aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ScalarEvolution.cpp
blob: ae3aa411f2b523dacea9a6fd5b07d41da91cb495 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution analysis
// engine, which is used primarily to analyze expressions involving induction
// variables in loops.
//
// There are several aspects to this library.  First is the representation of
// scalar expressions, which are represented as subclasses of the SCEV class.
// These classes are used to represent certain types of subexpressions that we
// can handle.  These classes are reference counted, managed by the SCEVHandle
// class.  We only create one SCEV of a particular shape, so pointer-comparisons
// for equality are legal.
//
// One important aspect of the SCEV objects is that they are never cyclic, even
// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
// the PHI node is one of the idioms that we can represent (e.g., a polynomial
// recurrence) then we represent it directly as a recurrence node, otherwise we
// represent it as a SCEVUnknown node.
//
// In addition to being able to represent expressions of various types, we also
// have folders that are used to build the *canonical* representation for a
// particular expression.  These folders are capable of using a variety of
// rewrite rules to simplify the expressions.
// 
// Once the folders are defined, we can implement the more interesting
// higher-level code, such as the code that recognizes PHI nodes of various
// types, computes the execution count of a loop, etc.
//
// TODO: We should use these routines and value representations to implement
// dependence analysis!
//
//===----------------------------------------------------------------------===//
//
// There are several good references for the techniques used in this analysis.
//
//  Chains of recurrences -- a method to expedite the evaluation
//  of closed-form functions
//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
//
//  On computational properties of chains of recurrences
//  Eugene V. Zima
//
//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
//  Robert A. van Engelen
//
//  Efficient Symbolic Analysis for Optimizing Compilers
//  Robert A. van Engelen
//
//  Using the chains of recurrences algebra for data dependence testing and
//  induction variable substitution
//  MS Thesis, Johnie Birch
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/InstIterator.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
#include <cmath>
using namespace llvm;

namespace {
  RegisterAnalysis<ScalarEvolution>
  R("scalar-evolution", "Scalar Evolution Analysis");

  Statistic<>
  NumBruteForceEvaluations("scalar-evolution",
                           "Number of brute force evaluations needed to calculate high-order polynomial exit values");
  Statistic<>
  NumTripCountsComputed("scalar-evolution",
                        "Number of loops with predictable loop counts");
  Statistic<>
  NumTripCountsNotComputed("scalar-evolution",
                           "Number of loops without predictable loop counts");
  Statistic<>
  NumBruteForceTripCountsComputed("scalar-evolution",
                        "Number of loops with trip counts computed by force");

  cl::opt<unsigned>
  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
                          cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
                          cl::init(100));
}

//===----------------------------------------------------------------------===//
//                           SCEV class definitions
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Implementation of the SCEV class.
//
namespace {
  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
  /// than the complexity of the RHS.  If the SCEVs have identical complexity,
  /// order them by their addresses.  This comparator is used to canonicalize
  /// expressions.
  struct SCEVComplexityCompare {
    bool operator()(SCEV *LHS, SCEV *RHS) {
      if (LHS->getSCEVType() < RHS->getSCEVType())
        return true;
      if (LHS->getSCEVType() == RHS->getSCEVType())
        return LHS < RHS;
      return false;
    }
  };
}

SCEV::~SCEV() {}
void SCEV::dump() const {
  print(std::cerr);
}

/// getValueRange - Return the tightest constant bounds that this value is
/// known to have.  This method is only valid on integer SCEV objects.
ConstantRange SCEV::getValueRange() const {
  const Type *Ty = getType();
  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
  Ty = Ty->getUnsignedVersion();
  // Default to a full range if no better information is available.
  return ConstantRange(getType());
}


SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}

bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
  return false;
}

const Type *SCEVCouldNotCompute::getType() const {
  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
  return 0;
}

bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
  return false;
}

void SCEVCouldNotCompute::print(std::ostream &OS) const {
  OS << "***COULDNOTCOMPUTE***";
}

bool SCEVCouldNotCompute::classof(const SCEV *S) {
  return S->getSCEVType() == scCouldNotCompute;
}


// SCEVConstants - Only allow the creation of one SCEVConstant for any
// particular value.  Don't use a SCEVHandle here, or else the object will
// never be deleted!
static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
  

SCEVConstant::~SCEVConstant() {
  SCEVConstants.erase(V);
}

SCEVHandle SCEVConstant::get(ConstantInt *V) {
  // Make sure that SCEVConstant instances are all unsigned.
  if (V->getType()->isSigned()) {
    const Type *NewTy = V->getType()->getUnsignedVersion();
    V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
  }
  
  SCEVConstant *&R = SCEVConstants[V];
  if (R == 0) R = new SCEVConstant(V);
  return R;
}

ConstantRange SCEVConstant::getValueRange() const {
  return ConstantRange(V);
}

const Type *SCEVConstant::getType() const { return V->getType(); }

void SCEVConstant::print(std::ostream &OS) const {
  WriteAsOperand(OS, V, false);
}

// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
// particular input.  Don't use a SCEVHandle here, or else the object will
// never be deleted!
static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;

SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
  : SCEV(scTruncate), Op(op), Ty(ty) {
  assert(Op->getType()->isInteger() && Ty->isInteger() &&
         Ty->isUnsigned() &&
         "Cannot truncate non-integer value!");
  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
         "This is not a truncating conversion!");
}

SCEVTruncateExpr::~SCEVTruncateExpr() {
  SCEVTruncates.erase(std::make_pair(Op, Ty));
}

ConstantRange SCEVTruncateExpr::getValueRange() const {
  return getOperand()->getValueRange().truncate(getType());
}

void SCEVTruncateExpr::print(std::ostream &OS) const {
  OS << "(truncate " << *Op << " to " << *Ty << ")";
}

// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
// particular input.  Don't use a SCEVHandle here, or else the object will never
// be deleted!
static std::map<std::pair<SCEV*, const Type*>,
                SCEVZeroExtendExpr*> SCEVZeroExtends;

SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
  : SCEV(scTruncate), Op(Op), Ty(ty) {
  assert(Op->getType()->isInteger() && Ty->isInteger() &&
         Ty->isUnsigned() &&
         "Cannot zero extend non-integer value!");
  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
         "This is not an extending conversion!");
}

SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
  SCEVZeroExtends.erase(std::make_pair(Op, Ty));
}

ConstantRange SCEVZeroExtendExpr::getValueRange() const {
  return getOperand()->getValueRange().zeroExtend(getType());
}

void SCEVZeroExtendExpr::print(std::ostream &OS) const {
  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
}

// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
// particular input.  Don't use a SCEVHandle here, or else the object will never
// be deleted!
static std::map<std::pair<unsigned, std::vector<SCEV*> >,
                SCEVCommutativeExpr*> SCEVCommExprs;

SCEVCommutativeExpr::~SCEVCommutativeExpr() {
  SCEVCommExprs.erase(std::make_pair(getSCEVType(),
                                     std::vector<SCEV*>(Operands.begin(),
                                                        Operands.end())));
}

void SCEVCommutativeExpr::print(std::ostream &OS) const {
  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
  const char *OpStr = getOperationStr();
  OS << "(" << *Operands[0];
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
    OS << OpStr << *Operands[i];
  OS << ")";
}

// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
// input.  Don't use a SCEVHandle here, or else the object will never be
// deleted!
static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;

SCEVUDivExpr::~SCEVUDivExpr() {
  SCEVUDivs.erase(std::make_pair(LHS, RHS));
}

void SCEVUDivExpr::print(std::ostream &OS) const {
  OS << "(" << *LHS << " /u " << *RHS << ")";
}

const Type *SCEVUDivExpr::getType() const {
  const Type *Ty = LHS->getType();
  if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
  return Ty;
}

// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
// particular input.  Don't use a SCEVHandle here, or else the object will never
// be deleted!
static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
                SCEVAddRecExpr*> SCEVAddRecExprs;

SCEVAddRecExpr::~SCEVAddRecExpr() {
  SCEVAddRecExprs.erase(std::make_pair(L,
                                       std::vector<SCEV*>(Operands.begin(),
                                                          Operands.end())));
}

bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
  // contain L.
  return !QueryLoop->contains(L->getHeader());
}


void SCEVAddRecExpr::print(std::ostream &OS) const {
  OS << "{" << *Operands[0];
  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
    OS << ",+," << *Operands[i];
  OS << "}<" << L->getHeader()->getName() + ">";
}

// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
// value.  Don't use a SCEVHandle here, or else the object will never be
// deleted!
static std::map<Value*, SCEVUnknown*> SCEVUnknowns;

SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }

bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
  // All non-instruction values are loop invariant.  All instructions are loop
  // invariant if they are not contained in the specified loop.
  if (Instruction *I = dyn_cast<Instruction>(V))
    return !L->contains(I->getParent());
  return true;
}

const Type *SCEVUnknown::getType() const {
  return V->getType();
}

void SCEVUnknown::print(std::ostream &OS) const {
  WriteAsOperand(OS, V, false);
}



//===----------------------------------------------------------------------===//
//                      Simple SCEV method implementations
//===----------------------------------------------------------------------===//

/// getIntegerSCEV - Given an integer or FP type, create a constant for the
/// specified signed integer value and return a SCEV for the constant.
SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
  Constant *C;
  if (Val == 0) 
    C = Constant::getNullValue(Ty);
  else if (Ty->isFloatingPoint())
    C = ConstantFP::get(Ty, Val);
  else if (Ty->isSigned())
    C = ConstantSInt::get(Ty, Val);
  else {
    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
    C = ConstantExpr::getCast(C, Ty);
  }
  return SCEVUnknown::get(C);
}

/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type.  If the type must be extended, it is zero
/// extended.
static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
  const Type *SrcTy = V->getType();
  assert(SrcTy->isInteger() && Ty->isInteger() &&
         "Cannot truncate or zero extend with non-integer arguments!");
  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
    return V;  // No conversion
  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
    return SCEVTruncateExpr::get(V, Ty);
  return SCEVZeroExtendExpr::get(V, Ty);
}

/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
///
static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
  
  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
}

/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
///
static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
  // X - Y --> X + -Y
  return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS));
}


/// Binomial - Evaluate N!/((N-M)!*M!)  .  Note that N is often large and M is
/// often very small, so we try to reduce the number of N! terms we need to
/// evaluate by evaluating this as  (N!/(N-M)!)/M!
static ConstantInt *Binomial(ConstantInt *N, unsigned M) {
  uint64_t NVal = N->getRawValue();
  uint64_t FirstTerm = 1;
  for (unsigned i = 0; i != M; ++i)
    FirstTerm *= NVal-i;

  unsigned MFactorial = 1;
  for (; M; --M)
    MFactorial *= M;

  Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial);
  Result = ConstantExpr::getCast(Result, N->getType());
  assert(isa<ConstantInt>(Result) && "Cast of integer not folded??");
  return cast<ConstantInt>(Result);
}

/// PartialFact - Compute V!/(V-NumSteps)!
static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
  // Handle this case efficiently, it is common to have constant iteration
  // counts while computing loop exit values.
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
    uint64_t Val = SC->getValue()->getRawValue();
    uint64_t Result = 1;
    for (; NumSteps; --NumSteps)
      Result *= Val-(NumSteps-1);
    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
  }

  const Type *Ty = V->getType();
  if (NumSteps == 0)
    return SCEVUnknown::getIntegerSCEV(1, Ty);
  
  SCEVHandle Result = V;
  for (unsigned i = 1; i != NumSteps; ++i)
    Result = SCEVMulExpr::get(Result, getMinusSCEV(V,
                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
  return Result;
}


/// evaluateAtIteration - Return the value of this chain of recurrences at
/// the specified iteration number.  We can evaluate this recurrence by
/// multiplying each element in the chain by the binomial coefficient
/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
///
///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
///
/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
/// Is the binomial equation safe using modular arithmetic??
///
SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
  SCEVHandle Result = getStart();
  int Divisor = 1;
  const Type *Ty = It->getType();
  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
    SCEVHandle BC = PartialFact(It, i);
    Divisor *= i;
    SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
    Result = SCEVAddExpr::get(Result, Val);
  }
  return Result;
}


//===----------------------------------------------------------------------===//
//                    SCEV Expression folder implementations
//===----------------------------------------------------------------------===//

SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));

  // If the input value is a chrec scev made out of constants, truncate
  // all of the constants.
  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
    std::vector<SCEVHandle> Operands;
    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
      // FIXME: This should allow truncation of other expression types!
      if (isa<SCEVConstant>(AddRec->getOperand(i)))
        Operands.push_back(get(AddRec->getOperand(i), Ty));
      else
        break;
    if (Operands.size() == AddRec->getNumOperands())
      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
  }

  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
  return Result;
}

SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));

  // FIXME: If the input value is a chrec scev, and we can prove that the value
  // did not overflow the old, smaller, value, we can zero extend all of the
  // operands (often constants).  This would allow analysis of something like
  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }

  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
  return Result;
}

// get - Get a canonical add expression, or something simpler if possible.
SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
  assert(!Ops.empty() && "Cannot get empty add!");
  if (Ops.size() == 1) return Ops[0];

  // Sort by complexity, this groups all similar expression types together.
  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());

  // If there are any constants, fold them together.
  unsigned Idx = 0;
  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
    ++Idx;
    assert(Idx < Ops.size());
    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
      // We found two constants, fold them together!
      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
        Ops[0] = SCEVConstant::get(CI);
        Ops.erase(Ops.begin()+1);  // Erase the folded element
        if (Ops.size() == 1) return Ops[0];
      } else {
        // If we couldn't fold the expression, move to the next constant.  Note
        // that this is impossible to happen in practice because we always
        // constant fold constant ints to constant ints.
        ++Idx;
      }
    }

    // If we are left with a constant zero being added, strip it off.
    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
      Ops.erase(Ops.begin());
      --Idx;
    }
  }

  if (Ops.size() == 1) return Ops[0];
  
  // Okay, check to see if the same value occurs in the operand list twice.  If
  // so, merge them together into an multiply expression.  Since we sorted the
  // list, these values are required to be adjacent.
  const Type *Ty = Ops[0]->getType();
  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
      // Found a match, merge the two values into a multiply, and add any
      // remaining values to the result.
      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
      if (Ops.size() == 2)
        return Mul;
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
      Ops.push_back(Mul);
      return SCEVAddExpr::get(Ops);
    }

  // Okay, now we know the first non-constant operand.  If there are add
  // operands they would be next.
  if (Idx < Ops.size()) {
    bool DeletedAdd = false;
    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
      // If we have an add, expand the add operands onto the end of the operands
      // list.
      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
      Ops.erase(Ops.begin()+Idx);
      DeletedAdd = true;
    }

    // If we deleted at least one add, we added operands to the end of the list,
    // and they are not necessarily sorted.  Recurse to resort and resimplify
    // any operands we just aquired.
    if (DeletedAdd)
      return get(Ops);
  }

  // Skip over the add expression until we get to a multiply.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
    ++Idx;

  // If we are adding something to a multiply expression, make sure the
  // something is not already an operand of the multiply.  If so, merge it into
  // the multiply.
  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
        if (MulOpSCEV == Ops[AddOp] &&
            (Mul->getNumOperands() != 2 || !isa<SCEVConstant>(MulOpSCEV))) {
          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
          if (Mul->getNumOperands() != 2) {
            // If the multiply has more than two operands, we must get the
            // Y*Z term.
            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
            MulOps.erase(MulOps.begin()+MulOp);
            InnerMul = SCEVMulExpr::get(MulOps);
          }
          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
          if (Ops.size() == 2) return OuterMul;
          if (AddOp < Idx) {
            Ops.erase(Ops.begin()+AddOp);
            Ops.erase(Ops.begin()+Idx-1);
          } else {
            Ops.erase(Ops.begin()+Idx);
            Ops.erase(Ops.begin()+AddOp-1);
          }
          Ops.push_back(OuterMul);
          return SCEVAddExpr::get(Ops);
        }
      
      // Check this multiply against other multiplies being added together.
      for (unsigned OtherMulIdx = Idx+1;
           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
           ++OtherMulIdx) {
        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
        // If MulOp occurs in OtherMul, we can fold the two multiplies
        // together.
        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
             OMulOp != e; ++OMulOp)
          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
            if (Mul->getNumOperands() != 2) {
              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
              MulOps.erase(MulOps.begin()+MulOp);
              InnerMul1 = SCEVMulExpr::get(MulOps);
            }
            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
            if (OtherMul->getNumOperands() != 2) {
              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
                                             OtherMul->op_end());
              MulOps.erase(MulOps.begin()+OMulOp);
              InnerMul2 = SCEVMulExpr::get(MulOps);
            }
            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
            if (Ops.size() == 2) return OuterMul;
            Ops.erase(Ops.begin()+Idx);
            Ops.erase(Ops.begin()+OtherMulIdx-1);
            Ops.push_back(OuterMul);
            return SCEVAddExpr::get(Ops);
          }
      }
    }
  }

  // If there are any add recurrences in the operands list, see if any other
  // added values are loop invariant.  If so, we can fold them into the
  // recurrence.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
    ++Idx;

  // Scan over all recurrences, trying to fold loop invariants into them.
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
    // Scan all of the other operands to this add and add them to the vector if
    // they are loop invariant w.r.t. the recurrence.
    std::vector<SCEVHandle> LIOps;
    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
        LIOps.push_back(Ops[i]);
        Ops.erase(Ops.begin()+i);
        --i; --e;
      }

    // If we found some loop invariants, fold them into the recurrence.
    if (!LIOps.empty()) {
      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
      LIOps.push_back(AddRec->getStart());

      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
      AddRecOps[0] = SCEVAddExpr::get(LIOps);

      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
      // If all of the other operands were loop invariant, we are done.
      if (Ops.size() == 1) return NewRec;

      // Otherwise, add the folded AddRec by the non-liv parts.
      for (unsigned i = 0;; ++i)
        if (Ops[i] == AddRec) {
          Ops[i] = NewRec;
          break;
        }
      return SCEVAddExpr::get(Ops);
    }

    // Okay, if there weren't any loop invariants to be folded, check to see if
    // there are multiple AddRec's with the same loop induction variable being
    // added together.  If so, we can fold them.
    for (unsigned OtherIdx = Idx+1;
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
      if (OtherIdx != Idx) {
        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
            if (i >= NewOps.size()) {
              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
                            OtherAddRec->op_end());
              break;
            }
            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
          }
          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());

          if (Ops.size() == 2) return NewAddRec;

          Ops.erase(Ops.begin()+Idx);
          Ops.erase(Ops.begin()+OtherIdx-1);
          Ops.push_back(NewAddRec);
          return SCEVAddExpr::get(Ops);
        }
      }

    // Otherwise couldn't fold anything into this recurrence.  Move onto the
    // next one.
  }

  // Okay, it looks like we really DO need an add expr.  Check to see if we
  // already have one, otherwise create a new one.
  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
                                                              SCEVOps)];
  if (Result == 0) Result = new SCEVAddExpr(Ops);
  return Result;
}


SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
  assert(!Ops.empty() && "Cannot get empty mul!");

  // Sort by complexity, this groups all similar expression types together.
  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());

  // If there are any constants, fold them together.
  unsigned Idx = 0;
  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {

    // C1*(C2+V) -> C1*C2 + C1*V
    if (Ops.size() == 2)
      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
        if (Add->getNumOperands() == 2 &&
            isa<SCEVConstant>(Add->getOperand(0)))
          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));


    ++Idx;
    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
      // We found two constants, fold them together!
      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
        Ops[0] = SCEVConstant::get(CI);
        Ops.erase(Ops.begin()+1);  // Erase the folded element
        if (Ops.size() == 1) return Ops[0];
      } else {
        // If we couldn't fold the expression, move to the next constant.  Note
        // that this is impossible to happen in practice because we always
        // constant fold constant ints to constant ints.
        ++Idx;
      }
    }

    // If we are left with a constant one being multiplied, strip it off.
    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
      Ops.erase(Ops.begin());
      --Idx;
    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
      // If we have a multiply of zero, it will always be zero.
      return Ops[0];
    }
  }

  // Skip over the add expression until we get to a multiply.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
    ++Idx;

  if (Ops.size() == 1)
    return Ops[0];
  
  // If there are mul operands inline them all into this expression.
  if (Idx < Ops.size()) {
    bool DeletedMul = false;
    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
      // If we have an mul, expand the mul operands onto the end of the operands
      // list.
      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
      Ops.erase(Ops.begin()+Idx);
      DeletedMul = true;
    }

    // If we deleted at least one mul, we added operands to the end of the list,
    // and they are not necessarily sorted.  Recurse to resort and resimplify
    // any operands we just aquired.
    if (DeletedMul)
      return get(Ops);
  }

  // If there are any add recurrences in the operands list, see if any other
  // added values are loop invariant.  If so, we can fold them into the
  // recurrence.
  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
    ++Idx;

  // Scan over all recurrences, trying to fold loop invariants into them.
  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
    // Scan all of the other operands to this mul and add them to the vector if
    // they are loop invariant w.r.t. the recurrence.
    std::vector<SCEVHandle> LIOps;
    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
        LIOps.push_back(Ops[i]);
        Ops.erase(Ops.begin()+i);
        --i; --e;
      }

    // If we found some loop invariants, fold them into the recurrence.
    if (!LIOps.empty()) {
      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
      std::vector<SCEVHandle> NewOps;
      NewOps.reserve(AddRec->getNumOperands());
      if (LIOps.size() == 1) {
        SCEV *Scale = LIOps[0];
        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
      } else {
        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
          std::vector<SCEVHandle> MulOps(LIOps);
          MulOps.push_back(AddRec->getOperand(i));
          NewOps.push_back(SCEVMulExpr::get(MulOps));
        }
      }

      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());

      // If all of the other operands were loop invariant, we are done.
      if (Ops.size() == 1) return NewRec;

      // Otherwise, multiply the folded AddRec by the non-liv parts.
      for (unsigned i = 0;; ++i)
        if (Ops[i] == AddRec) {
          Ops[i] = NewRec;
          break;
        }
      return SCEVMulExpr::get(Ops);
    }

    // Okay, if there weren't any loop invariants to be folded, check to see if
    // there are multiple AddRec's with the same loop induction variable being
    // multiplied together.  If so, we can fold them.
    for (unsigned OtherIdx = Idx+1;
         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
      if (OtherIdx != Idx) {
        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
                                                 G->getStart());
          SCEVHandle B = F->getStepRecurrence();
          SCEVHandle D = G->getStepRecurrence();
          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
                                                SCEVMulExpr::get(G, B),
                                                SCEVMulExpr::get(B, D));
          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
                                                     F->getLoop());
          if (Ops.size() == 2) return NewAddRec;

          Ops.erase(Ops.begin()+Idx);
          Ops.erase(Ops.begin()+OtherIdx-1);
          Ops.push_back(NewAddRec);
          return SCEVMulExpr::get(Ops);
        }
      }

    // Otherwise couldn't fold anything into this recurrence.  Move onto the
    // next one.
  }

  // Okay, it looks like we really DO need an mul expr.  Check to see if we
  // already have one, otherwise create a new one.
  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
                                                              SCEVOps)];
  if (Result == 0) Result = new SCEVMulExpr(Ops);
  return Result;
}

SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
    if (RHSC->getValue()->equalsInt(1))
      return LHS;                            // X /u 1 --> x
    if (RHSC->getValue()->isAllOnesValue())
      return getNegativeSCEV(LHS);           // X /u -1  -->  -x

    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
      Constant *LHSCV = LHSC->getValue();
      Constant *RHSCV = RHSC->getValue();
      if (LHSCV->getType()->isSigned())
        LHSCV = ConstantExpr::getCast(LHSCV,
                                      LHSCV->getType()->getUnsignedVersion());
      if (RHSCV->getType()->isSigned())
        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
    }
  }

  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.

  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
  return Result;
}


/// SCEVAddRecExpr::get - Get a add recurrence expression for the
/// specified loop.  Simplify the expression as much as possible.
SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
                               const SCEVHandle &Step, const Loop *L) {
  std::vector<SCEVHandle> Operands;
  Operands.push_back(Start);
  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
    if (StepChrec->getLoop() == L) {
      Operands.insert(Operands.end(), StepChrec->op_begin(),
                      StepChrec->op_end());
      return get(Operands, L);
    }

  Operands.push_back(Step);
  return get(Operands, L);
}

/// SCEVAddRecExpr::get - Get a add recurrence expression for the
/// specified loop.  Simplify the expression as much as possible.
SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
                               const Loop *L) {
  if (Operands.size() == 1) return Operands[0];

  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
    if (StepC->getValue()->isNullValue()) {
      Operands.pop_back();
      return get(Operands, L);             // { X,+,0 }  -->  X
    }

  SCEVAddRecExpr *&Result =
    SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
                                                         Operands.end()))];
  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
  return Result;
}

SCEVHandle SCEVUnknown::get(Value *V) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    return SCEVConstant::get(CI);
  SCEVUnknown *&Result = SCEVUnknowns[V];
  if (Result == 0) Result = new SCEVUnknown(V);
  return Result;
}


//===----------------------------------------------------------------------===//
//             ScalarEvolutionsImpl Definition and Implementation
//===----------------------------------------------------------------------===//
//
/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
/// evolution code.
///
namespace {
  struct ScalarEvolutionsImpl {
    /// F - The function we are analyzing.
    ///
    Function &F;

    /// LI - The loop information for the function we are currently analyzing.
    ///
    LoopInfo &LI;

    /// UnknownValue - This SCEV is used to represent unknown trip counts and
    /// things.
    SCEVHandle UnknownValue;

    /// Scalars - This is a cache of the scalars we have analyzed so far.
    ///
    std::map<Value*, SCEVHandle> Scalars;

    /// IterationCounts - Cache the iteration count of the loops for this
    /// function as they are computed.
    std::map<const Loop*, SCEVHandle> IterationCounts;

    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    /// the PHI instructions that we attempt to compute constant evolutions for.
    /// This allows us to avoid potentially expensive recomputation of these
    /// properties.  An instruction maps to null if we are unable to compute its
    /// exit value.
    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    
  public:
    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}

    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
    /// expression and create a new one.
    SCEVHandle getSCEV(Value *V);

    /// getSCEVAtScope - Compute the value of the specified expression within
    /// the indicated loop (which may be null to indicate in no loop).  If the
    /// expression cannot be evaluated, return UnknownValue itself.
    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);


    /// hasLoopInvariantIterationCount - Return true if the specified loop has
    /// an analyzable loop-invariant iteration count.
    bool hasLoopInvariantIterationCount(const Loop *L);

    /// getIterationCount - If the specified loop has a predictable iteration
    /// count, return it.  Note that it is not valid to call this method on a
    /// loop without a loop-invariant iteration count.
    SCEVHandle getIterationCount(const Loop *L);

    /// deleteInstructionFromRecords - This method should be called by the
    /// client before it removes an instruction from the program, to make sure
    /// that no dangling references are left around.
    void deleteInstructionFromRecords(Instruction *I);

  private:
    /// createSCEV - We know that there is no SCEV for the specified value.
    /// Analyze the expression.
    SCEVHandle createSCEV(Value *V);
    SCEVHandle createNodeForCast(CastInst *CI);

    /// createNodeForPHI - Provide the special handling we need to analyze PHI
    /// SCEVs.
    SCEVHandle createNodeForPHI(PHINode *PN);
    void UpdatePHIUserScalarEntries(Instruction *I, PHINode *PN,
                                    std::set<Instruction*> &UpdatedInsts);

    /// ComputeIterationCount - Compute the number of times the specified loop
    /// will iterate.
    SCEVHandle ComputeIterationCount(const Loop *L);

    /// ComputeIterationCountExhaustively - If the trip is known to execute a
    /// constant number of times (the condition evolves only from constants),
    /// try to evaluate a few iterations of the loop until we get the exit
    /// condition gets a value of ExitWhen (true or false).  If we cannot
    /// evaluate the trip count of the loop, return UnknownValue.
    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
                                                 bool ExitWhen);

    /// HowFarToZero - Return the number of times a backedge comparing the
    /// specified value to zero will execute.  If not computable, return
    /// UnknownValue
    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);

    /// HowFarToNonZero - Return the number of times a backedge checking the
    /// specified value for nonzero will execute.  If not computable, return
    /// UnknownValue
    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);

    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    /// in the header of its containing loop, we know the loop executes a
    /// constant number of times, and the PHI node is just a recurrence
    /// involving constants, fold it.
    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
                                                const Loop *L);
  };
}

//===----------------------------------------------------------------------===//
//            Basic SCEV Analysis and PHI Idiom Recognition Code
//

/// deleteInstructionFromRecords - This method should be called by the
/// client before it removes an instruction from the program, to make sure
/// that no dangling references are left around.
void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
  Scalars.erase(I);
  if (PHINode *PN = dyn_cast<PHINode>(I))
    ConstantEvolutionLoopExitValue.erase(PN);
}


/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
/// expression and create a new one.
SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");

  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
  if (I != Scalars.end()) return I->second;
  SCEVHandle S = createSCEV(V);
  Scalars.insert(std::make_pair(V, S));
  return S;
}


/// UpdatePHIUserScalarEntries - After PHI node analysis, we have a bunch of
/// entries in the scalar map that refer to the "symbolic" PHI value instead of
/// the recurrence value.  After we resolve the PHI we must loop over all of the
/// using instructions that have scalar map entries and update them.
void ScalarEvolutionsImpl::UpdatePHIUserScalarEntries(Instruction *I,
                                                      PHINode *PN,
                                        std::set<Instruction*> &UpdatedInsts) {
  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
  if (SI == Scalars.end()) return;   // This scalar wasn't previous processed.
  if (UpdatedInsts.insert(I).second) {
    Scalars.erase(SI);                 // Remove the old entry
    getSCEV(I);                        // Calculate the new entry
    
    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
         UI != E; ++UI)
      UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN, UpdatedInsts);
  }
}


/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
/// a loop header, making it a potential recurrence, or it doesn't.
///
SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
    if (const Loop *L = LI.getLoopFor(PN->getParent()))
      if (L->getHeader() == PN->getParent()) {
        // If it lives in the loop header, it has two incoming values, one
        // from outside the loop, and one from inside.
        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
        unsigned BackEdge     = IncomingEdge^1;
        
        // While we are analyzing this PHI node, handle its value symbolically.
        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
        assert(Scalars.find(PN) == Scalars.end() &&
               "PHI node already processed?");
        Scalars.insert(std::make_pair(PN, SymbolicName));

        // Using this symbolic name for the PHI, analyze the value coming around
        // the back-edge.
        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));

        // NOTE: If BEValue is loop invariant, we know that the PHI node just
        // has a special value for the first iteration of the loop.

        // If the value coming around the backedge is an add with the symbolic
        // value we just inserted, then we found a simple induction variable!
        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
          // If there is a single occurrence of the symbolic value, replace it
          // with a recurrence.
          unsigned FoundIndex = Add->getNumOperands();
          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
            if (Add->getOperand(i) == SymbolicName)
              if (FoundIndex == e) {
                FoundIndex = i;
                break;
              }

          if (FoundIndex != Add->getNumOperands()) {
            // Create an add with everything but the specified operand.
            std::vector<SCEVHandle> Ops;
            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
              if (i != FoundIndex)
                Ops.push_back(Add->getOperand(i));
            SCEVHandle Accum = SCEVAddExpr::get(Ops);

            // This is not a valid addrec if the step amount is varying each
            // loop iteration, but is not itself an addrec in this loop.
            if (Accum->isLoopInvariant(L) ||
                (isa<SCEVAddRecExpr>(Accum) &&
                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);

              // Okay, for the entire analysis of this edge we assumed the PHI
              // to be symbolic.  We now need to go back and update all of the
              // entries for the scalars that use the PHI (except for the PHI
              // itself) to use the new analyzed value instead of the "symbolic"
              // value.
              Scalars.find(PN)->second = PHISCEV;       // Update the PHI value
              std::set<Instruction*> UpdatedInsts;
              UpdatedInsts.insert(PN);
              for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
                   UI != E; ++UI)
                UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN,
                                           UpdatedInsts);
              return PHISCEV;
            }
          }
        }

        return SymbolicName;
      }
  
  // If it's not a loop phi, we can't handle it yet.
  return SCEVUnknown::get(PN);
}

/// createNodeForCast - Handle the various forms of casts that we support.
///
SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
  const Type *SrcTy = CI->getOperand(0)->getType();
  const Type *DestTy = CI->getType();
  
  // If this is a noop cast (ie, conversion from int to uint), ignore it.
  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
    return getSCEV(CI->getOperand(0));
  
  if (SrcTy->isInteger() && DestTy->isInteger()) {
    // Otherwise, if this is a truncating integer cast, we can represent this
    // cast.
    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
                                   CI->getType()->getUnsignedVersion());
    if (SrcTy->isUnsigned() &&
        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
                                     CI->getType()->getUnsignedVersion());
  }

  // If this is an sign or zero extending cast and we can prove that the value
  // will never overflow, we could do similar transformations.

  // Otherwise, we can't handle this cast!
  return SCEVUnknown::get(CI);
}


/// createSCEV - We know that there is no SCEV for the specified value.
/// Analyze the expression.
///
SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    switch (I->getOpcode()) {
    case Instruction::Add:
      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
                              getSCEV(I->getOperand(1)));
    case Instruction::Mul:
      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
                              getSCEV(I->getOperand(1)));
    case Instruction::Div:
      if (V->getType()->isInteger() && V->getType()->isUnsigned())
        return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
                                 getSCEV(I->getOperand(1)));
      break;

    case Instruction::Sub:
      return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1)));

    case Instruction::Shl:
      // Turn shift left of a constant amount into a multiply.
      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
        Constant *X = ConstantInt::get(V->getType(), 1);
        X = ConstantExpr::getShl(X, SA);
        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
      }
      break;

    case Instruction::Shr:
      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
        if (V->getType()->isUnsigned()) {
          Constant *X = ConstantInt::get(V->getType(), 1);
          X = ConstantExpr::getShl(X, SA);
          return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
        }
      break;

    case Instruction::Cast:
      return createNodeForCast(cast<CastInst>(I));

    case Instruction::PHI:
      return createNodeForPHI(cast<PHINode>(I));

    default: // We cannot analyze this expression.
      break;
    }
  }

  return SCEVUnknown::get(V);
}



//===----------------------------------------------------------------------===//
//                   Iteration Count Computation Code
//

/// getIterationCount - If the specified loop has a predictable iteration
/// count, return it.  Note that it is not valid to call this method on a
/// loop without a loop-invariant iteration count.
SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
  if (I == IterationCounts.end()) {
    SCEVHandle ItCount = ComputeIterationCount(L);
    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
    if (ItCount != UnknownValue) {
      assert(ItCount->isLoopInvariant(L) &&
             "Computed trip count isn't loop invariant for loop!");
      ++NumTripCountsComputed;
    } else if (isa<PHINode>(L->getHeader()->begin())) {
      // Only count loops that have phi nodes as not being computable.
      ++NumTripCountsNotComputed;
    }
  }
  return I->second;
}

/// ComputeIterationCount - Compute the number of times the specified loop
/// will iterate.
SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
  // If the loop has a non-one exit block count, we can't analyze it.
  std::vector<BasicBlock*> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1) return UnknownValue;

  // Okay, there is one exit block.  Try to find the condition that causes the
  // loop to be exited.
  BasicBlock *ExitBlock = ExitBlocks[0];

  BasicBlock *ExitingBlock = 0;
  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
       PI != E; ++PI)
    if (L->contains(*PI)) {
      if (ExitingBlock == 0)
        ExitingBlock = *PI;
      else
        return UnknownValue;   // More than one block exiting!
    }
  assert(ExitingBlock && "No exits from loop, something is broken!");

  // Okay, we've computed the exiting block.  See what condition causes us to
  // exit.
  //
  // FIXME: we should be able to handle switch instructions (with a single exit)
  // FIXME: We should handle cast of int to bool as well
  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
  if (ExitBr == 0) return UnknownValue;
  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
  if (ExitCond == 0)  // Not a setcc
    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
                                          ExitBr->getSuccessor(0) == ExitBlock);

  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));

  // Try to evaluate any dependencies out of the loop.
  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
  Tmp = getSCEVAtScope(RHS, L);
  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;

  // If the condition was exit on true, convert the condition to exit on false.
  Instruction::BinaryOps Cond;
  if (ExitBr->getSuccessor(1) == ExitBlock)
    Cond = ExitCond->getOpcode();
  else
    Cond = ExitCond->getInverseCondition();

  // At this point, we would like to compute how many iterations of the loop the
  // predicate will return true for these inputs.
  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
    // If there is a constant, force it into the RHS.
    std::swap(LHS, RHS);
    Cond = SetCondInst::getSwappedCondition(Cond);
  }

  // FIXME: think about handling pointer comparisons!  i.e.:
  // while (P != P+100) ++P;

  // If we have a comparison of a chrec against a constant, try to use value
  // ranges to answer this query.
  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
      if (AddRec->getLoop() == L) {
        // Form the comparison range using the constant of the correct type so
        // that the ConstantRange class knows to do a signed or unsigned
        // comparison.
        ConstantInt *CompVal = RHSC->getValue();
        const Type *RealTy = ExitCond->getOperand(0)->getType();
        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
        if (CompVal) {
          // Form the constant range.
          ConstantRange CompRange(Cond, CompVal);
          
          // Now that we have it, if it's signed, convert it to an unsigned
          // range.
          if (CompRange.getLower()->getType()->isSigned()) {
            const Type *NewTy = RHSC->getValue()->getType();
            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
            CompRange = ConstantRange(NewL, NewU);
          }
          
          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
        }
      }
  
  switch (Cond) {
  case Instruction::SetNE:                     // while (X != Y)
    // Convert to: while (X-Y != 0)
    if (LHS->getType()->isInteger()) {
      SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
    }
    break;
  case Instruction::SetEQ:
    // Convert to: while (X-Y == 0)           // while (X == Y)
    if (LHS->getType()->isInteger()) {
      SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
    }
    break;
  default:
#if 0
    std::cerr << "ComputeIterationCount ";
    if (ExitCond->getOperand(0)->getType()->isUnsigned())
      std::cerr << "[unsigned] ";
    std::cerr << *LHS << "   "
              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
#endif
    break;
  }

  return ComputeIterationCountExhaustively(L, ExitCond,
                                         ExitBr->getSuccessor(0) == ExitBlock);
}

/// CanConstantFold - Return true if we can constant fold an instruction of the
/// specified type, assuming that all operands were constants.
static bool CanConstantFold(const Instruction *I) {
  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
    return true;
  
  if (const CallInst *CI = dyn_cast<CallInst>(I))
    if (const Function *F = CI->getCalledFunction())
      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
  return false;
}

/// ConstantFold - Constant fold an instruction of the specified type with the
/// specified constant operands.  This function may modify the operands vector.
static Constant *ConstantFold(const Instruction *I,
                              std::vector<Constant*> &Operands) {
  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);

  switch (I->getOpcode()) {
  case Instruction::Cast:
    return ConstantExpr::getCast(Operands[0], I->getType());
  case Instruction::Select:
    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
  case Instruction::Call:
    if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Operands[0])) {
      Operands.erase(Operands.begin());
      return ConstantFoldCall(cast<Function>(CPR->getValue()), Operands);
    }

    return 0;
  case Instruction::GetElementPtr:
    Constant *Base = Operands[0];
    Operands.erase(Operands.begin());
    return ConstantExpr::getGetElementPtr(Base, Operands);
  }
  return 0;
}


/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
/// in the loop that V is derived from.  We allow arbitrary operations along the
/// way, but the operands of an operation must either be constants or a value
/// derived from a constant PHI.  If this expression does not fit with these
/// constraints, return null.
static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
  // If this is not an instruction, or if this is an instruction outside of the
  // loop, it can't be derived from a loop PHI.
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0 || !L->contains(I->getParent())) return 0;

  if (PHINode *PN = dyn_cast<PHINode>(I))
    if (L->getHeader() == I->getParent())
      return PN;
    else
      // We don't currently keep track of the control flow needed to evaluate
      // PHIs, so we cannot handle PHIs inside of loops.
      return 0;

  // If we won't be able to constant fold this expression even if the operands
  // are constants, return early.
  if (!CanConstantFold(I)) return 0;
  
  // Otherwise, we can evaluate this instruction if all of its operands are
  // constant or derived from a PHI node themselves.
  PHINode *PHI = 0;
  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
    if (!(isa<Constant>(I->getOperand(Op)) ||
          isa<GlobalValue>(I->getOperand(Op)))) {
      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
      if (P == 0) return 0;  // Not evolving from PHI
      if (PHI == 0)
        PHI = P;
      else if (PHI != P)
        return 0;  // Evolving from multiple different PHIs.
    }

  // This is a expression evolving from a constant PHI!
  return PHI;
}

/// EvaluateExpression - Given an expression that passes the
/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
/// in the loop has the value PHIVal.  If we can't fold this expression for some
/// reason, return null.
static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
  if (isa<PHINode>(V)) return PHIVal;
  if (Constant *C = dyn_cast<Constant>(V)) return C;
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
    return ConstantPointerRef::get(GV);
  Instruction *I = cast<Instruction>(V);

  std::vector<Constant*> Operands;
  Operands.resize(I->getNumOperands());

  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
    if (Operands[i] == 0) return 0;
  }

  return ConstantFold(I, Operands);
}

/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
/// in the header of its containing loop, we know the loop executes a
/// constant number of times, and the PHI node is just a recurrence
/// involving constants, fold it.
Constant *ScalarEvolutionsImpl::
getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
  std::map<PHINode*, Constant*>::iterator I =
    ConstantEvolutionLoopExitValue.find(PN);
  if (I != ConstantEvolutionLoopExitValue.end())
    return I->second;

  if (Its > MaxBruteForceIterations) 
    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.

  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];

  // Since the loop is canonicalized, the PHI node must have two entries.  One
  // entry must be a constant (coming in from outside of the loop), and the
  // second must be derived from the same PHI.
  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
  Constant *StartCST =
    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
  if (StartCST == 0)
    return RetVal = 0;  // Must be a constant.

  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
  if (PN2 != PN)
    return RetVal = 0;  // Not derived from same PHI.

  // Execute the loop symbolically to determine the exit value.
  unsigned IterationNum = 0;
  unsigned NumIterations = Its;
  if (NumIterations != Its)
    return RetVal = 0;  // More than 2^32 iterations??

  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
    if (IterationNum == NumIterations)
      return RetVal = PHIVal;  // Got exit value!

    // Compute the value of the PHI node for the next iteration.
    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
    if (NextPHI == PHIVal)
      return RetVal = NextPHI;  // Stopped evolving!
    if (NextPHI == 0)
      return 0;        // Couldn't evaluate!
    PHIVal = NextPHI;
  }
}

/// ComputeIterationCountExhaustively - If the trip is known to execute a
/// constant number of times (the condition evolves only from constants),
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false).  If we cannot
/// evaluate the trip count of the loop, return UnknownValue.
SCEVHandle ScalarEvolutionsImpl::
ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
  PHINode *PN = getConstantEvolvingPHI(Cond, L);
  if (PN == 0) return UnknownValue;

  // Since the loop is canonicalized, the PHI node must have two entries.  One
  // entry must be a constant (coming in from outside of the loop), and the
  // second must be derived from the same PHI.
  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
  Constant *StartCST =
    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
  if (StartCST == 0) return UnknownValue;  // Must be a constant.

  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.

  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
  // the loop symbolically to determine when the condition gets a value of
  // "ExitWhen".
  unsigned IterationNum = 0;
  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
  for (Constant *PHIVal = StartCST;
       IterationNum != MaxIterations; ++IterationNum) {
    ConstantBool *CondVal =
      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.

    if (CondVal->getValue() == ExitWhen) {
      ConstantEvolutionLoopExitValue[PN] = PHIVal;
      ++NumBruteForceTripCountsComputed;
      return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
    }
    
    // Compute the value of the PHI node for the next iteration.
    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
    if (NextPHI == 0 || NextPHI == PHIVal)
      return UnknownValue;  // Couldn't evaluate or not making progress...
    PHIVal = NextPHI;
  }

  // Too many iterations were needed to evaluate.
  return UnknownValue;
}

/// getSCEVAtScope - Compute the value of the specified expression within the
/// indicated loop (which may be null to indicate in no loop).  If the
/// expression cannot be evaluated, return UnknownValue.
SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
  // FIXME: this should be turned into a virtual method on SCEV!

  if (isa<SCEVConstant>(V)) return V;
  
  // If this instruction is evolves from a constant-evolving PHI, compute the
  // exit value from the loop without using SCEVs.
  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
      const Loop *LI = this->LI[I->getParent()];
      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
        if (PHINode *PN = dyn_cast<PHINode>(I))
          if (PN->getParent() == LI->getHeader()) {
            // Okay, there is no closed form solution for the PHI node.  Check
            // to see if the loop that contains it has a known iteration count.
            // If so, we may be able to force computation of the exit value.
            SCEVHandle IterationCount = getIterationCount(LI);
            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
              // Okay, we know how many times the containing loop executes.  If
              // this is a constant evolving PHI node, get the final value at
              // the specified iteration number.
              Constant *RV = getConstantEvolutionLoopExitValue(PN,
                                               ICC->getValue()->getRawValue(),
                                                               LI);
              if (RV) return SCEVUnknown::get(RV);
            }
          }

      // Okay, this is a some expression that we cannot symbolically evaluate
      // into a SCEV.  Check to see if it's possible to symbolically evaluate
      // the arguments into constants, and if see, try to constant propagate the
      // result.  This is particularly useful for computing loop exit values.
      if (CanConstantFold(I)) {
        std::vector<Constant*> Operands;
        Operands.reserve(I->getNumOperands());
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
          Value *Op = I->getOperand(i);
          if (Constant *C = dyn_cast<Constant>(Op)) {
            Operands.push_back(C);
          } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Op)) {
            Operands.push_back(ConstantPointerRef::get(GV));
          } else {
            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
              Operands.push_back(ConstantExpr::getCast(SC->getValue(),
                                                       Op->getType()));
            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
                Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
              else
                return V;
            } else {
              return V;
            }
          }
        }
        return SCEVUnknown::get(ConstantFold(I, Operands));
      }
    }

    // This is some other type of SCEVUnknown, just return it.
    return V;
  }

  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
    // Avoid performing the look-up in the common case where the specified
    // expression has no loop-variant portions.
    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
      if (OpAtScope != Comm->getOperand(i)) {
        if (OpAtScope == UnknownValue) return UnknownValue;
        // Okay, at least one of these operands is loop variant but might be
        // foldable.  Build a new instance of the folded commutative expression.
        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
        NewOps.push_back(OpAtScope);

        for (++i; i != e; ++i) {
          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
          if (OpAtScope == UnknownValue) return UnknownValue;
          NewOps.push_back(OpAtScope);
        }
        if (isa<SCEVAddExpr>(Comm))
          return SCEVAddExpr::get(NewOps);
        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
        return SCEVMulExpr::get(NewOps);
      }
    }
    // If we got here, all operands are loop invariant.
    return Comm;
  }

  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
    SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
    if (LHS == UnknownValue) return LHS;
    SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
    if (RHS == UnknownValue) return RHS;
    if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
      return UDiv;   // must be loop invariant
    return SCEVUDivExpr::get(LHS, RHS);
  }

  // If this is a loop recurrence for a loop that does not contain L, then we
  // are dealing with the final value computed by the loop.
  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
      // To evaluate this recurrence, we need to know how many times the AddRec
      // loop iterates.  Compute this now.
      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
      if (IterationCount == UnknownValue) return UnknownValue;
      IterationCount = getTruncateOrZeroExtend(IterationCount,
                                               AddRec->getType());
      
      // If the value is affine, simplify the expression evaluation to just
      // Start + Step*IterationCount.
      if (AddRec->isAffine())
        return SCEVAddExpr::get(AddRec->getStart(),
                                SCEVMulExpr::get(IterationCount,
                                                 AddRec->getOperand(1)));

      // Otherwise, evaluate it the hard way.
      return AddRec->evaluateAtIteration(IterationCount);
    }
    return UnknownValue;
  }

  //assert(0 && "Unknown SCEV type!");
  return UnknownValue;
}


/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
/// might be the same) or two SCEVCouldNotCompute objects.
///
static std::pair<SCEVHandle,SCEVHandle>
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
  
  // We currently can only solve this if the coefficients are constants.
  if (!L || !M || !N) {
    SCEV *CNC = new SCEVCouldNotCompute();
    return std::make_pair(CNC, CNC);
  }

  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
  
  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
  Constant *C = L->getValue();
  // The B coefficient is M-N/2
  Constant *B = ConstantExpr::getSub(M->getValue(),
                                     ConstantExpr::getDiv(N->getValue(),
                                                          Two));
  // The A coefficient is N/2
  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
        
  // Compute the B^2-4ac term.
  Constant *SqrtTerm =
    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
                         ConstantExpr::getMul(A, C));
  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);

  // Compute floor(sqrt(B^2-4ac))
  ConstantUInt *SqrtVal =
    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
                                   SqrtTerm->getType()->getUnsignedVersion()));
  uint64_t SqrtValV = SqrtVal->getValue();
  uint64_t SqrtValV2 = (uint64_t)sqrt(SqrtValV);
  // The square root might not be precise for arbitrary 64-bit integer
  // values.  Do some sanity checks to ensure it's correct.
  if (SqrtValV2*SqrtValV2 > SqrtValV ||
      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
    SCEV *CNC = new SCEVCouldNotCompute();
    return std::make_pair(CNC, CNC);
  }

  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
  
  Constant *NegB = ConstantExpr::getNeg(B);
  Constant *TwoA = ConstantExpr::getMul(A, Two);
  
  // The divisions must be performed as signed divisions.
  const Type *SignedTy = NegB->getType()->getSignedVersion();
  NegB = ConstantExpr::getCast(NegB, SignedTy);
  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
  
  Constant *Solution1 =
    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
  Constant *Solution2 =
    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
  return std::make_pair(SCEVUnknown::get(Solution1),
                        SCEVUnknown::get(Solution2));
}

/// HowFarToZero - Return the number of times a backedge comparing the specified
/// value to zero will execute.  If not computable, return UnknownValue
SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
  // If the value is a constant
  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
    // If the value is already zero, the branch will execute zero times.
    if (C->getValue()->isNullValue()) return C;
    return UnknownValue;  // Otherwise it will loop infinitely.
  }

  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
  if (!AddRec || AddRec->getLoop() != L)
    return UnknownValue;

  if (AddRec->isAffine()) {
    // If this is an affine expression the execution count of this branch is
    // equal to:
    //
    //     (0 - Start/Step)    iff   Start % Step == 0
    //
    // Get the initial value for the loop.
    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
    SCEVHandle Step = AddRec->getOperand(1);

    Step = getSCEVAtScope(Step, L->getParentLoop());

    // Figure out if Start % Step == 0.
    // FIXME: We should add DivExpr and RemExpr operations to our AST.
    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
        return getNegativeSCEV(Start);  // 0 - Start/1 == -Start
      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
        return Start;                   // 0 - Start/-1 == Start

      // Check to see if Start is divisible by SC with no remainder.
      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
        ConstantInt *StartCC = StartC->getValue();
        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
        if (Rem->isNullValue()) {
          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
          return SCEVUnknown::get(Result);
        }
      }
    }
  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
    // the quadratic equation to solve it.
    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
    if (R1) {
#if 0
      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
                << "  sol#2: " << *R2 << "\n";
#endif
      // Pick the smallest positive root value.
      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
      if (ConstantBool *CB =
          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
                                                        R2->getValue()))) {
        if (CB != ConstantBool::True)
          std::swap(R1, R2);   // R1 is the minimum root now.
          
        // We can only use this value if the chrec ends up with an exact zero
        // value at this index.  When solving for "X*X != 5", for example, we
        // should not accept a root of 2.
        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
          if (EvalVal->getValue()->isNullValue())
            return R1;  // We found a quadratic root!
      }
    }
  }
  
  return UnknownValue;
}

/// HowFarToNonZero - Return the number of times a backedge checking the
/// specified value for nonzero will execute.  If not computable, return
/// UnknownValue
SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
  // Loops that look like: while (X == 0) are very strange indeed.  We don't
  // handle them yet except for the trivial case.  This could be expanded in the
  // future as needed.
 
  // If the value is a constant, check to see if it is known to be non-zero
  // already.  If so, the backedge will execute zero times.
  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
    if (NonZero == ConstantBool::True)
      return getSCEV(Zero);
    return UnknownValue;  // Otherwise it will loop infinitely.
  }
  
  // We could implement others, but I really doubt anyone writes loops like
  // this, and if they did, they would already be constant folded.
  return UnknownValue;
}

static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
  assert(isa<SCEVConstant>(Val) &&
         "Evaluation of SCEV at constant didn't fold correctly?");
  return cast<SCEVConstant>(Val)->getValue();
}


/// getNumIterationsInRange - Return the number of iterations of this loop that
/// produce values in the specified constant range.  Another way of looking at
/// this is that it returns the first iteration number where the value is not in
/// the condition, thus computing the exit count. If the iteration count can't
/// be computed, an instance of SCEVCouldNotCompute is returned.
SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
  if (Range.isFullSet())  // Infinite loop.
    return new SCEVCouldNotCompute();

  // If the start is a non-zero constant, shift the range to simplify things.
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
    if (!SC->getValue()->isNullValue()) {
      std::vector<SCEVHandle> Operands(op_begin(), op_end());
      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
        return ShiftedAddRec->getNumIterationsInRange(
                                              Range.subtract(SC->getValue()));
      // This is strange and shouldn't happen.
      return new SCEVCouldNotCompute();
    }

  // The only time we can solve this is when we have all constant indices.
  // Otherwise, we cannot determine the overflow conditions.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (!isa<SCEVConstant>(getOperand(i)))
      return new SCEVCouldNotCompute();


  // Okay at this point we know that all elements of the chrec are constants and
  // that the start element is zero.

  // First check to see if the range contains zero.  If not, the first
  // iteration exits.
  ConstantInt *Zero = ConstantInt::get(getType(), 0);
  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
  
  if (isAffine()) {
    // If this is an affine expression then we have this situation:
    //   Solve {0,+,A} in Range  ===  Ax in Range

    // Since we know that zero is in the range, we know that the upper value of
    // the range must be the first possible exit value.  Also note that we
    // already checked for a full range.
    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
    ConstantInt *One   = ConstantInt::get(getType(), 1);

    // The exit value should be (Upper+A-1)/A.
    Constant *ExitValue = Upper;
    if (A != One) {
      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
      ExitValue = ConstantExpr::getDiv(ExitValue, A);
    }
    assert(isa<ConstantInt>(ExitValue) &&
           "Constant folding of integers not implemented?");

    // Evaluate at the exit value.  If we really did fall out of the valid
    // range, then we computed our trip count, otherwise wrap around or other
    // things must have happened.
    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
    if (Range.contains(Val))
      return new SCEVCouldNotCompute();  // Something strange happened

    // Ensure that the previous value is in the range.  This is a sanity check.
    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
                              ConstantExpr::getSub(ExitValue, One))) &&
           "Linear scev computation is off in a bad way!");
    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
  } else if (isQuadratic()) {
    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
    // quadratic equation to solve it.  To do this, we must frame our problem in
    // terms of figuring out when zero is crossed, instead of when
    // Range.getUpper() is crossed.
    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
    NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());

    // Next, solve the constructed addrec
    std::pair<SCEVHandle,SCEVHandle> Roots =
      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
    if (R1) {
      // Pick the smallest positive root value.
      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
      if (ConstantBool *CB =
          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
                                                        R2->getValue()))) {
        if (CB != ConstantBool::True)
          std::swap(R1, R2);   // R1 is the minimum root now.
          
        // Make sure the root is not off by one.  The returned iteration should
        // not be in the range, but the previous one should be.  When solving
        // for "X*X < 5", for example, we should not return a root of 2.
        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
                                                             R1->getValue());
        if (Range.contains(R1Val)) {
          // The next iteration must be out of the range...
          Constant *NextVal =
            ConstantExpr::getAdd(R1->getValue(),
                                 ConstantInt::get(R1->getType(), 1));
          
          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
          if (!Range.contains(R1Val))
            return SCEVUnknown::get(NextVal);
          return new SCEVCouldNotCompute();  // Something strange happened
        }
   
        // If R1 was not in the range, then it is a good return value.  Make
        // sure that R1-1 WAS in the range though, just in case.
        Constant *NextVal =
          ConstantExpr::getSub(R1->getValue(),
                               ConstantInt::get(R1->getType(), 1));
        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
        if (Range.contains(R1Val))
          return R1;
        return new SCEVCouldNotCompute();  // Something strange happened
      }
    }
  }

  // Fallback, if this is a general polynomial, figure out the progression
  // through brute force: evaluate until we find an iteration that fails the
  // test.  This is likely to be slow, but getting an accurate trip count is
  // incredibly important, we will be able to simplify the exit test a lot, and
  // we are almost guaranteed to get a trip count in this case.
  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
  ConstantInt *One     = ConstantInt::get(getType(), 1);
  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
  do {
    ++NumBruteForceEvaluations;
    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
      return new SCEVCouldNotCompute();

    // Check to see if we found the value!
    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
      return SCEVConstant::get(TestVal);

    // Increment to test the next index.
    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
  } while (TestVal != EndVal);
  
  return new SCEVCouldNotCompute();
}



//===----------------------------------------------------------------------===//
//                   ScalarEvolution Class Implementation
//===----------------------------------------------------------------------===//

bool ScalarEvolution::runOnFunction(Function &F) {
  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
  return false;
}

void ScalarEvolution::releaseMemory() {
  delete (ScalarEvolutionsImpl*)Impl;
  Impl = 0;
}

void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredID(LoopSimplifyID);
  AU.addRequiredTransitive<LoopInfo>();
}

SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
}

SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
}

bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
}

SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
}

void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
}


/// shouldSubstituteIndVar - Return true if we should perform induction variable
/// substitution for this variable.  This is a hack because we don't have a
/// strength reduction pass yet.  When we do we will promote all vars, because
/// we can strength reduce them later as desired.
bool ScalarEvolution::shouldSubstituteIndVar(const SCEV *S) const {
  // Don't substitute high degree polynomials.
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
    if (AddRec->getNumOperands() > 3) return false;
  return true;
}


static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 
                          const Loop *L) {
  // Print all inner loops first
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    PrintLoopInfo(OS, SE, *I);
  
  std::cerr << "Loop " << L->getHeader()->getName() << ": ";

  std::vector<BasicBlock*> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1)
    std::cerr << "<multiple exits> ";

  if (SE->hasLoopInvariantIterationCount(L)) {
    std::cerr << *SE->getIterationCount(L) << " iterations! ";
  } else {
    std::cerr << "Unpredictable iteration count. ";
  }

  std::cerr << "\n";
}

void ScalarEvolution::print(std::ostream &OS) const {
  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;

  OS << "Classifying expressions for: " << F.getName() << "\n";
  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
    if (I->getType()->isInteger()) {
      OS << *I;
      OS << "  --> ";
      SCEVHandle SV = getSCEV(&*I);
      SV->print(OS);
      OS << "\t\t";
      
      if ((*I).getType()->isIntegral()) {
        ConstantRange Bounds = SV->getValueRange();
        if (!Bounds.isFullSet())
          OS << "Bounds: " << Bounds << " ";
      }

      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
        OS << "Exits: ";
        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
        if (isa<SCEVCouldNotCompute>(ExitValue)) {
          OS << "<<Unknown>>";
        } else {
          OS << *ExitValue;
        }
      }


      OS << "\n";
    }

  OS << "Determining loop execution counts for: " << F.getName() << "\n";
  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
    PrintLoopInfo(OS, this, *I);
}