aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/MemoryDependenceAnalysis.cpp
blob: 457e94fb0a1887312d828073c06990e1f25638d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on.  It builds on 
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;

STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");

STATISTIC(NumCacheNonLocalPtr,
          "Number of fully cached non-local ptr responses");
STATISTIC(NumCacheDirtyNonLocalPtr,
          "Number of cached, but dirty, non-local ptr responses");
STATISTIC(NumUncacheNonLocalPtr,
          "Number of uncached non-local ptr responses");

char MemoryDependenceAnalysis::ID = 0;
  
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
                                     "Memory Dependence Analysis", false, true);

/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AliasAnalysis>();
  AU.addRequiredTransitive<TargetData>();
}

bool MemoryDependenceAnalysis::runOnFunction(Function &) {
  AA = &getAnalysis<AliasAnalysis>();
  TD = &getAnalysis<TargetData>();
  return false;
}

/// RemoveFromReverseMap - This is a helper function that removes Val from
/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
template <typename KeyTy>
static void RemoveFromReverseMap(DenseMap<Instruction*, 
                                 SmallPtrSet<KeyTy*, 4> > &ReverseMap,
                                 Instruction *Inst, KeyTy *Val) {
  typename DenseMap<Instruction*, SmallPtrSet<KeyTy*, 4> >::iterator
  InstIt = ReverseMap.find(Inst);
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
  bool Found = InstIt->second.erase(Val);
  assert(Found && "Invalid reverse map!"); Found=Found;
  if (InstIt->second.empty())
    ReverseMap.erase(InstIt);
}


/// getCallSiteDependencyFrom - Private helper for finding the local
/// dependencies of a call site.
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS, BasicBlock::iterator ScanIt,
                          BasicBlock *BB) {
  // Walk backwards through the block, looking for dependencies
  while (ScanIt != BB->begin()) {
    Instruction *Inst = --ScanIt;
    
    // If this inst is a memory op, get the pointer it accessed
    Value *Pointer = 0;
    uint64_t PointerSize = 0;
    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
      Pointer = S->getPointerOperand();
      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
      Pointer = V->getOperand(0);
      PointerSize = TD->getTypeStoreSize(V->getType());
    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
      Pointer = F->getPointerOperand();
      
      // FreeInsts erase the entire structure
      PointerSize = ~0ULL;
    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
      CallSite InstCS = CallSite::get(Inst);
      // If these two calls do not interfere, look past it.
      if (AA->getModRefInfo(CS, InstCS) == AliasAnalysis::NoModRef)
        continue;
      
      // FIXME: If this is a ref/ref result, we should ignore it!
      //  X = strlen(P);
      //  Y = strlen(Q);
      //  Z = strlen(P);  // Z = X
      
      // If they interfere, we generally return clobber.  However, if they are
      // calls to the same read-only functions we return Def.
      if (!AA->onlyReadsMemory(CS) || CS.getCalledFunction() == 0 ||
          CS.getCalledFunction() != InstCS.getCalledFunction())
        return MemDepResult::getClobber(Inst);
      return MemDepResult::getDef(Inst);
    } else {
      // Non-memory instruction.
      continue;
    }
    
    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
      return MemDepResult::getClobber(Inst);
  }
  
  // No dependence found.  If this is the entry block of the function, it is a
  // clobber, otherwise it is non-local.
  if (BB != &BB->getParent()->getEntryBlock())
    return MemDepResult::getNonLocal();
  return MemDepResult::getClobber(ScanIt);
}

/// getPointerDependencyFrom - Return the instruction on which a memory
/// location depends.  If isLoad is true, this routine ignore may-aliases with
/// read-only operations.
MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
                         BasicBlock::iterator ScanIt, BasicBlock *BB) {

  // Walk backwards through the basic block, looking for dependencies.
  while (ScanIt != BB->begin()) {
    Instruction *Inst = --ScanIt;

    // Values depend on loads if the pointers are must aliased.  This means that
    // a load depends on another must aliased load from the same value.
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
      Value *Pointer = LI->getPointerOperand();
      uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
      
      // If we found a pointer, check if it could be the same as our pointer.
      AliasAnalysis::AliasResult R =
        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
      if (R == AliasAnalysis::NoAlias)
        continue;
      
      // May-alias loads don't depend on each other without a dependence.
      if (isLoad && R == AliasAnalysis::MayAlias)
        continue;
      // Stores depend on may and must aliased loads, loads depend on must-alias
      // loads.
      return MemDepResult::getDef(Inst);
    }
    
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      Value *Pointer = SI->getPointerOperand();
      uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());

      // If we found a pointer, check if it could be the same as our pointer.
      AliasAnalysis::AliasResult R =
        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
      
      if (R == AliasAnalysis::NoAlias)
        continue;
      if (R == AliasAnalysis::MayAlias)
        return MemDepResult::getClobber(Inst);
      return MemDepResult::getDef(Inst);
    }

    // If this is an allocation, and if we know that the accessed pointer is to
    // the allocation, return Def.  This means that there is no dependence and
    // the access can be optimized based on that.  For example, a load could
    // turn into undef.
    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
      Value *AccessPtr = MemPtr->getUnderlyingObject();
      
      if (AccessPtr == AI ||
          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
        return MemDepResult::getDef(AI);
      continue;
    }
    
    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
    // FIXME: If this is a load, we should ignore readonly calls!
    if (AA->getModRefInfo(Inst, MemPtr, MemSize) == AliasAnalysis::NoModRef)
      continue;
    
    // Otherwise, there is a dependence.
    return MemDepResult::getClobber(Inst);
  }
  
  // No dependence found.  If this is the entry block of the function, it is a
  // clobber, otherwise it is non-local.
  if (BB != &BB->getParent()->getEntryBlock())
    return MemDepResult::getNonLocal();
  return MemDepResult::getClobber(ScanIt);
}

/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
  Instruction *ScanPos = QueryInst;
  
  // Check for a cached result
  MemDepResult &LocalCache = LocalDeps[QueryInst];
  
  // If the cached entry is non-dirty, just return it.  Note that this depends
  // on MemDepResult's default constructing to 'dirty'.
  if (!LocalCache.isDirty())
    return LocalCache;
    
  // Otherwise, if we have a dirty entry, we know we can start the scan at that
  // instruction, which may save us some work.
  if (Instruction *Inst = LocalCache.getInst()) {
    ScanPos = Inst;
   
    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
  }
  
  BasicBlock *QueryParent = QueryInst->getParent();
  
  Value *MemPtr = 0;
  uint64_t MemSize = 0;
  
  // Do the scan.
  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
    // No dependence found.  If this is the entry block of the function, it is a
    // clobber, otherwise it is non-local.
    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
      LocalCache = MemDepResult::getNonLocal();
    else
      LocalCache = MemDepResult::getClobber(QueryInst);
  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
    // If this is a volatile store, don't mess around with it.  Just return the
    // previous instruction as a clobber.
    if (SI->isVolatile())
      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
    else {
      MemPtr = SI->getPointerOperand();
      MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
    }
  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
    // If this is a volatile load, don't mess around with it.  Just return the
    // previous instruction as a clobber.
    if (LI->isVolatile())
      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
    else {
      MemPtr = LI->getPointerOperand();
      MemSize = TD->getTypeStoreSize(LI->getType());
    }
  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
    LocalCache = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
                                           QueryParent);
  } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
    MemPtr = FI->getPointerOperand();
    // FreeInsts erase the entire structure, not just a field.
    MemSize = ~0UL;
  } else {
    // Non-memory instruction.
    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
  }
  
  // If we need to do a pointer scan, make it happen.
  if (MemPtr)
    LocalCache = getPointerDependencyFrom(MemPtr, MemSize, 
                                          isa<LoadInst>(QueryInst),
                                          ScanPos, QueryParent);
  
  // Remember the result!
  if (Instruction *I = LocalCache.getInst())
    ReverseLocalDeps[I].insert(QueryInst);
  
  return LocalCache;
}

/// getNonLocalDependency - Perform a full dependency query for the
/// specified instruction, returning the set of blocks that the value is
/// potentially live across.  The returned set of results will include a
/// "NonLocal" result for all blocks where the value is live across.
///
/// This method assumes the instruction returns a "nonlocal" dependency
/// within its own block.
///
const MemoryDependenceAnalysis::NonLocalDepInfo &
MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
  // FIXME: Make this only be for callsites in the future.
  assert(isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst) ||
         isa<LoadInst>(QueryInst) || isa<StoreInst>(QueryInst));
  assert(getDependency(QueryInst).isNonLocal() &&
     "getNonLocalDependency should only be used on insts with non-local deps!");
  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
  NonLocalDepInfo &Cache = CacheP.first;

  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
  /// the cached case, this can happen due to instructions being deleted etc. In
  /// the uncached case, this starts out as the set of predecessors we care
  /// about.
  SmallVector<BasicBlock*, 32> DirtyBlocks;
  
  if (!Cache.empty()) {
    // Okay, we have a cache entry.  If we know it is not dirty, just return it
    // with no computation.
    if (!CacheP.second) {
      NumCacheNonLocal++;
      return Cache;
    }
    
    // If we already have a partially computed set of results, scan them to
    // determine what is dirty, seeding our initial DirtyBlocks worklist.
    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
       I != E; ++I)
      if (I->second.isDirty())
        DirtyBlocks.push_back(I->first);
    
    // Sort the cache so that we can do fast binary search lookups below.
    std::sort(Cache.begin(), Cache.end());
    
    ++NumCacheDirtyNonLocal;
    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
    //     << Cache.size() << " cached: " << *QueryInst;
  } else {
    // Seed DirtyBlocks with each of the preds of QueryInst's block.
    BasicBlock *QueryBB = QueryInst->getParent();
    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
    NumUncacheNonLocal++;
  }
  
  // Visited checked first, vector in sorted order.
  SmallPtrSet<BasicBlock*, 64> Visited;
  
  unsigned NumSortedEntries = Cache.size();
  
  // Iterate while we still have blocks to update.
  while (!DirtyBlocks.empty()) {
    BasicBlock *DirtyBB = DirtyBlocks.back();
    DirtyBlocks.pop_back();
    
    // Already processed this block?
    if (!Visited.insert(DirtyBB))
      continue;
    
    // Do a binary search to see if we already have an entry for this block in
    // the cache set.  If so, find it.
    NonLocalDepInfo::iterator Entry = 
      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
                       std::make_pair(DirtyBB, MemDepResult()));
    if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
      --Entry;
    
    MemDepResult *ExistingResult = 0;
    if (Entry != Cache.begin()+NumSortedEntries && 
        Entry->first == DirtyBB) {
      // If we already have an entry, and if it isn't already dirty, the block
      // is done.
      if (!Entry->second.isDirty())
        continue;
      
      // Otherwise, remember this slot so we can update the value.
      ExistingResult = &Entry->second;
    }
    
    // If the dirty entry has a pointer, start scanning from it so we don't have
    // to rescan the entire block.
    BasicBlock::iterator ScanPos = DirtyBB->end();
    if (ExistingResult) {
      if (Instruction *Inst = ExistingResult->getInst()) {
        ScanPos = Inst;
        // We're removing QueryInst's use of Inst.
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, QueryInst);
      }
    }
    
    // Find out if this block has a local dependency for QueryInst.
    MemDepResult Dep;
    
    Value *MemPtr = 0;
    uint64_t MemSize = 0;

    if (ScanPos == DirtyBB->begin()) {
      // No dependence found.  If this is the entry block of the function, it is a
      // clobber, otherwise it is non-local.
      if (DirtyBB != &DirtyBB->getParent()->getEntryBlock())
        Dep = MemDepResult::getNonLocal();
      else
        Dep = MemDepResult::getClobber(ScanPos);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
      // If this is a volatile store, don't mess around with it.  Just return the
      // previous instruction as a clobber.
      if (SI->isVolatile())
        Dep = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
      else {
        MemPtr = SI->getPointerOperand();
        MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
      }
    } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
      // If this is a volatile load, don't mess around with it.  Just return the
      // previous instruction as a clobber.
      if (LI->isVolatile())
        Dep = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
      else {
        MemPtr = LI->getPointerOperand();
        MemSize = TD->getTypeStoreSize(LI->getType());
      }
    } else {
      assert(isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst));
      Dep = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
                                      DirtyBB);
    }
    
    if (MemPtr)
      Dep = getPointerDependencyFrom(MemPtr, MemSize, isa<LoadInst>(QueryInst),
                                     ScanPos, DirtyBB);
    
    // If we had a dirty entry for the block, update it.  Otherwise, just add
    // a new entry.
    if (ExistingResult)
      *ExistingResult = Dep;
    else
      Cache.push_back(std::make_pair(DirtyBB, Dep));
    
    // If the block has a dependency (i.e. it isn't completely transparent to
    // the value), remember the association!
    if (!Dep.isNonLocal()) {
      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
      // update this when we remove instructions.
      if (Instruction *Inst = Dep.getInst())
        ReverseNonLocalDeps[Inst].insert(QueryInst);
    } else {
    
      // If the block *is* completely transparent to the load, we need to check
      // the predecessors of this block.  Add them to our worklist.
      DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
    }
  }
  
  return Cache;
}

/// getNonLocalPointerDependency - Perform a full dependency query for an
/// access to the specified (non-volatile) memory location, returning the
/// set of instructions that either define or clobber the value.
///
/// This method assumes the pointer has a "NonLocal" dependency within its
/// own block.
///
void MemoryDependenceAnalysis::
getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
                             SmallVectorImpl<NonLocalDepEntry> &Result) {
  Result.clear();
  
  // We know that the pointer value is live into FromBB find the def/clobbers
  // from presecessors.
  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
  uint64_t PointeeSize = TD->getTypeStoreSize(EltTy);
  
  // While we have blocks to analyze, get their values.
  SmallPtrSet<BasicBlock*, 64> Visited;
  
  for (pred_iterator PI = pred_begin(FromBB), E = pred_end(FromBB); PI != E;
       ++PI) {
    // TODO: PHI TRANSLATE.
    getNonLocalPointerDepInternal(Pointer, PointeeSize, isLoad, *PI,
                                  Result, Visited);
  }
}

void MemoryDependenceAnalysis::
getNonLocalPointerDepInternal(Value *Pointer, uint64_t PointeeSize,
                              bool isLoad, BasicBlock *StartBB,
                              SmallVectorImpl<NonLocalDepEntry> &Result,
                              SmallPtrSet<BasicBlock*, 64> &Visited) {
  SmallVector<BasicBlock*, 32> Worklist;
  Worklist.push_back(StartBB);
  
  // Look up the cached info for Pointer.
  ValueIsLoadPair CacheKey(Pointer, isLoad);
  NonLocalDepInfo *Cache = &NonLocalPointerDeps[CacheKey];
  
  // Keep track of the entries that we know are sorted.  Previously cached
  // entries will all be sorted.  The entries we add we only sort on demand (we
  // don't insert every element into its sorted position).  We know that we
  // won't get any reuse from currently inserted values, because we don't
  // revisit blocks after we insert info for them.
  unsigned NumSortedEntries = Cache->size();
  
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.pop_back_val();
    
    // Analyze the dependency of *Pointer in FromBB.  See if we already have
    // been here.
    if (!Visited.insert(BB))
      continue;

    // Get the dependency info for Pointer in BB.  If we have cached
    // information, we will use it, otherwise we compute it.
    
    // Do a binary search to see if we already have an entry for this block in
    // the cache set.  If so, find it.
    NonLocalDepInfo::iterator Entry =
      std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
                       std::make_pair(BB, MemDepResult()));
    if (Entry != Cache->begin() && (&*Entry)[-1].first == BB)
      --Entry;
    
    MemDepResult *ExistingResult = 0;
    if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
      ExistingResult = &Entry->second;
    
    // If we have a cached entry, and it is non-dirty, use it as the value for
    // this dependency.
    MemDepResult Dep;
    if (ExistingResult && !ExistingResult->isDirty()) {
      Dep = *ExistingResult;
      ++NumCacheNonLocalPtr;
    } else {
      // Otherwise, we have to scan for the value.  If we have a dirty cache
      // entry, start scanning from its position, otherwise we scan from the end
      // of the block.
      BasicBlock::iterator ScanPos = BB->end();
      if (ExistingResult && ExistingResult->getInst()) {
        assert(ExistingResult->getInst()->getParent() == BB &&
               "Instruction invalidated?");
        ++NumCacheDirtyNonLocalPtr;
        ScanPos = ExistingResult->getInst();

        // Eliminating the dirty entry from 'Cache', so update the reverse info.
        RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos,
                             CacheKey.getOpaqueValue());
      } else {
        ++NumUncacheNonLocalPtr;
      }
      
      // Scan the block for the dependency.
      Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad, ScanPos, BB);
      
      // If we had a dirty entry for the block, update it.  Otherwise, just add
      // a new entry.
      if (ExistingResult)
        *ExistingResult = Dep;
      else
        Cache->push_back(std::make_pair(BB, Dep));
      
      // If the block has a dependency (i.e. it isn't completely transparent to
      // the value), remember the reverse association because we just added it
      // to Cache!
      if (!Dep.isNonLocal()) {
        // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
        // update MemDep when we remove instructions.
        Instruction *Inst = Dep.getInst();
        assert(Inst && "Didn't depend on anything?");
        ReverseNonLocalPtrDeps[Inst].insert(CacheKey.getOpaqueValue());
      }
    }
    
    // If we got a Def or Clobber, add this to the list of results.
    if (!Dep.isNonLocal()) {
      Result.push_back(NonLocalDepEntry(BB, Dep));
      continue;
    }
    
    // Otherwise, we have to process all the predecessors of this block to scan
    // them as well.
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
      // TODO: PHI TRANSLATE.
      Worklist.push_back(*PI);
    }
  }
  
  // If we computed new values, re-sort Cache.
  if (NumSortedEntries != Cache->size())
    std::sort(Cache->begin(), Cache->end());
}

/// RemoveCachedNonLocalPointerDependencies - If P exists in
/// CachedNonLocalPointerInfo, remove it.
void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
  CachedNonLocalPointerInfo::iterator It = 
    NonLocalPointerDeps.find(P);
  if (It == NonLocalPointerDeps.end()) return;
  
  // Remove all of the entries in the BB->val map.  This involves removing
  // instructions from the reverse map.
  NonLocalDepInfo &PInfo = It->second;
  
  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
    Instruction *Target = PInfo[i].second.getInst();
    if (Target == 0) continue;  // Ignore non-local dep results.
    assert(Target->getParent() == PInfo[i].first && Target != P.getPointer());
    
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P.getOpaqueValue());
  }
  
  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
  NonLocalPointerDeps.erase(It);
}


/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
  // Walk through the Non-local dependencies, removing this one as the value
  // for any cached queries.
  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
  if (NLDI != NonLocalDeps.end()) {
    NonLocalDepInfo &BlockMap = NLDI->second.first;
    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
         DI != DE; ++DI)
      if (Instruction *Inst = DI->second.getInst())
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
    NonLocalDeps.erase(NLDI);
  }

  // If we have a cached local dependence query for this instruction, remove it.
  //
  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
  if (LocalDepEntry != LocalDeps.end()) {
    // Remove us from DepInst's reverse set now that the local dep info is gone.
    if (Instruction *Inst = LocalDepEntry->second.getInst())
      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);

    // Remove this local dependency info.
    LocalDeps.erase(LocalDepEntry);
  }
  
  // If we have any cached pointer dependencies on this instruction, remove
  // them.  If the instruction has non-pointer type, then it can't be a pointer
  // base.
  
  // Remove it from both the load info and the store info.  The instruction
  // can't be in either of these maps if it is non-pointer.
  if (isa<PointerType>(RemInst->getType())) {
    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
  }
  
  // Loop over all of the things that depend on the instruction we're removing.
  // 
  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;

  // If we find RemInst as a clobber or Def in any of the maps for other values,
  // we need to replace its entry with a dirty version of the instruction after
  // it.  If RemInst is a terminator, we use a null dirty value.
  //
  // Using a dirty version of the instruction after RemInst saves having to scan
  // the entire block to get to this point.
  MemDepResult NewDirtyVal;
  if (!RemInst->isTerminator())
    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
  
  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
  if (ReverseDepIt != ReverseLocalDeps.end()) {
    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
    // RemInst can't be the terminator if it has local stuff depending on it.
    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
           "Nothing can locally depend on a terminator");
    
    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
         E = ReverseDeps.end(); I != E; ++I) {
      Instruction *InstDependingOnRemInst = *I;
      assert(InstDependingOnRemInst != RemInst &&
             "Already removed our local dep info");
                        
      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
      
      // Make sure to remember that new things depend on NewDepInst.
      assert(NewDirtyVal.getInst() && "There is no way something else can have "
             "a local dep on this if it is a terminator!");
      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 
                                                InstDependingOnRemInst));
    }
    
    ReverseLocalDeps.erase(ReverseDepIt);

    // Add new reverse deps after scanning the set, to avoid invalidating the
    // 'ReverseDeps' reference.
    while (!ReverseDepsToAdd.empty()) {
      ReverseLocalDeps[ReverseDepsToAdd.back().first]
        .insert(ReverseDepsToAdd.back().second);
      ReverseDepsToAdd.pop_back();
    }
  }
  
  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
         I != E; ++I) {
      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
      
      PerInstNLInfo &INLD = NonLocalDeps[*I];
      // The information is now dirty!
      INLD.second = true;
      
      for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 
           DE = INLD.first.end(); DI != DE; ++DI) {
        if (DI->second.getInst() != RemInst) continue;
        
        // Convert to a dirty entry for the subsequent instruction.
        DI->second = NewDirtyVal;
        
        if (Instruction *NextI = NewDirtyVal.getInst())
          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
      }
    }

    ReverseNonLocalDeps.erase(ReverseDepIt);

    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
    while (!ReverseDepsToAdd.empty()) {
      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
        .insert(ReverseDepsToAdd.back().second);
      ReverseDepsToAdd.pop_back();
    }
  }
  
  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
  // value in the NonLocalPointerDeps info.
  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
    ReverseNonLocalPtrDeps.find(RemInst);
  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
    SmallPtrSet<void*, 4> &Set = ReversePtrDepIt->second;
    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
    
    for (SmallPtrSet<void*, 4>::iterator I = Set.begin(), E = Set.end();
         I != E; ++I) {
      ValueIsLoadPair P;
      P.setFromOpaqueValue(*I);
      assert(P.getPointer() != RemInst &&
             "Already removed NonLocalPointerDeps info for RemInst");
      
      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P];
      
      // Update any entries for RemInst to use the instruction after it.
      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
           DI != DE; ++DI) {
        if (DI->second.getInst() != RemInst) continue;
        
        // Convert to a dirty entry for the subsequent instruction.
        DI->second = NewDirtyVal;
        
        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
      }
    }
    
    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
    
    while (!ReversePtrDepsToAdd.empty()) {
      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
        .insert(ReversePtrDepsToAdd.back().second.getOpaqueValue());
      ReversePtrDepsToAdd.pop_back();
    }
  }
  
  
  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
  AA->deleteValue(RemInst);
  DEBUG(verifyRemoved(RemInst));
}

/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
       E = LocalDeps.end(); I != E; ++I) {
    assert(I->first != D && "Inst occurs in data structures");
    assert(I->second.getInst() != D &&
           "Inst occurs in data structures");
  }
  
  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
       E = NonLocalPointerDeps.end(); I != E; ++I) {
    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
    const NonLocalDepInfo &Val = I->second;
    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
         II != E; ++II)
      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
  }
  
  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
       E = NonLocalDeps.end(); I != E; ++I) {
    assert(I->first != D && "Inst occurs in data structures");
    const PerInstNLInfo &INLD = I->second;
    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
         EE = INLD.first.end(); II  != EE; ++II)
      assert(II->second.getInst() != D && "Inst occurs in data structures");
  }
  
  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
       E = ReverseLocalDeps.end(); I != E; ++I) {
    assert(I->first != D && "Inst occurs in data structures");
    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
         EE = I->second.end(); II != EE; ++II)
      assert(*II != D && "Inst occurs in data structures");
  }
  
  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
       E = ReverseNonLocalDeps.end();
       I != E; ++I) {
    assert(I->first != D && "Inst occurs in data structures");
    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
         EE = I->second.end(); II != EE; ++II)
      assert(*II != D && "Inst occurs in data structures");
  }
  
  for (ReverseNonLocalPtrDepTy::const_iterator
       I = ReverseNonLocalPtrDeps.begin(),
       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
    assert(I->first != D && "Inst occurs in rev NLPD map");
    
    for (SmallPtrSet<void*, 4>::const_iterator II = I->second.begin(),
         E = I->second.end(); II != E; ++II)
      assert(*II != ValueIsLoadPair(D, false).getOpaqueValue() &&
             *II != ValueIsLoadPair(D, true).getOpaqueValue() &&
             "Inst occurs in ReverseNonLocalPtrDeps map");
  }
  
}