aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ScalarEvolutionExpander.cpp
blob: 3e590d68f55eadebe090935570f560dd9b5649ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
using namespace llvm;

/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
/// we can to share the casts.
Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V, 
                                    const Type *Ty) {
  // FIXME: keep track of the cast instruction.
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(opcode, C, Ty);
  
  if (Argument *A = dyn_cast<Argument>(V)) {
    // Check to see if there is already a cast!
    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
         UI != E; ++UI) {
      if ((*UI)->getType() == Ty)
        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
          // If the cast isn't the first instruction of the function, move it.
          if (BasicBlock::iterator(CI) != 
              A->getParent()->getEntryBlock().begin()) {
            CI->moveBefore(A->getParent()->getEntryBlock().begin());
          }
          return CI;
        }
    }
    return CastInst::create(opcode, V, Ty, V->getName(), 
                            A->getParent()->getEntryBlock().begin());
  }
    
  Instruction *I = cast<Instruction>(V);
  
  // Check to see if there is already a cast.  If there is, use it.
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
       UI != E; ++UI) {
    if ((*UI)->getType() == Ty)
      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
        BasicBlock::iterator It = I; ++It;
        if (isa<InvokeInst>(I))
          It = cast<InvokeInst>(I)->getNormalDest()->begin();
        while (isa<PHINode>(It)) ++It;
        if (It != BasicBlock::iterator(CI)) {
          // Splice the cast immediately after the operand in question.
          CI->moveBefore(It);
        }
        return CI;
      }
  }
  BasicBlock::iterator IP = I; ++IP;
  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    IP = II->getNormalDest()->begin();
  while (isa<PHINode>(IP)) ++IP;
  return CastInst::create(opcode, V, Ty, V->getName(), IP);
}

/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
                                 Value *RHS, Instruction *&InsertPt) {
  // Fold a binop with constant operands.
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantExpr::get(Opcode, CLHS, CRHS);

  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
  unsigned ScanLimit = 6;
  for (BasicBlock::iterator IP = InsertPt, E = InsertPt->getParent()->begin();
       ScanLimit; --IP, --ScanLimit) {
    if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(IP))
      if (BinOp->getOpcode() == Opcode && BinOp->getOperand(0) == LHS &&
          BinOp->getOperand(1) == RHS) {
        // If we found the instruction *at* the insert point, insert later
        // instructions after it.
        if (BinOp == InsertPt)
          InsertPt = ++IP;
        return BinOp;
      }
    if (IP == E) break;
  }

  // If we don't have 
  return BinaryOperator::create(Opcode, LHS, RHS, "tmp.", InsertPt);
}

Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
  int FirstOp = 0;  // Set if we should emit a subtract.
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
    if (SC->getValue()->isAllOnesValue())
      FirstOp = 1;

  int i = S->getNumOperands()-2;
  Value *V = expand(S->getOperand(i+1));

  // Emit a bunch of multiply instructions
  for (; i >= FirstOp; --i)
    V = InsertBinop(Instruction::Mul, V, expand(S->getOperand(i)),
                    InsertPt);
  // -1 * ...  --->  0 - ...
  if (FirstOp == 1)
    V = InsertBinop(Instruction::Sub, Constant::getNullValue(V->getType()), V,
                    InsertPt);
  return V;
}

Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
  const Type *Ty = S->getType();
  const Loop *L = S->getLoop();
  // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
  assert(Ty->isInteger() && "Cannot expand fp recurrences yet!");

  // {X,+,F} --> X + {0,+,F}
  if (!isa<SCEVConstant>(S->getStart()) ||
      !cast<SCEVConstant>(S->getStart())->getValue()->isZero()) {
    Value *Start = expand(S->getStart());
    std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
    NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
    Value *Rest = expand(SCEVAddRecExpr::get(NewOps, L));

    // FIXME: look for an existing add to use.
    return InsertBinop(Instruction::Add, Rest, Start, InsertPt);
  }

  // {0,+,1} --> Insert a canonical induction variable into the loop!
  if (S->getNumOperands() == 2 &&
      S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
    // Create and insert the PHI node for the induction variable in the
    // specified loop.
    BasicBlock *Header = L->getHeader();
    PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());

    pred_iterator HPI = pred_begin(Header);
    assert(HPI != pred_end(Header) && "Loop with zero preds???");
    if (!L->contains(*HPI)) ++HPI;
    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
           "No backedge in loop?");

    // Insert a unit add instruction right before the terminator corresponding
    // to the back-edge.
    Constant *One = ConstantInt::get(Ty, 1);
    Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
                                                 (*HPI)->getTerminator());

    pred_iterator PI = pred_begin(Header);
    if (*PI == L->getLoopPreheader())
      ++PI;
    PN->addIncoming(Add, *PI);
    return PN;
  }

  // Get the canonical induction variable I for this loop.
  Value *I = getOrInsertCanonicalInductionVariable(L, Ty);

  // If this is a simple linear addrec, emit it now as a special case.
  if (S->getNumOperands() == 2) {   // {0,+,F} --> i*F
    Value *F = expand(S->getOperand(1));
    
    // IF the step is by one, just return the inserted IV.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
      if (CI->getValue() == 1)
        return I;
    
    // If the insert point is directly inside of the loop, emit the multiply at
    // the insert point.  Otherwise, L is a loop that is a parent of the insert
    // point loop.  If we can, move the multiply to the outer most loop that it
    // is safe to be in.
    Instruction *MulInsertPt = InsertPt;
    Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
    if (InsertPtLoop != L && InsertPtLoop &&
        L->contains(InsertPtLoop->getHeader())) {
      while (InsertPtLoop != L) {
        // If we cannot hoist the multiply out of this loop, don't.
        if (!InsertPtLoop->isLoopInvariant(F)) break;

        // Otherwise, move the insert point to the preheader of the loop.
        MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
        InsertPtLoop = InsertPtLoop->getParentLoop();
      }
    }
    
    return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
  }

  // If this is a chain of recurrences, turn it into a closed form, using the
  // folders, then expandCodeFor the closed form.  This allows the folders to
  // simplify the expression without having to build a bunch of special code
  // into this folder.
  SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.

  SCEVHandle V = S->evaluateAtIteration(IH);
  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";

  return expand(V);
}