aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/PostDominators.cpp
blob: bfa152035e0f57d50ce6b875bfb4e84d530ddc79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the post-dominator construction algorithms.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/PostDominators.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include <iostream>
using namespace llvm;

//===----------------------------------------------------------------------===//
//  ImmediatePostDominators Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<ImmediatePostDominators>
D("postidom", "Immediate Post-Dominators Construction", true);

unsigned ImmediatePostDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
                                          unsigned N) {

  std::vector<std::pair<BasicBlock *, InfoRec *> > workStack;
  workStack.push_back(std::make_pair(V, &VInfo));

  do {
    BasicBlock *currentBB = workStack.back().first; 
    InfoRec *currentVInfo = workStack.back().second;
    workStack.pop_back();

    currentVInfo->Semi = ++N;
    currentVInfo->Label = currentBB;

    Vertex.push_back(currentBB);  // Vertex[n] = current;
                                  // Info[currentBB].Ancestor = 0;     
                                  // Ancestor[n] = 0
                                  // Child[currentBB] = 0;
    currentVInfo->Size = 1;       // Size[currentBB] = 1

    // For PostDominators, we want to walk predecessors rather than successors
    // as we do in forward Dominators.
    for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB); 
         PI != PE; ++PI) {
      InfoRec &SuccVInfo = Info[*PI];
      if (SuccVInfo.Semi == 0) {
        SuccVInfo.Parent = currentBB;

        workStack.push_back(std::make_pair(*PI, &SuccVInfo));   
      }
    }
  } while (!workStack.empty());
  return N;
}

void ImmediatePostDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
  BasicBlock *VAncestor = VInfo.Ancestor;
  InfoRec &VAInfo = Info[VAncestor];
  if (VAInfo.Ancestor == 0)
    return;
  
  Compress(VAncestor, VAInfo);
  
  BasicBlock *VAncestorLabel = VAInfo.Label;
  BasicBlock *VLabel = VInfo.Label;
  if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
    VInfo.Label = VAncestorLabel;
  
  VInfo.Ancestor = VAInfo.Ancestor;
}

BasicBlock *ImmediatePostDominators::Eval(BasicBlock *V) {
  InfoRec &VInfo = Info[V];

  // Higher-complexity but faster implementation
  if (VInfo.Ancestor == 0)
    return V;
  Compress(V, VInfo);
  return VInfo.Label;
}

void ImmediatePostDominators::Link(BasicBlock *V, BasicBlock *W, 
                                   InfoRec &WInfo) {
  // Higher-complexity but faster implementation
  WInfo.Ancestor = V;
}

bool ImmediatePostDominators::runOnFunction(Function &F) {
  IDoms.clear();     // Reset from the last time we were run...
  Roots.clear();

  // Step #0: Scan the function looking for the root nodes of the post-dominance
  // relationships.  These blocks, which have no successors, end with return and
  // unwind instructions.
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (succ_begin(I) == succ_end(I))
      Roots.push_back(I);
  
  Vertex.push_back(0);
  
  // Step #1: Number blocks in depth-first order and initialize variables used
  // in later stages of the algorithm.
  unsigned N = 0;
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    N = DFSPass(Roots[i], Info[Roots[i]], N);
  
  for (unsigned i = N; i >= 2; --i) {
    BasicBlock *W = Vertex[i];
    InfoRec &WInfo = Info[W];
    
    // Step #2: Calculate the semidominators of all vertices
    for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
      if (Info.count(*SI)) {  // Only if this predecessor is reachable!
        unsigned SemiU = Info[Eval(*SI)].Semi;
        if (SemiU < WInfo.Semi)
          WInfo.Semi = SemiU;
      }
        
    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
    
    BasicBlock *WParent = WInfo.Parent;
    Link(WParent, W, WInfo);
    
    // Step #3: Implicitly define the immediate dominator of vertices
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
    while (!WParentBucket.empty()) {
      BasicBlock *V = WParentBucket.back();
      WParentBucket.pop_back();
      BasicBlock *U = Eval(V);
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
    }
  }
  
  // Step #4: Explicitly define the immediate dominator of each vertex
  for (unsigned i = 2; i <= N; ++i) {
    BasicBlock *W = Vertex[i];
    BasicBlock *&WIDom = IDoms[W];
    if (WIDom != Vertex[Info[W].Semi])
      WIDom = IDoms[WIDom];
  }
  
  // Free temporary memory used to construct idom's
  Info.clear();
  std::vector<BasicBlock*>().swap(Vertex);
  
  return false;
}

//===----------------------------------------------------------------------===//
//  PostDominatorSet Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<PostDominatorSet>
B("postdomset", "Post-Dominator Set Construction", true);

// Postdominator set construction.  This converts the specified function to only
// have a single exit node (return stmt), then calculates the post dominance
// sets for the function.
//
bool PostDominatorSet::runOnFunction(Function &F) {
  // Scan the function looking for the root nodes of the post-dominance
  // relationships.  These blocks end with return and unwind instructions.
  // While we are iterating over the function, we also initialize all of the
  // domsets to empty.
  Roots.clear();
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (succ_begin(I) == succ_end(I))
      Roots.push_back(I);

  // If there are no exit nodes for the function, postdomsets are all empty.
  // This can happen if the function just contains an infinite loop, for
  // example.
  ImmediatePostDominators &IPD = getAnalysis<ImmediatePostDominators>();
  Doms.clear();   // Reset from the last time we were run...
  if (Roots.empty()) return false;

  // If we have more than one root, we insert an artificial "null" exit, which
  // has "virtual edges" to each of the real exit nodes.
  //if (Roots.size() > 1)
  //  Doms[0].insert(0);

  // Root nodes only dominate themselves.
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    Doms[Roots[i]].insert(Roots[i]);
  
  // Loop over all of the blocks in the function, calculating dominator sets for
  // each function.
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (BasicBlock *IPDom = IPD[I]) {   // Get idom if block is reachable
      DomSetType &DS = Doms[I];
      assert(DS.empty() && "PostDomset already filled in for this block?");
      DS.insert(I);  // Blocks always dominate themselves

      // Insert all dominators into the set...
      while (IPDom) {
        // If we have already computed the dominator sets for our immediate post
        // dominator, just use it instead of walking all the way up to the root.
        DomSetType &IPDS = Doms[IPDom];
        if (!IPDS.empty()) {
          DS.insert(IPDS.begin(), IPDS.end());
          break;
        } else {
          DS.insert(IPDom);
          IPDom = IPD[IPDom];
        }
      }
    } else {
      // Ensure that every basic block has at least an empty set of nodes.  This
      // is important for the case when there is unreachable blocks.
      Doms[I];
    }

  return false;
}

//===----------------------------------------------------------------------===//
//  PostDominatorTree Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<PostDominatorTree>
F("postdomtree", "Post-Dominator Tree Construction", true);

DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
  Node *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;
  
  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate postdominator.
  BasicBlock *IPDom = getAnalysis<ImmediatePostDominators>()[BB];
  Node *IPDomNode = getNodeForBlock(IPDom);
  
  // Add a new tree node for this BasicBlock, and link it as a child of
  // IDomNode
  return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode));
}

void PostDominatorTree::calculate(const ImmediatePostDominators &IPD) {
  if (Roots.empty()) return;

  // Add a node for the root.  This node might be the actual root, if there is
  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
  // which postdominates all real exits if there are multiple exit blocks.
  BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
  Nodes[Root] = RootNode = new Node(Root, 0);
  
  Function *F = Roots[0]->getParent();
  // Loop over all of the reachable blocks in the function...
  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
    if (BasicBlock *ImmPostDom = IPD.get(I)) {  // Reachable block.
      Node *&BBNode = Nodes[I];
      if (!BBNode) {  // Haven't calculated this node yet?
                      // Get or calculate the node for the immediate dominator
        Node *IPDomNode = getNodeForBlock(ImmPostDom);
        
        // Add a new tree node for this BasicBlock, and link it as a child of
        // IDomNode
        BBNode = IPDomNode->addChild(new Node(I, IPDomNode));
      }
    }
}

//===----------------------------------------------------------------------===//
// PostETForest Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<PostETForest>
G("postetforest", "Post-ET-Forest Construction", true);

ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) {
  ETNode *&BBNode = Nodes[BB];
  if (BBNode) return BBNode;

  // Haven't calculated this node yet?  Get or calculate the node for the
  // immediate dominator.
  BasicBlock *IDom = getAnalysis<ImmediatePostDominators>()[BB];

  // If we are unreachable, we may not have an immediate dominator.
  if (!IDom)
    return BBNode = new ETNode(BB);
  else {
    ETNode *IDomNode = getNodeForBlock(IDom);
    
    // Add a new tree node for this BasicBlock, and link it as a child of
    // IDomNode
    BBNode = new ETNode(BB);
    BBNode->setFather(IDomNode);
    return BBNode;
  }
}

void PostETForest::calculate(const ImmediatePostDominators &ID) {
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root

  // Iterate over all nodes in inverse depth first order.
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
           E = idf_end(Roots[i]); I != E; ++I) {
    BasicBlock *BB = *I;
    ETNode *&BBNode = Nodes[BB];
    if (!BBNode) {  
      ETNode *IDomNode =  NULL;

      if (ID.get(BB))
        IDomNode = getNodeForBlock(ID.get(BB));

      // Add a new ETNode for this BasicBlock, and set it's parent
      // to it's immediate dominator.
      BBNode = new ETNode(BB);
      if (IDomNode)          
        BBNode->setFather(IDomNode);
    }
  }

  int dfsnum = 0;
  // Iterate over all nodes in depth first order...
  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
    for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
           E = idf_end(Roots[i]); I != E; ++I) {
        if (!getNodeForBlock(*I)->hasFather())
          getNodeForBlock(*I)->assignDFSNumber(dfsnum);
    }
  DFSInfoValid = true;
}

//===----------------------------------------------------------------------===//
//  PostDominanceFrontier Implementation
//===----------------------------------------------------------------------===//

static RegisterPass<PostDominanceFrontier>
H("postdomfrontier", "Post-Dominance Frontier Construction", true);

const DominanceFrontier::DomSetType &
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
                                 const DominatorTree::Node *Node) {
  // Loop over CFG successors to calculate DFlocal[Node]
  BasicBlock *BB = Node->getBlock();
  DomSetType &S = Frontiers[BB];       // The new set to fill in...
  if (getRoots().empty()) return S;

  if (BB)
    for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
         SI != SE; ++SI)
      // Does Node immediately dominate this predecessor?
      if (DT[*SI]->getIDom() != Node)
        S.insert(*SI);

  // At this point, S is DFlocal.  Now we union in DFup's of our children...
  // Loop through and visit the nodes that Node immediately dominates (Node's
  // children in the IDomTree)
  //
  for (PostDominatorTree::Node::const_iterator
         NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
    DominatorTree::Node *IDominee = *NI;
    const DomSetType &ChildDF = calculate(DT, IDominee);

    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
    for (; CDFI != CDFE; ++CDFI) {
      if (!Node->properlyDominates(DT[*CDFI]))
        S.insert(*CDFI);
    }
  }

  return S;
}

// Ensure that this .cpp file gets linked when PostDominators.h is used.
DEFINING_FILE_FOR(PostDominanceFrontier)