->contains(X) && // As of yet unprocessed??
DS.dominates(EntryBlock, X)) { // X is reachable from entry block?
// Check to see if this block already belongs to a loop. If this occurs
// then we have a case where a loop that is supposed to be a child of the
// current loop was processed before the current loop. When this occurs,
// this child loop gets added to a part of the current loop, making it a
// sibling to the current loop. We have to reparent this loop.
if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X)))
if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
// Remove the subloop from it's current parent...
assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
Loop *SLP = SubLoop->ParentLoop; // SubLoopParent
std::vector<Loop*>::iterator I =
std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
SLP->SubLoops.erase(I); // Remove from parent...
// Add the subloop to THIS loop...
SubLoop->ParentLoop = L;
L->SubLoops.push_back(SubLoop);
}
// Normal case, add the block to our loop...
L->Blocks.push_back(X);
// Add all of the predecessors of X to the end of the work stack...
TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
}
}
// If there are any loops nested within this loop, create them now!
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I)
if (Loop *NewLoop = ConsiderForLoop(*I, DS)) {
L->SubLoops.push_back(NewLoop);
NewLoop->ParentLoop = L;
}
// Add the basic blocks that comprise this loop to the BBMap so that this
// loop can be found for them.
//
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I) {
std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I);
if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet...
BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
}
// Now that we have a list of all of the child loops of this loop, check to
// see if any of them should actually be nested inside of each other. We can
// accidentally pull loops our of their parents, so we must make sure to
// organize the loop nests correctly now.
{
std::map<BasicBlock*, Loop*> ContainingLoops;
for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
Loop *Child = L->SubLoops[i];
assert(Child->getParentLoop() == L && "Not proper child loop?");
if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) {
// If there is already a loop which contains this loop, move this loop
// into the containing loop.
MoveSiblingLoopInto(Child, ContainingLoop);
--i; // The loop got removed from the SubLoops list.
} else {
// This is currently considered to be a top-level loop. Check to see if
// any of the contained blocks are loop headers for subloops we have
// already processed.
for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]];
if (BlockLoop == 0) { // Child block not processed yet...
BlockLoop = Child;
} else if (BlockLoop != Child) {
Loop *SubLoop = BlockLoop;
// Reparent all of the blocks which used to belong to BlockLoops
for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
ContainingLoops[SubLoop->Blocks[j]] = Child;
// There is already a loop which contains this block, that means
// that we should reparent the loop which the block is currently
// considered to belong to to be a child of this loop.
MoveSiblingLoopInto(SubLoop, Child);
--i; // We just shrunk the SubLoops list.
}
}
}
}
}
// Now that we know all of the blocks that make up this loop, see if there are
// any branches to outside of the loop... building the ExitBlocks list.
for (std::vector<BasicBlock*>::iterator BI = L->Blocks.begin(),
BE = L->Blocks.end(); BI != BE; ++BI)
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
if (!L->contains(*I)) // Not in current loop?
L->ExitBlocks.push_back(*I); // It must be an exit block...
return L;
}
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
/// the NewParent Loop, instead of being a sibling of it.
void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) {
Loop *OldParent = NewChild->getParentLoop();
assert(OldParent && OldParent == NewParent->getParentLoop() &&
NewChild != NewParent && "Not sibling loops!");
// Remove NewChild from being a child of OldParent
std::vector<Loop*>::iterator I =
std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
OldParent->SubLoops.erase(I); // Remove from parent's subloops list
NewChild->ParentLoop = 0;
InsertLoopInto(NewChild, NewParent);
}
/// InsertLoopInto - This inserts loop L into the specified parent loop. If the
/// parent loop contains a loop which should contain L, the loop gets inserted
/// into L instead.
void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) {
BasicBlock *LHeader = L->getHeader();
assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
// Check to see if it belongs in a child loop...
for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
if (Parent->SubLoops[i]->contains(LHeader)) {
InsertLoopInto(L, Parent->SubLoops[i]);
return;
}
// If not, insert it here!
Parent->SubLoops.push_back(L);
L->ParentLoop = Parent;
}
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node. The "preheaders" pass can be
/// "Required" to ensure that there is always a preheader node for every loop.
///
/// This method returns null if there is no preheader for the loop (either
/// because the loop is dead or because multiple blocks branch to the header
/// node of this loop).
///
BasicBlock *Loop::getLoopPreheader() const {
// Keep track of nodes outside the loop branching to the header...
BasicBlock *Out = 0;
// Loop over the predecessors of the header node...
BasicBlock *Header = getHeader();
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI)
if (!contains(*PI)) { // If the block is not in the loop...
if (Out && Out != *PI)
return 0; // Multiple predecessors outside the loop
Out = *PI;
}
// Make sure there is only one exit out of the preheader...
succ_iterator SI = succ_begin(Out);
++SI;
if (SI != succ_end(Out))
return 0; // Multiple exits from the block, must not be a preheader.
// If there is exactly one preheader, return it. If there was zero, then Out
// is still null.
return Out;
}
/// addBasicBlockToLoop - This function is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop. Because
/// of this, it is added as a member of all parent loops, and is added to the
/// specified LoopInfo object as being in the current basic block. It is not
/// valid to replace the loop header with this method.
///
void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) {
assert(LI[getHeader()] == this && "Incorrect LI specified for this loop!");
assert(NewBB && "Cannot add a null basic block to the loop!");
assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
// Add the loop mapping to the LoopInfo object...
LI.BBMap[NewBB] = this;
// Add the basic block to this loop and all parent loops...
Loop *L = this;
while (L) {
L->Blocks.push_back(NewBB);
L = L->getParentLoop();
}
}
/// changeExitBlock - This method is used to update loop information. All
/// instances of the specified Old basic block are removed from the exit list
/// and replaced with New.
///
void Loop::changeExitBlock(BasicBlock *Old, BasicBlock *New) {
assert(Old != New && "Cannot changeExitBlock to the same thing!");
assert(Old && New && "Cannot changeExitBlock to or from a null node!");
assert(hasExitBlock(Old) && "Old exit block not found!");
std::vector<BasicBlock*>::iterator
I = std::find(ExitBlocks.begin(), ExitBlocks.end(), Old);
while (I != ExitBlocks.end()) {
*I = New;
I = std::find(I+1, ExitBlocks.end(), Old);
}
}
} // End llvm namespace
|